
Finite field extensions 2019–09–25 1/27

Crypto Engineering ’19
]

Finite field extensions

Pierre Karpman
pierre.karpman@univ-grenoble-alpes.fr

https://www-ljk.imag.fr/membres/Pierre.Karpman/tea.html

2019–09–25

pierre.karpman@univ-grenoble-alpes.fr
https://www-ljk.imag.fr/membres/Pierre.Karpman/tea.html

Finite field extensions 2019–09–25 2/27

Why do we care?

Extension fields (esp. of the form F2n) are useful to:

§ Build polynomial MACs
§ Define matrices “over bytes” or nibbles (4-bit values)

§ Used e.g. in the AES

§ Etc.

Generally useful when working over (binary) discrete data
they’re the “right” abstraction

Finite field extensions 2019–09–25 3/27

Roadmap

Linear-Feedback Shift Registers

Finite fields extensions

Implementation of FF arithmetic

Finite field extensions 2019–09–25 4/27

Linear-Feedback Shift Registers

Finite fields extensions

Implementation of FF arithmetic

Finite field extensions 2019–09–25 5/27

Linear-Feedback Shift Registers

LFSR (type 1, “Galois”)

An LFSR of length n over a field K is a map
L : rsn´1, sn´2, . . . , s0s ÞÑ
rsn´2 ` sn´1rn´1, sn´3 ` sn´1rn´2, . . . , s0 ` sn´1r1, sn´1r0s where
the si , ri P K

LFSR (type 2, “Fibonacci”)

An LFSR of length n over a field K is a map
L : rsn´1, sn´2, . . . , s0s ÞÑ
rsn´2, sn´3, . . . , s0, sn´1rn´1 ` sn´2rn´2 ` . . .` s0r0s where the si ,
ri P K

Theorem: The two above definitions are “equivalent”

Finite field extensions 2019–09–25 6/27

Characterization

An LFSR is fully determined by:

§ Its base field K
§ Its state size n

§ Its feedback function prn´1, rn´2, . . . , r0q

An LFSR may be used to generate an infinite sequence pUmq

(valued in K):

1 Choose an initial state S “ rsn´1, . . . , s0s

2 U0 “ Srn ´ 1s “ sn´1

3 U1 “ LpSqrn ´ 1s

4 U2 “ L2pSqrn ´ 1s, etc.

Finite field extensions 2019–09–25 7/27

Some properties

§ The sequence generated by an LFSR is periodic (Q: Why?)

§ Some LFSRs map non-zero initial states to the all-zero one
(Q: Give an example?)

§ Some LFSRs generate a sequence of maximal period when
initialised to any non-zero state (Q: What is it?)

§ It is very easy to recover the feedback function of an LFSR
from (enough outputs of) its generated sequence (Q: How?)

Finite field extensions 2019–09–25 8/27

A simple case: binary LFSRs

Let’s focus on:

§ LFSRs of type 1

§ Over F2

L becomes:

1 Shift bits to the left

2 If the (previous) msb was 1

1 Add (XOR) 1 to some state positions (given by the feedback
function)

Finite field extensions 2019–09–25 9/27

Some formalism

The feedback function of an LFSR can be written as a polynomial:

§ prn´1, rn´2, . . . , r0q ” Q :“ X n ` rn´1X
n´1 ` . . .` r1X ` r0

Same for the state:

§ psn´1, sn´2, . . . , s0q ” S :“ sn´1X
n´1 ` . . .` s1X ` s0

L corresponds to the map S ˆ X mod Q

Example:

§ Take L of length 4 over F2 and feedback polynomial
X 4 ` X ` 1

§ ñ L : ps3, s2, s1, s0q ÞÑ ps2, s1, s0 ` s3, s3q

Finite field extensions 2019–09–25 10/27

Why should I care about those?

§ Useful as a basis for stream ciphers (in the olden times,
mostly)

§ One way to define/compute with extension fields

§ It’s beautiful?

