Crypto Engineering '19 Block ciphers

Pierre Karpman pierre.karpman@univ-grenoble-alpes.fr https://www-ljk.imag.fr/membres/Pierre.Karpman/tea.html

2019-10-01

Block ciphers

^{2019–10–01} 1/41

- ▶ 5 CM; 3 TD; 2*(2*2)=8 TP
- About symmetric encryption, authentication, hashing
- ▶ Goal 1: understanding the models → What can we achieve?
- ▶ Goal 2: looking a bit at some design(s): the why and hows
- Goal 3: getting a few ideas of what can go terribly wrong :(

Today's morning, 1/3

BC: First definitions

Symmetric encryption schemes

BC: Evolutions

BC: First definitions

Symmetric encryption schemes

BC: Evolutions

 \rightsquigarrow on the board

 \rightsquigarrow still on the board

Block cipher

A block cipher is a mapping $\mathcal{E} : \mathcal{K} \times \mathcal{M} \to \mathcal{M}'$ s.t. $\forall k \in \mathcal{K}, \mathcal{E}(k, \cdot)$ is invertible

In practice, most of the time:

- ▶ Keys $\mathcal{K} = \{0, 1\}^{\kappa}$, with $\kappa \in \{ \emptyset / \!\!\!/, \ \emptyset / \!\!\!0, \ / \!\!\!/ \!\!\!0, \ 112, \ 128, \ 192, \ 256 \}$
- Plaintexts/ciphertexts $\mathcal{M} = \mathcal{M}' = \{0,1\}^n$, with $n \in \{64, 128, 256\}$
- \Rightarrow BCs are *families of permutations* over binary domains
 - Exception: Format Preserving Encryption (FPE)

Ultimate goal: symmetric encryption (and more!)

- plaintext + key \mapsto ciphertext
- ciphertext + key \mapsto plaintext
- ciphertext → ???

With arbitrary plaintexts $\in \{0, 1\}^*$

Block ciphers: do that for plaintexts $\in \{0,1\}^n$

- (Very) small example: 32 randomly shuffled cards = 5-bit block cipher
- Typical block sizes n = "what's easy to implement"

One that's:

- "Efficient"
 - Fast (e.g. a few cycles per byte on modern high-end CPUs)
 - \/\ Compact (small code, circuit size)
 - ► ∧/∨ Easy to implement "securely" (e.g. to prevent side-channel attacks)
 - Etc.
- "Secure"
 - Large security parameters (key, block size)
 - No (known) dedicated attacks.

What do you think?

Expected behaviour:

- Given *oracle access* to $\mathcal{E}(k, \cdot)$, with a secret $k \stackrel{s}{\leftarrow} \mathcal{K}$, it is "hard" to find k
- (Same with oracle access to $\mathcal{E}^{\pm}(k, \cdot) \coloneqq \{\mathcal{E}(k, \cdot), \mathcal{E}^{-1}(k, \cdot)\})$
- Given $c = \mathcal{E}(k, m)$, it is "hard" to find m (when k's unknown)
- Given *m*, it is "hard" to find $c = \mathcal{E}(k, m)$ (idem)

But that's not enough!

Define $\mathcal{E}_k : x_L || x_R \mapsto x_L || \mathcal{E}'_k(x_R)$ for some \mathcal{E}'

- If \mathcal{E}' verifies all props. from the previous slide, then so does \mathcal{E}
- But \mathcal{E} is obviously not so nice
- \Rightarrow need a better way to formulate expectations

Ideal block ciphers

Ideal block cipher

Let $\operatorname{Perm}(\mathcal{M})$ be the set of the $(\#\mathcal{M})!$ permutations of \mathcal{M} ; an *ideal block cipher* $\mathcal{E} : \mathcal{K} \times \mathcal{M} \to \mathcal{M}$ is s.t. $\forall k \in \mathcal{K}$, $\mathcal{E}(k, \cdot) \stackrel{\$}{\leftarrow} \operatorname{Perm}(\mathcal{M})$

- "Maximally random"
- All keys yield truly independent permutations
- Quite costly to implement
 - ► Say $\mathcal{M} = \{0, 1\}^{32} \rightsquigarrow 2^{32}! < (2^{32})^{2^{32}}$ permutations
 - So about $32 \times 2^{32} = 2^{37}$ bits to describe one (\leftarrow key size)
 - \Rightarrow Not very practical

Good enough if \mathcal{E} is a "good" pseudo-random permutation (PRP):

