Crypto Engineering '19 Finite field extensions

Pierre Karpman pierre.karpman@univ-grenoble-alpes.fr https://www-ljk.imag.fr/membres/Pierre.Karpman/tea.html

2019-09-25

Finite field extensions

^{2019–09–25} 1/27

Extension fields (esp. of the form \mathbb{F}_{2^n}) are useful to:

- Build polynomial MACs
- Define matrices "over bytes" or nibbles (4-bit values)
 - Used e.g. in the AES
- ► Etc.

Generally useful when working over (binary) discrete data \rightsquigarrow they're the "right" abstraction

Roadmap

Linear-Feedback Shift Registers

Finite fields extensions

Implementation of FF arithmetic

Linear-Feedback Shift Registers

Finite fields extensions

Implementation of FF arithmetic

Finite field extensions

LFSR (type 1, "Galois")

An LFSR of length *n* over a field \mathbb{K} is a map $\mathcal{L} : [s_{n-1}, s_{n-2}, \dots, s_0] \mapsto$ $[s_{n-2} + s_{n-1}r_{n-1}, s_{n-3} + s_{n-1}r_{n-2}, \dots, s_0 + s_{n-1}r_1, s_{n-1}r_0]$ where the $s_i, r_i \in \mathbb{K}$

LFSR (type 2, "Fibonacci")

An LFSR of length *n* over a field \mathbb{K} is a map $\mathcal{L} : [s_{n-1}, s_{n-2}, \dots, s_0] \mapsto$ $[s_{n-2}, s_{n-3}, \dots, s_0, s_{n-1}r_{n-1} + s_{n-2}r_{n-2} + \dots + s_0r_0]$ where the s_i , $r_i \in \mathbb{K}$

Theorem: The two above definitions are "equivalent"

Finite field extensions

Characterization

An LFSR is fully determined by:

- \blacktriangleright Its base field ${\mathbb K}$
- Its state size n
- Its feedback function $(r_{n-1}, r_{n-2}, \ldots, r_0)$

An LFSR may be used to generate an infinite sequence (U_m) (valued in \mathbb{K}):

1 Choose an initial state $S = [s_{n-1}, \ldots, s_0]$

2
$$U_0 = S[n-1] = s_{n-1}$$

$$U_1 = \mathcal{L}(S)[n-1]$$

4
$$U_2 = \mathcal{L}^2(S)[n-1]$$
, etc.

- ▶ The sequence generated by an LFSR is periodic (Q: Why?)
- Some LFSRs map non-zero initial states to the all-zero one (Q: Give an example?)
- Some LFSRs generate a sequence of maximal period when initialised to any non-zero state (Q: What is it?)
- It is very easy to recover the feedback function of an LFSR from (enough outputs of) its generated sequence (Q: How?)

Let's focus on:

- LFSRs of type 1
- Over \mathbb{F}_2
- $\ensuremath{\mathcal{L}}$ becomes:
 - Shift bits to the left
 - If the (previous) msb was 1
 - Add (XOR) 1 to some state positions (given by the feedback function)

The feedback function of an LFSR can be written as a polynomial:

 $(r_{n-1}, r_{n-2}, \dots, r_0) \equiv Q := X^n + r_{n-1}X^{n-1} + \dots + r_1X + r_0$

Same for the state:

•
$$(s_{n-1}, s_{n-2}, \dots, s_0) \equiv S := s_{n-1}X^{n-1} + \dots + s_1X + s_0$$

 ${\mathcal L}$ corresponds to the map $S imes X \mod Q$

Example:

- Take \mathcal{L} of length 4 over \mathbb{F}_2 and feedback polynomial $X^4 + X + 1$
- $\flat \Rightarrow \mathcal{L} : (\mathsf{s}_3, \mathsf{s}_2, \mathsf{s}_1, \mathsf{s}_0) \mapsto (\mathsf{s}_2, \mathsf{s}_1, \mathsf{s}_0 + \mathsf{s}_3, \mathsf{s}_3)$

- Useful as a basis for stream ciphers (in the olden times, mostly)
- One way to define/compute with extension fields
- It's beautiful?