Finite field extensions 2019–09–25 11/27

Linear-Feedback Shift Registers

Finite fields extensions

Implementation of FF arithmetic

Finite field extensions 2019–09–25 12/27

Finite fields: prime fields recap

§ Motivation: a rich field structure over a finite set
§ Idea: take the integers and reduce modulo N

§ Operations work “as usual”
§ Over a finite set

§ Problem: have to ensure invertibility of all elements
§ Necessary condition N has to be prime
§ (Otherwise, N “ pq ñ p ˆ q “ 0 mod N ñ neither is

invertible)
§ In fact also sufficient: Z{pZ is a field (also noted Fp) iff. p is

prime

Finite field extensions 2019–09–25 13/27

Fields ñ polynomials

§ One can define the polynomials FprX s over a finite field

§ One can divide polynomials (e.g. pX 2 ` X q{pX ` 1q “ X)

§ ñ notion of remainder (e.g. pX 2 ` X ` 1q{pX ` 1q “ pX , 1q
§ ñ can define multiplication in FprX s modulo a polynomial Q

§ If degpQq “ n, operands are restricted to a finite set of poly.
of deg ă n

Finite field extensions 2019–09–25 14/27

Finite fields with polynomials

§ FprX s{Q is a finite set of polynomials

§ With addition, multiplication working as usual (again) get
a ring

§ To make it a field: have to ensure invertibility of all elements
§ Necessary condition: Q is irreducible, i.e. has no non-constant

factors (Q is “prime”)
§ In fact also sufficient: FprX s{Q is a field iff. Q is irreducible

over Fp (constructive proof: use the extended Euclid
algorithm)

§ Theorem: irreducible polynomials of all degrees exist over any
given finite field

Finite field extensions 2019–09–25 15/27

Quick questions

§ How many elements does have a field built as FprX s{Q, when
degpQq “ n?

§ Describe the cardinality of finite fields that you know how to
build

§ Let α P Fq ” FprX s{Q. what is the result of
α `α ` . . .`α (addition of p copies of α)?

Finite field extensions 2019–09–25 16/27

Characteristic

Characteristic of a field

The characteristic of a field K, noted charpKq, is the min. n P N
s.t. @x P K,

řn
i“1 x “ 0, or 0 if no such n exists

§ Prime fields Fp have characteristic p

§ Extension fields Fpe have characteristic p

§ In characteristic two (“even characteristic”), ` ” ´

We may say that the characteristic of a field Fq is:

§ “small”, if e.g. “ 2, 3, . . .

§ “medium” if e.g. q “ p6, p12, . . .

§ “large” if e.g. q “ p, p2

Finite field extensions 2019–09–25 17/27

Quick remarks

§ Two finite fields of equal cardinality are unique up to
isomorphism

§ But different choices for Q may be possible ñ different
representations important for (explicit) implementations

§ One can build extension towers: extensions over fields that
were already extension fields, iterating the same process as for
a single extension

Finite field extensions 2019–09–25 18/27

Linear-Feedback Shift Registers

Finite fields extensions

Implementation of FF arithmetic

Finite field extensions 2019–09–25 19/27

How to implement finite field operations?

§ Fp:
§ Addition: add modulo
§ Multiplication: multiply modulo
§ Inverse: use the extended Euclid algorithm

§ Fpe :
§ Represent elements as polynomials, then
§ Addition: add modulo, coefficient-wise
§ Multiplication: multiply polynomials modulo (w.r.t. polynomial

division) can use LFSRs
§ Inverse: use the extended Euclid algorithm (for polynomials)

Finite field extensions 2019–09–25 20/27

Multiplication in F2n

We now focus on characteristic two for simplicity

§ α P F2n ” F2rX s{Q is “a polynomial over F2 of deg ă n”

§ So α “ αn´1X
n´1 ` . . .`α1X `α0

§ So we can multiply α by X ñ αn´1X
n ` . . .`α1X

2 `α0X

§ But this may be of deg “ n, so “not in F2n”