- ${\scriptstyle \blacktriangleright}$ An adversary has access to an oracle ${\scriptstyle \mathbb{O}}$
- ► In one world, $\mathbb{O} \stackrel{\$}{\leftarrow} \operatorname{Perm}(\mathcal{M})$
- In another, $k \stackrel{\$}{\leftarrow} \mathcal{K}$, $\mathbb{O} = \mathcal{E}(k, \cdot)$
- It is "hard" for the adversary to tell in which world he lives
- ("Strong/Super" variant: give oracle access to $\mathbb{O}^{\pm})$
- \Rightarrow Stronger requirement than key recovery (is implied by it, converse is not true)

It's easy to distinguish the two worlds if:

- It's easy to recover the key of $\mathcal{E}(k,\cdot)$ (try and see)
- It's easy to predict what $\mathcal{E}(k,m)$ will be (ditto)
- ▶ $\mathcal{E}_k : x_L ||x_R \mapsto x_L || \mathcal{E}'_k(x_R)$ (random permutations usually don't do that)
- \mathcal{E} is \mathbb{F}_2 -linear (say), or even "close to"
- Etc.
- \Rightarrow Don't have to explicitly define all the "bad cases"

Plus:

- Can't do better than a random permutation anyways
- If it looks like one, either it's fine, or BCs are useless

We still need to define what means "hard" \Rightarrow complexity measures:

- Time (T) ("how much computation")
- Memory (M) ("how much storage")
 - Memory type (sequential access (cheap tape), RAM (costly))
- Data (D) ("how many oracle queries")
 - Query type (to \mathcal{E} , to \mathcal{E}^{-1} , *adaptive* or not, etc.)
- Success probability (p)

Generic attack examples

Take $\mathcal{E}: \{0,1\}^{\kappa} \times \{0,1\}^n \rightarrow \{0,1\}^n$

- Can guess an unknown key with $T = 2^{\kappa}$, M = O(1), D = O(1), p = 1
- Can guess an unknown key with T = 1, M = O(1), D = 0, $p = 2^{-\kappa}$
- Given $\mathcal{E}(k, m)$, can guess m with T = 1; M = O(1), D = 0, $p = 2^{-\kappa}$
- Given $\mathcal{E}(k, m)$, can guess m with T = 1; M = O(1), D = 0, $p = 2^{-n}$
- Given $\mathcal{E}(k, m)$, can guess m with $T = 2^{\kappa}$; M = O(1), D = O(1), p = 1

We have "small" secrets \Rightarrow attacks always possible = computational security

Define advantage functions associated w/ the security properties. For instance:

 $\begin{aligned} \mathbf{Adv}_{\mathcal{E}}^{\mathsf{PRP}}(q,t) = \\ \max_{A_{q,t}} |\Pr[A_{q,t}^{\mathbb{O}}() = 1 : \mathbb{O} \xleftarrow{\mathsf{s}} \mathsf{Perm}(\mathcal{M})] \\ - \Pr[A_{q,t}^{\mathbb{O}}() = 1 : \mathbb{O} = \mathcal{E}(k,\cdot), k \xleftarrow{\mathsf{s}} \mathcal{K}]| \end{aligned}$

 $A_{q,t}^{\mathbb{O}}$: An algorithm running in time $\leq t$, making $\leq q$ queries to \mathbb{O}

"Good PRPs"

There is no definition of what a good PRP $\ensuremath{\mathcal{E}}$ is, but one can expect that:

$$\mathsf{Adv}^{\mathsf{PRP}}_{\mathcal{E}}(q,t)pprox t/2^{\kappa}$$

(As long as $q \ge D = O(1)$)

- Matched by a generic attack (i.e. key guessing)
- Equality if *E* is ideal
- Anything that's (sensibly) better is a *dedicated* attack

Parameters choice

Even an "ideal" block cipher is useless if its key is too small

- If $\kappa = 32$, $t = 2^{\kappa} = 2^{32}$ is small
- But when do you know κ 's large enough?
- Look at the time/energy/infrastructure to count up to 2^{κ}

Some examples

- \sim 40 \sim breakable w/ a small Raspberry Pi cluster
- ▶ \approx 60 \rightsquigarrow breakable w/ a large CPU/GPU cluster
 - Already done (equivalently) several times in the academia:
 - Ex. RSA-768 (Kleinjung et al., 2010), 2000 core-years (≡ 2⁶⁷ bit operations)
 - Ex. DL-768 (Kleinjung et al., 2016), 5300 core-years
 - Ex. SHA-1 collision (Stevens et al., and me!, 2017), 6500 core-years + 100 GPU-year (≡ 2⁶³ hash computations)
- ▶ \approx 80 \rightsquigarrow breakable w/ an ASIC cluster (cf. Bitcoin mining)

What about 128?

Objective: run a function 2^{128} times within 34 years ($\approx 2^{30}$ seconds), assuming:

- Hardware at 2⁵⁰ iterations/s (that's pretty good)
- Trivially parallelizable (that's not always the case in practice)
- 1000 W per device, no overhead (that's pretty good)
- $2^{128-50-30} \approx 2^{48}$ machines needed
 - \blacktriangleright $\approx 280\,000\,000$ GW 'round the clock
 - $\blacktriangleright~\approx 170\,000\,000$ EPR nuclear power plants

Looks hard enough

 \Rightarrow

Parameters choice (cont.)

