Crypto Engineering '19
 Finite field extensions

Pierre Karpman
pierre.karpman@univ-grenoble-alpes.fr
https://www-ljk.imag.fr/membres/Pierre.Karpman/tea.html

2019-09-25

Why do we care?

Extension fields (esp. of the form $\mathbb{F}_{2^{n}}$) are useful to:

- Build polynomial MACs
- Define matrices "over bytes" or nibbles (4-bit values)
- Used e.g. in the AES
- Etc.

Generally useful when working over (binary) discrete data \rightsquigarrow they're the "right" abstraction

Roadmap

Linear-Feedback Shift Registers

Finite fields extensions

Implementation of FF arithmetic

Finite field extensions

Linear-Feedback Shift Registers

Finite fields extensions

Implementation of FF arithmetic

Linear-Feedback Shift Registers

LFSR (type 1, "Galois")
An LFSR of length n over a field \mathbb{K} is a map
$\mathcal{L}:\left[s_{n-1}, s_{n-2}, \ldots, s_{0}\right] \mapsto$
$\left[s_{n-2}+s_{n-1} r_{n-1}, s_{n-3}+s_{n-1} r_{n-2}, \ldots, s_{0}+s_{n-1} r_{1}, s_{n-1} r_{0}\right]$ where the $s_{i}, r_{i} \in \mathbb{K}$

LFSR (type 2, "Fibonacci")
An LFSR of length n over a field \mathbb{K} is a map
$\mathcal{L}:\left[s_{n-1}, s_{n-2}, \ldots, s_{0}\right] \mapsto$ $\left[s_{n-2}, s_{n-3}, \ldots, s_{0}, s_{n-1} r_{n-1}+s_{n-2} r_{n-2}+\ldots+s_{0} r_{0}\right]$ where the s_{i}, $r_{i} \in \mathbb{K}$

Theorem: The two above definitions are "equivalent"

Characterization

An LFSR is fully determined by:

- Its base field \mathbb{K}
- Its state size n
- Its feedback function $\left(r_{n-1}, r_{n-2}, \ldots, r_{0}\right)$

An LFSR may be used to generate an infinite sequence $\left(U_{m}\right)$ (valued in \mathbb{K}):
1 Choose an initial state $S=\left[s_{n-1}, \ldots, s_{0}\right]$
2 $U_{0}=S[n-1]=s_{n-1}$
$3 U_{1}=\mathcal{L}(S)[n-1]$
$4 U_{2}=\mathcal{L}^{2}(S)[n-1]$, etc.

Some properties

- The sequence generated by an LFSR is periodic (Q: Why?)
- Some LFSRs map non-zero initial states to the all-zero one (Q: Give an example?)
- Some LFSRs generate a sequence of maximal period when initialised to any non-zero state (Q: What is it?)
- It is very easy to recover the feedback function of an LFSR from (enough outputs of) its generated sequence (Q: How?)

A simple case: binary LFSRs

Let's focus on:

- LFSRs of type 1
- Over \mathbb{F}_{2}
\mathcal{L} becomes:
1 Shift bits to the left
2 If the (previous) msb was 1
1 Add (XOR) 1 to some state positions (given by the feedback function)

Some formalism

The feedback function of an LFSR can be written as a polynomial:

$$
\left(r_{n-1}, r_{n-2}, \ldots, r_{0}\right) \equiv Q:=X^{n}+r_{n-1} X^{n-1}+\ldots+r_{1} X+r_{0}
$$

Same for the state:

$$
\left(s_{n-1}, s_{n-2}, \ldots, s_{0}\right) \equiv S:=s_{n-1} X^{n-1}+\ldots+s_{1} X+s_{0}
$$

\mathcal{L} corresponds to the map $S \times X \bmod Q$
Example:

- Take \mathcal{L} of length 4 over \mathbb{F}_{2} and feedback polynomial $X^{4}+X+1$
- $\Rightarrow \mathcal{L}:\left(s_{3}, s_{2}, s_{1}, s_{0}\right) \mapsto\left(s_{2}, s_{1}, s_{0}+s_{3}, s_{3}\right)$

Why should I care about those?

- Useful as a basis for stream ciphers (in the olden times, mostly)
- One way to define/compute with extension fields
- It's beautiful?