§ So we reduce the result modulo

Q “ X n ` qn´1X
n´1 ` . . .` q1X ` q0,

the defining polynomial of F2n

Finite field extensions 2019–09–25 21/27

Reduction: two cases

Case 1: degpαX q ă n

§ There’s nothing to do

Case 2: degpαX q “ n : αX “ X n ` . . .`α0X

§ Then degpαX ´ Qq ă n

§ And αX ´ Q is precisely the remainder of αX ˜ Q

§ (Think how if a PKN, 2NJ, a mod N “ a´ N)

Finite field extensions 2019–09–25 22/27

Multiplication + reduction: alternative view

pαn´1, . . . ,α1,α0q ˆ X mod pqn,qn´1, . . . ,q1,q0q “

§ pαn´2, . . . ,α1,α0, 0q if αn´1 “ 0

§ pαn´2 ´ qn´1, . . . ,α1 ´ q2,α0 ´ q1,´q0q if αn´1 “ 1

§ (or pαn´2 ` qn´1, . . . ,α1 ` q2,α0 ` q1,q0q as we’re in
characteristic two)

§ or
pαn´2 ` qn´1αn´1, . . . ,α1 ` q2αn´1,α0 ` q1αn´1,q0αn´1q

ñ the result of one step of LFSR with feedback polynomial
equal to p´qQ!

Finite field extensions 2019–09–25 23/27

Summary

§ An element of Fn
2 ” F2rX s{Q is a polynomial

§ ...is the state of an LFSR with feedback polynomial Q

§ Multiplication by X is done mod Q

§ ...is the result of clocking the LFSR once

§ Multiplication by X 2 is done by clocking the LFSR twice, etc.

§ Multiplication by βn´1X
n´1 ` . . .` β1X ` β0 is done “the

obvious way”, using distributivity

Finite field extensions 2019–09–25 24/27

A note on representation

It is convenient to write α “ αn´1X
n´1 ` . . .`α1X `α0 as the

integer a “ αn´12n´1 ` . . .`α12`α0

§ Example: X 4 ` X 3 ` X ` 1 ”=” 27 = 0x1B

Finite field extensions 2019–09–25 25/27

Examples in F28 ” F2rX s{X
8 ` X 4 ` X 3 ` X ` 1

Example 1:

§ α “ X 5 ` X 3 ` X (0x2A), β “ X 2 ` 1 (0x05)

§ α ` β “ X 5 ` X 3 ` X 2 ` X ` 1 (0x2F)

§ αβ = X 2α `α = X 7 ` X 5 ` X 3 (0xA8) + X 5 ` X 3 ` X =
X 7 ` X (0x82)

Finite field extensions 2019–09–25 26/27

Examples in F28 ” F2rX s{X
8 ` X 4 ` X 3 ` X ` 1

Example 2:

§ α “ X 5 ` X 3 ` X , γ “ X 4 ` X (0x12)
§ αγ = X 4α ` Xα

§ X 4α “ X pX pX 7 ` X 5 ` X 3qq

§ X pX 7 ` X 5 ` X 3q “

pX 8`X 6`X 4q` pX 8`X 4`X 3`X ` 1q “ X 6`X 3`X ` 1
§ X pX 6 ` X 3 ` X ` 1q “ X 7 ` X 4 ` X 2 ` X

§ = X 7 ` X 4 ` X 2 ` X (0x96) + X 6 ` X 4 ` X 2 (0x54) =
X 7 ` X 6 ` X (0xC2)

Finite field extensions 2019–09–25 27/27

Other implementation possibilities

§ Precompute the full multiplication table Opq2q space
(quickly impractical)

§ Precompute a log table (e.g. using Zech’s representation)
 Opqq space (reasonable for small q)

§ Use efficient polynomial arithmetic + reduction, for instance:
§ pclmulqdq for extensions of F2

§ Kronecker substitution in other small characteristics

§ Sometimes, only implementation by a constant matters

	Linear-Feedback Shift Registers
	Finite fields extensions
	Implementation of FF arithmetic