Two caveats:

- 1 Careful about multiuser security
 - ▶ If a single user changes keys *a lot* and breaking one is enough
 - If targeting one random user among many
 - A mix of the two (best!)
 - \blacktriangleright \rightsquigarrow have to account for that
- 2 Should we care about quantum computers??
 - Would gain a $\sqrt{\cdot}$ factor
 - "128-bit classical" ⇒ "64-bit quantum"
 - (But a direct comparison is not so meaningful, actually)

In case of doubt, 256 bits?

Parameters choice (cont.)

What about block size?

- Security not (directly) related to computational power
- Dictated by the volume encrypted with a single key (cf. next)

In the end, it's always a cost/security tradeoff

(If you need a conventional BC with ridiculously large params, SHACAL-2, w/ n = 256, $\kappa = 512$ is a good choice!)

BC: First definitions

Symmetric encryption schemes

BC: Evolutions

What block ciphers do:

One-to-one encryption of fixed-size messages

What do we want:

- One-to-many encryption of variable-size messages
- Why?
 - Variable-size → kind of obvious?
 - One-to-many → necessary for semantic security → cannot tell if two ciphertexts are of the same message or not

- A mode of operation transforms a block cipher into a symmetric encryption scheme
- ${}^{\scriptscriptstyle }\, \approx\, \mathcal{E} \rightsquigarrow \mathsf{Enc}: \{0,1\}^\kappa \times \{0,1\}^r \times \{0,1\}^* \rightarrow \{0,1\}^*$
- For all $k \in \{0,1\}^{\kappa}$, $r \in \{0,1\}^{r}$, $Enc(k,r,\cdot)$ is invertible
- $\{0,1\}^r$, $r \ge 0$ is used to make encryption non-deterministic
- A mode is "good" if it gives "good encryption schemes" when used with "good BCs"
- So what's a good encryption scheme?

IND-CPA for Enc: An adversary cannot distinguish $Enc(k, m_0)$ from $Enc(k, m_1)$ for an unknown key k and equal-length messages m_0 , m_1 when given oracle access to an $Enc(k, \cdot)$ oracle:

1 The Challenger chooses a key $k \stackrel{\$}{\leftarrow} \{0,1\}^{\kappa}$

- 2 The Adversary may repeatedly submit queries x_i to the Challenger
- **3** The Challenger answers a query with $Enc(k, r_i, x_i)$
- **4** The Adversary now submits m_0 , m_1 of equal length
- **5** The Challenger draws $b \stackrel{s}{\leftarrow} \{0,1\}$, answers with $Enc(k, r', m_b)$
- 6 The Adversary tries to guess b
 - The choice of r_i, r' is defined by the mode (made explicit here, may be omitted)

IND-CPA comments

- A random adversary succeeds w/ prob. 1/2 → the correct success measure is the *advantage* over this
 - Advantage (one possible definition): |Pr[Adversary answers 1: b = 0] - Pr[Adversary answers 1: b = 1]|
 - (Same as for PRP security)
- An adversary may always succeed w/ advantage 1 given enough ressources → only computational security (again)
 - ▶ Find the key spending time $t \le 2^{\kappa}$ and a few oracle queries
- What matters is the "best possible" advantage in function of the attack complexity

 \blacktriangleright ECB: just concatenate independent calls to ${\cal E}$

Electronic Code Book mode $m_0 || m_1 || \ldots \mapsto \mathcal{E}(k, m_0) || \mathcal{E}(k, m_1) || \ldots$

- No security
 - Exercise: give a simple attack on ECB for the IND-CPA security notion w/ advantage 1, low complexity

Cipher Block Chaining: Chain blocks together (duh)

Cipher Block Chaining mode

 $r \times m_0 ||m_1|| \ldots \mapsto c_0 \coloneqq \mathcal{E}(k, m_0 \oplus r) ||c_1 \coloneqq \mathcal{E}(k, m_1 \oplus c_0) || \ldots$

- Output block *i* (ciphtertext) added (XORed) w/ input block
 i + 1 (plaintext)
- For first (m_0) block: use random IV r
- Okay security in theory ~ okay security in practice if used properly

CBC IVs

CBC has bad IND-CPA security if the IVs are not random

- Consider an IND-CPA adversary who asks an oracle query CBC-ENC(m), gets $r, c = \mathcal{E}(k, m \oplus r)$ (where \mathcal{E} is the cipher used in CBC-ENC)
- Assume the adversary knows that for the next IV r', Pr[r' = x] is "large"
- Sends two challenges $m_0 = m \oplus r \oplus x$, $m_1 = m_0 \oplus 1$
- Gets $c_b = \text{CBC-ENC}(m_b), b \stackrel{\$}{\leftarrow} \{0, 1\}$