Linear-Feedback Shift Registers

Finite fields extensions

Implementation of FF arithmetic

Finite fields: prime fields recap

- Motivation: a rich field structure over a finite set
- Idea: take the integers and reduce modulo N
- Operations work "as usual"
- Over a finite set
- Problem: have to ensure invertibility of all elements
- Necessary condition N has to be prime
- (Otherwise, $N=p q \Rightarrow p \times q=0 \bmod N \Rightarrow$ neither is invertible)
- In fact also sufficient: $\mathbb{Z} / p \mathbb{Z}$ is a field (also noted \mathbb{F}_{p}) iff. p is prime

Fields \Rightarrow polynomials

- One can define the polynomials $\mathbb{F}_{p}[X]$ over a finite field
- One can divide polynomials (e.g. $\left.\left(X^{2}+X\right) /(X+1)=X\right)$
- \Rightarrow notion of remainder (e.g. $\left(X^{2}+X+1\right) /(X+1)=(X, 1)$
- \Rightarrow can define multiplication in $\mathbb{F}_{p}[X]$ modulo a polynomial Q
- If $\operatorname{deg}(Q)=n$, operands are restricted to a finite set of poly. of $\operatorname{deg}<n$

Finite fields with polynomials

- $\mathbb{F}_{p}[X] / Q$ is a finite set of polynomials
- With addition, multiplication working as usual (again) \rightsquigarrow get a ring
- To make it a field: have to ensure invertibility of all elements
- Necessary condition: Q is irreducible, i.e. has no non-constant factors (Q is "prime")
- In fact also sufficient: $\mathbb{F}_{p}[X] / Q$ is a field iff. Q is irreducible over \mathbb{F}_{p} (constructive proof: use the extended Euclid algorithm)
- Theorem: irreducible polynomials of all degrees exist over any given finite field

Quick questions

- How many elements does have a field built as $\mathbb{F}_{p}[X] / Q$, when $\operatorname{deg}(Q)=n$?
- Describe the cardinality of finite fields that you know how to build
- Let $\alpha \in \mathbb{F}_{q} \equiv \mathbb{F}_{p}[X] / Q$. what is the result of $\alpha+\alpha+\ldots+\alpha$ (addition of p copies of α)?

Characteristic

Characteristic of a field

The characteristic of a field \mathbb{K}, noted $\operatorname{char}(\mathbb{K})$, is the min. $n \in \mathbb{N}$ s.t. $\forall x \in \mathbb{K}, \sum_{i=1}^{n} x=0$, or 0 if no such n exists

- Prime fields \mathbb{F}_{p} have characteristic p
- Extension fields $\mathbb{F}_{p^{e}}$ have characteristic p
- In characteristic two ("even characteristic"), $+\equiv-$

We may say that the characteristic of a field \mathbb{F}_{q} is:

- "small", if e.g. $=2,3, \ldots$
, "medium" if e.g. $q=p^{6}, p^{12}, \ldots$
- "large" if e.g. $q=p, p^{2}$

Quick remarks

- Two finite fields of equal cardinality are unique up to isomorphism
- But different choices for Q may be possible \Rightarrow different representations \rightsquigarrow important for (explicit) implementations
- One can build extension towers: extensions over fields that were already extension fields, iterating the same process as for a single extension

Linear-Feedback Shift Registers

Finite fields extensions

Implementation of FF arithmetic

Finite field extensions

How to implement finite field operations?

- \mathbb{F}_{p} :
- Addition: add modulo
- Multiplication: multiply modulo
- Inverse: use the extended Euclid algorithm
- $\mathbb{F}_{p^{e}}$:
- Represent elements as polynomials, then
- Addition: add modulo, coefficient-wise
- Multiplication: multiply polynomials modulo (w.r.t. polynomial division) \rightsquigarrow can use LFSRs
- Inverse: use the extended Euclid algorithm (for polynomials)

Multiplication in $\mathbb{F}_{2^{n}}$

We now focus on characteristic two for simplicity

- $\alpha \in \mathbb{F}_{2^{n}} \equiv \mathbb{F}_{2}[X] / Q$ is "a polynomial over \mathbb{F}_{2} of $\operatorname{deg}<n$ "
- So $\alpha=\alpha_{n-1} X^{n-1}+\ldots+\alpha_{1} X+\alpha_{0}$
- So we can multiply α by $X \Rightarrow \alpha_{n-1} X^{n}+\ldots+\alpha_{1} X^{2}+\alpha_{0} X$
- But this may be of deg $=n$, so "not in $\mathbb{F}_{2 n}$ "
- So we reduce the result modulo

$$
Q=X^{n}+q_{n-1} X^{n-1}+\ldots+q_{1} X+q_{0}
$$

the defining polynomial of $\mathbb{F}_{2^{n}}$

Reduction: two cases

Case 1: $\operatorname{deg}(\alpha X)<n$

- There's nothing to do

Case 2: $\operatorname{deg}(\alpha X)=n: \alpha X=X^{n}+\ldots+\alpha_{0} X$

- Then $\operatorname{deg}(\alpha X-Q)<n$
- And $\alpha X-Q$ is precisely the remainder of $\alpha X \div Q$
- (Think how if $a \in \rrbracket N, 2 N \llbracket, a \bmod N=a-N$)