Linear-Feedback Shift Registers

Finite fields extensions

Implementation of FF arithmetic

Finite field extensions

^{2019–09–25} **11/27**

- Motivation: a rich field structure over a finite set
- Idea: take the integers and reduce modulo N
 - Operations work "as usual"
 - Over a finite set
- Problem: have to ensure invertibility of all elements
 - Necessary condition N has to be prime
 - (Otherwise, $N = pq \Rightarrow p \times q = 0 \mod N \Rightarrow$ neither is invertible)
 - ▶ In fact also sufficient: $\mathbb{Z}/p\mathbb{Z}$ is a field (also noted \mathbb{F}_p) iff. *p* is prime

- One can define the polynomials $\mathbb{F}_{p}[X]$ over a finite field
- One can divide polynomials (e.g. $(X^2 + X)/(X + 1) = X$)
- → ⇒ can define multiplication in $\mathbb{F}_p[X]$ modulo a polynomial Q
 - If $\deg(Q) = n$, operands are restricted to a finite set of poly. of $\deg < n$

- $\mathbb{F}_p[X]/Q$ is a finite set of polynomials
- With addition, multiplication working as usual (again) → get a ring
- > To make it a field: have to ensure invertibility of all elements
 - Necessary condition: Q is *irreducible*, i.e. has no non-constant factors (Q is "prime")
 - In fact also sufficient: \(\mathbb{F}_p[X]/Q\) is a field iff. Q is irreducible over \(\mathbb{F}_p\) (constructive proof: use the extended Euclid algorithm)
 - Theorem: irreducible polynomials of all degrees exist over any given finite field

- How many elements does have a field built as 𝔽_p[X]/Q, when deg(Q) = n?
- Describe the cardinality of finite fields that you know how to build
- Let $\alpha \in \mathbb{F}_q \equiv \mathbb{F}_p[X]/Q$. what is the result of $\alpha + \alpha + \ldots + \alpha$ (addition of p copies of α)?

Characteristic

Characteristic of a field

The *characteristic* of a field \mathbb{K} , noted char(\mathbb{K}), is the min. $n \in \mathbb{N}$ s.t. $\forall x \in \mathbb{K}, \sum_{i=1}^{n} x = 0$, or 0 if no such *n* exists

- Prime fields \mathbb{F}_p have characteristic p
- Extension fields \mathbb{F}_{p^e} have characteristic p
- In characteristic two ("even characteristic"), $+\equiv -$

We may say that the characteristic of a field \mathbb{F}_q is:

- "small", if e.g. = 2, 3, ...
- "medium" if e.g. $q = p^6, p^{12}, ...$
- "large" if e.g. $q = p, p^2$

- Two finite fields of equal cardinality are unique up to isomorphism
- ▶ But different choices for Q may be possible \Rightarrow different representations \rightsquigarrow important for (explicit) implementations
- One can build extension towers: extensions over fields that were already extension fields, iterating the same process as for a single extension

Linear-Feedback Shift Registers

Finite fields extensions

Implementation of FF arithmetic

Finite field extensions

How to implement finite field operations?

• \mathbb{F}_p :

- Addition: add modulo
- Multiplication: multiply modulo
- Inverse: use the extended Euclid algorithm
- ► **F**_{p^e}:
 - Represent elements as polynomials, then
 - Addition: add modulo, coefficient-wise
 - Multiplication: multiply polynomials modulo (w.r.t. polynomial division) → can use LFSRs
 - Inverse: use the extended Euclid algorithm (for polynomials)

We now focus on characteristic two for simplicity

- $\pmb{lpha} \in \mathbb{F}_{2^n} \equiv \mathbb{F}_2[X]/Q$ is "a polynomial over \mathbb{F}_2 of deg < n"
- So $\alpha = \alpha_{n-1}X^{n-1} + \ldots + \alpha_1X + \alpha_0$
- So we can multiply α by $X \Rightarrow \alpha_{n-1}X^n + \ldots + \alpha_1X^2 + \alpha_0X$
- But this may be of deg = n, so "not in \mathbb{F}_{2^n} "
- So we reduce the result modulo

$$Q = X^n + \boldsymbol{q}_{n-1}X^{n-1} + \ldots + \boldsymbol{q}_1X + \boldsymbol{q}_0,$$