• If
$$c_b = c$$
, guess $b = 0$, else $b = 1$

Even with random IVs, CBC has some drawbacks An observation:

- In CBC, inputs to *E* are of the form x ⊕ y where x is a message block and y an IV or a ciphertext block
- If $x \oplus y = x' \oplus y'$, then $\mathcal{E}(k, x \oplus y) = \mathcal{E}(k, x' \oplus y')$

A consequence:

- If $c_i = \mathcal{E}(k, m_i \oplus c_{i-1}) = c'_j = \mathcal{E}(k, m'_j \oplus c'_{j-1})$, then $c_{i-1} \oplus c'_{j-1} = m_i \oplus m'_j$
- ~ knowing identical ciphertext blocks reveals information about the message blocks
- \rightarrow breaks IND-CPA security
- Regardless of the security of \mathcal{E} !

How soon does a collision happen?

- ▶ Assumption: the distribution of the $(x \oplus y)$ is \approx uniform
 - If y is an IV it has to be (close to) uniformly random, otherwise we have an attack (two slides ago)
 - If y = E(k, z) is a ciphertext block, ditto for y knowing z, otherwise we have an attack on E
- ▶ ⇒ A collision occurs w.h.p. after $\sqrt{\#\{0,1\}^n} = 2^{n/2}$ blocks are observed (with identical key k) ← The birthday bound
- (Slightly more precisely, w/ prob. $\approx q^2/2^n, q \leq 2^{n/2}$ after q blocks)

Some CBC recap

A decent mode, but

- Must use random IVs
- Must change key much before encrypting 2^{n/2} blocks when using an n-bit block cipher
- And this regardless of the key size κ
- Only "birthday bound" security: this is a common restriction for modes of operation (cf. next slide)

Counter mode

 $m_0 || m_1 || \ldots \mapsto \mathcal{E}(k, s^{++}) \oplus m_0 || \mathcal{E}(k, s^{++}) \oplus m_1 || \ldots$

- This uses a global state s for the *counter*, with C-like semantics for s++
- Encrypts a public counter → pseudo-random keystream → (perfect) one-time-pad approximation (i.e. a stream cipher)
- Like CBC, must change key much before encrypting 2^{n/2} blocks when using an n-bit block cipher

BC: First definitions

Symmetric encryption schemes

BC: Evolutions

Block ciphers are very versatile, ~

- Symmetric encryption
- Authentication
- Hashing
- (More exotic constructions)

But not the only candidate primitives for the above

Two possible variations:

- Add one parameter (*tweakable* block ciphers)
- Remove one parameter (*permutations*)

Tweakable block cipher

A tweakable block cipher is a mapping $\widetilde{\mathcal{E}} : \mathcal{K} \times \mathcal{T} \times \mathcal{M} \to \mathcal{M}'$ s.t. $\forall k \in \mathcal{K}, t \in \mathcal{T}, \widetilde{\mathcal{E}}(k, t, \cdot)$ is invertible

The *tweak t*:

- Acts like a key in how it parameterizes a permutation
- Is public (known to any adversary)
- Could even be chosen by anyone

Why TBCs?

Tweakable block ciphers are nice:

- Simplify the design/proofs of higher-level constructions
- Typically authenticated-encryption modes (e.g. ΘCB)
- Help a lot in getting beyond-birthday-bound (BBB) security

An intuition of usefulness:

- Never reuse a tweak \Rightarrow always use independent permutations
- Becomes quite harder to attack/distinguish

Tweakable block ciphers may be built either:

- As high-level constructions, typically from a regular BC
 - ► Example: $\widetilde{\mathcal{E}}(k, t, \cdot) = \mathcal{E}(k \oplus t, \cdot)$ (adequate if \mathcal{E} is secure against XOR related-key attacks)
- As dedicated designs (like a regular BC)
 - Example: KIASU-BC

Permutations

Permutation

A permutation is an invertible mapping $\mathcal{P}:\mathcal{M} \rightarrow \mathcal{M}$

- No key anymore!
 - One consequence: no notion similar to PRP to formalize sec.
- Easy to build as $\mathcal{E}(0,\cdot)$

Rationale:

- In BCs, it is wasteful to process the key and plaintext separately
- Inverting a permutation is often not necessary; constructions like $\mathcal{P}(k||m)$ are okay

Permutation uses

Hash functions:

- SHA-3 (Keccak)
- ► JH
- Grøstl
- Etc.

Authenticated encryption:

- River/Lake/Sea/Ocean/Lunar Keyak
- Ascon
- Etc.