Multiplication + reduction: alternative view

$$
\begin{aligned}
& \left(\alpha_{n-1}, \ldots, \alpha_{1}, \alpha_{0}\right) \times X \bmod \left(q_{n}, q_{n-1}, \ldots, q_{1}, q_{0}\right)= \\
& \quad \cdot\left(\alpha_{n-2}, \ldots, \alpha_{1}, \alpha_{0}, 0\right) \text { if } \alpha_{n-1}=0 \\
& \quad\left(\alpha_{n-2}-q_{n-1}, \ldots, \alpha_{1}-q_{2}, \alpha_{0}-q_{1},-q_{0}\right) \text { if } \alpha_{n-1}=1 \\
& \quad\left(\text { or }\left(\alpha_{n-2}+q_{n-1}, \ldots, \alpha_{1}+q_{2}, \alpha_{0}+q_{1}, q_{0}\right)\right. \text { as we're in } \\
& \quad \text { characteristic two })
\end{aligned}
$$

- or
$\left(\alpha_{n-2}+q_{n-1} \alpha_{n-1}, \ldots, \alpha_{1}+q_{2} \alpha_{n-1}, \alpha_{0}+q_{1} \alpha_{n-1}, q_{0} \alpha_{n-1}\right)$ \Rightarrow the result of one step of LFSR with feedback polynomial equal to $(-) Q$!

Summary

- An element of $\mathbb{F}_{2}^{n} \equiv \mathbb{F}_{2}[X] / Q$ is a polynomial
- ...is the state of an LFSR with feedback polynomial Q
- Multiplication by X is done $\bmod Q$
- ...is the result of clocking the LFSR once
- Multiplication by X^{2} is done by clocking the LFSR twice, etc.
- Multiplication by $\beta_{n-1} X^{n-1}+\ldots+\beta_{1} X+\beta_{0}$ is done "the obvious way", using distributivity

A note on representation

It is convenient to write $\alpha=\alpha_{n-1} X^{n-1}+\ldots+\alpha_{1} X+\alpha_{0}$ as the integer $a=\alpha_{n-1} 2^{n-1}+\ldots+\alpha_{1} 2+\alpha_{0}$

- Example: $X^{4}+X^{3}+X+1 "=" 27=0 \times 1 B$

Examples in $\mathbb{F}_{2^{8}} \equiv \mathbb{F}_{2}[X] / X^{8}+X^{4}+X^{3}+X+1$

Example 1:

$$
\begin{aligned}
& \alpha=X^{5}+X^{3}+X(0 \times 2 \mathrm{~A}), \beta=X^{2}+1(0 \times 05) \\
& \alpha+\beta=X^{5}+X^{3}+X^{2}+X+1(0 \times 2 \mathrm{~F}) \\
& \alpha \beta=X^{2} \alpha+\alpha=X^{7}+X^{5}+X^{3}(0 \mathrm{xA} 8)+X^{5}+X^{3}+X= \\
& X^{7}+X(0 \times 82)
\end{aligned}
$$

Examples in $\mathbb{F}_{2^{8}} \equiv \mathbb{F}_{2}[X] / X^{8}+X^{4}+X^{3}+X+1$

Example 2:

$$
\begin{aligned}
& \alpha=X^{5}+X^{3}+X, \gamma=X^{4}+X(0 \times 12) \\
& \alpha \gamma=X^{4} \alpha+X \alpha \\
& \quad X^{4} \alpha=X\left(X\left(X^{7}+X^{5}+X^{3}\right)\right) \\
& \quad X\left(X^{7}+X^{5}+X^{3}\right)= \\
&\left(X^{8}+X^{6}+X^{4}\right)+\left(X^{8}+X^{4}+X^{3}+X+1\right)=X^{6}+X^{3}+X+1 \\
& \quad X\left(X^{6}+X^{3}+X+1\right)=X^{7}+X^{4}+X^{2}+X \\
&= X^{7}+X^{4}+X^{2}+X(0 \times 96)+X^{6}+X^{4}+X^{2}(0 \times 54)= \\
& X^{7}+X^{6}+X(0 \times C 2)
\end{aligned}
$$

Other implementation possibilities

- Precompute the full multiplication table $\rightsquigarrow \mathrm{O}\left(q^{2}\right)$ space (quickly impractical)
- Precompute a log table (e.g. using Zech's representation) $\rightsquigarrow \mathrm{O}(q)$ space (reasonable for small q)
- Use efficient polynomial arithmetic + reduction, for instance:
- pclmulqdq for extensions of \mathbb{F}_{2}
- Kronecker substitution in other small characteristics
- Sometimes, only implementation by a constant matters