the defining polynomial of \mathbb{F}_{2^n}

Case 1: $\deg(\alpha X) < n$

There's nothing to do

Case 2: deg $(\alpha X) = n : \alpha X = X^n + \ldots + \alpha_0 X$

- Then $deg(\alpha X Q) < n$
- And $\alpha X Q$ is precisely the remainder of $\alpha X \div Q$
- (Think how if $a \in]N, 2N[], a \mod N = a N$)

$$(\alpha_{n-1}, \dots, \alpha_1, \alpha_0) \times X \mod (q_n, q_{n-1}, \dots, q_1, q_0) = (\alpha_{n-2}, \dots, \alpha_1, \alpha_0, 0) \text{ if } \alpha_{n-1} = 0 (\alpha_{n-2} - q_{n-1}, \dots, \alpha_1 - q_2, \alpha_0 - q_1, -q_0) \text{ if } \alpha_{n-1} = 1 (or (\alpha_{n-2} + q_{n-1}, \dots, \alpha_1 + q_2, \alpha_0 + q_1, q_0) \text{ as we're in}$$

characteristic two) (or $(\alpha_{n-2} + q_{n-1}, \dots, \alpha_1 + q_2, \alpha_0 + q_1, q_0)$ as we replaced

or

 $(\alpha_{n-2} + q_{n-1}\alpha_{n-1}, \dots, \alpha_1 + q_2\alpha_{n-1}, \alpha_0 + q_1\alpha_{n-1}, q_0\alpha_{n-1})$ \Rightarrow the result of one step of LFSR with feedback polynomial equal to (-)Q!

- An element of $\mathbb{F}_2^n \equiv \mathbb{F}_2[X]/Q$ is a polynomial
- ... is the state of an LFSR with feedback polynomial Q
- Multiplication by X is done mod Q
- …is the result of clocking the LFSR once
- Multiplication by X^2 is done by clocking the LFSR twice, etc.
- Multiplication by $\beta_{n-1}X^{n-1} + \ldots + \beta_1X + \beta_0$ is done "the obvious way", using distributivity

It is convenient to write $\alpha = \alpha_{n-1}X^{n-1} + \ldots + \alpha_1X + \alpha_0$ as the integer $a = \alpha_{n-1}2^{n-1} + \ldots + \alpha_12 + \alpha_0$

• Example: $X^4 + X^3 + X + 1$ "=" 27 = 0x1B

Examples in
$$\mathbb{F}_{2^8} \equiv \mathbb{F}_2[X]/X^8 + X^4 + X^3 + X + 1$$

Example 1:

$$\alpha = X^{5} + X^{3} + X \text{ (0x2A), } \beta = X^{2} + 1 \text{ (0x05)}$$

$$\alpha + \beta = X^{5} + X^{3} + X^{2} + X + 1 \text{ (0x2F)}$$

$$\alpha\beta = X^{2}\alpha + \alpha = X^{7} + X^{5} + X^{3} \text{ (0xA8)} + X^{5} + X^{3} + X = X^{7} + X \text{ (0x82)}$$

Examples in
$$\mathbb{F}_{2^8} \equiv \mathbb{F}_2[X]/X^8 + X^4 + X^3 + X + 1$$

Example 2:
•
$$\alpha = X^5 + X^3 + X$$
, $\gamma = X^4 + X$ (0x12)
• $\alpha \gamma = X^4 \alpha + X \alpha$
• $X^4 \alpha = X(X(X^7 + X^5 + X^3))$
• $X(X^7 + X^5 + X^3) =$
($X^8 + X^6 + X^4$) + ($X^8 + X^4 + X^3 + X + 1$) = $X^6 + X^3 + X + 1$
• $X(X^6 + X^3 + X + 1) = X^7 + X^4 + X^2 + X$
• $= X^7 + X^4 + X^2 + X$ (0x96) + $X^6 + X^4 + X^2$ (0x54) =
 $X^7 + X^6 + X$ (0xC2)

- Precompute the full multiplication table → O(q²) space (quickly impractical)
- Precompute a log table (e.g. using Zech's representation)
 → O(q) space (reasonable for small q)
- Use efficient polynomial arithmetic + reduction, for instance:
 - pclmulqdq for extensions of \mathbb{F}_2
 - Kronecker substitution in other small characteristics
- Sometimes, only implementation by a constant matters