
Crypto Engineering (GBX9SY03)

TP — Generic second preimage attacks on long messages for

narrow-pipe Merkle-Damg̊ard hash functions

2019-01-11

Grading

This TP is graded as part of the contrôle continu. You must send a written report (in
a portable format) detailing your answers to the questions, and the corresponding source
code, including all tests, with compilation and execution instructions by the end of
the second session, (2019-01-16T23:59+0200) to:

pierre.karpman@univ-grenoble-alpes.fr.

Working in teams of two is allowed and encouraged (but not mandatory), in which case
only one report needs to be sent, with the name of both students clearly mentioned.

Introduction

The goal of this TP is to implement a generic second preimage attack for long messages
for Merkle-Damg̊ard hash functions, in the specific case where the compression function
used within the hash function follows a Davies-Meyer construction. This is a particular
case of the attacks (re-)designed by Kelsey and Schneier [KS05].

You will have to implement and run the full attack on a toy hash function with 48-bit
hashes based on the Speck48/96 block cipher [BSS+13]. While this hash function will
obviously be vulnerable to brute-force attacks (and maybe even more), it is simple to
implement and it reasonably behaves like a random function, which is all we need here.

Part one: preparatory work

Download the specifications of Speck48/96 at http://eprint.iacr.org/2013/404 and
the tarball at https://www-ljk.imag.fr/membres/Pierre.Karpman/cry_eng2018_tp_

second_preim.tar.bz2. This tarball contains the file second preim 48.c that already
partially implements some functions, which you will be required to complete.

Question 1

Finish to implement the function speck48_96 of the encryption with Speck48/96, and
verify the correctness of your implementation with the test values provided in [BSS+13,
App. C]. Write for that purpose a function int test_sp48(void). (Be careful about the
order in which the 24-bit words of the key and message are provided to your function.)

1

mailto:pierre.karpman@univ-grenoble-alpes.fr
http://eprint.iacr.org/2013/404
https://www-ljk.imag.fr/membres/Pierre.Karpman/cry_eng2018_tp_second_preim.tar.bz2
https://www-ljk.imag.fr/membres/Pierre.Karpman/cry_eng2018_tp_second_preim.tar.bz2

https:

//www-ljk.imag.fr/membres/Pierre.Karpman/cry_eng2018_tp_second_preim.pdf

Question 2

Implement the function speck48_96_inv of the decryption by Speck48/96. Write a test
function int test_sp48_inv(void) that verifies that speck48_96_inv and speck48_96

are inverses of each other.

Question 3

Implement the function cs48_dm that transforms Speck48/96 into a compression function
using a Davies-Meyer construction with an XOR feedforward, i.e. defining F(h,m) as
E(m,h) ⊕ h. Write a test function int test_cs48_dm(void) to check that the result of
calling the compression function on the all-zero input is 0x7FDD5A6EB248ULL.

Question 4

Implement the function get_cs48_dm_fp that returns the unique fixed-point fp for the
function cs48_dm with a fixed message m; that is, compute the unique 48-bit string fp

such that cs48_dm(m,fp) == fp. Write a test function int test_cs48_dm_fp(void).

Part two: the attack

The main idea of the second-preimage attack that we consider here is to search for collisions
with one of the intermediate chaining values of a long message.

Given an `-block message M = m1|| . . . ||m`, the computation of H(m) with a narrow-
pipe Merkle-Damg̊ard hash function H with compression function F requires the compu-
tation of ` chaining values hi = F(hi−1,mi). Assuming first a simplistic function H that
does not use any sort of padding, one can see that an attacker who has found M ′ s.t.
H(M ′) = hi for some 0 ≤ i ≤ ` may form the message M ′′ = M ′||mi+1|| . . . ||m` leading to
h`, and thus found a second preimage M ′′ for M . The expected number of tries for finding
a collision between an n-bit chaining value with ` targets being 2n−log(`), this attack is
better than a generic search, and has minimum complexity 2n/2.

In reality, H will use some form of padding that includes the length of the message
being hashed. If M and its potential second preimage M ′′ are not of the same length,
their padding (added after their last message block and before the computation of the
hash) will be distinct and thus lead to different hashes with overwhelming probability,
thus invalidating the attack.

One way to go around this problem is to first compute an expandable message E that
will allow to “lengthen” M ′′ up to the boundary of the block i while preserving the collision
with hi. One may then build M ′′′ = E||M ′′ which is of the same length as M and thus
has the same padding, resulting in a true second-preimage.

You are required to implement this attack for the hash function hs48, already imple-
mented in the provided file. This function takes messages made of an integral number of
96-bit blocks, each represented as a 4-double-word array uint32_t b[4] where only the
three lowest bytes of each double-word is set.

Question 1

Implement the function find_exp_mess. This function must return two one-block mes-
sages m1 and m2 such that there exists a value h equal to both cs48_dm(m1, IV) and

2

https://www-ljk.imag.fr/membres/Pierre.Karpman/cry_eng2018_tp_second_preim.pdf
https://www-ljk.imag.fr/membres/Pierre.Karpman/cry_eng2018_tp_second_preim.pdf

https:

//www-ljk.imag.fr/membres/Pierre.Karpman/cry_eng2018_tp_second_preim.pdf

get_cs48_dm_fp(m2). In other words, for any message m made of one copy of m1 fol-
lowed by n >= 1 copies of m2, one has hs48(m,n+1,0,0) == h. Write a test function
int test_em(void) to validate your function.

Give a detailed description of your implementation of find_exp_mess (for instance
describing your choices for the data structures) and evaluate its performance (both theo-
retically and practically).

How to proceed. To answer this question, you are advised to perform a meet-in-the-
middle search: compute N possible chaining values for N random first-block messages
m1, and then compute fixed-points for random messages until one of them collides with
a known chaining value. You may use the pseudo-random number generator provided in
the header file xoshiro256starstar.h.∗

With a reasonably good implementation, finding an exapandable message should take
significantly less than one minute on average.

Question 2

Implement the function attack. This function must return a second preimage for the
message mess of 218 blocks generated by the following code:

for (int i = 0; i < (1 << 20); i+=4)

{

mess[i + 0] = i;

mess[i + 1] = 0;

mess[i + 2] = 0;

mess[i + 3] = 0;

}

whose hash is equal to 0xFF3FD9D23B89.
Give a detailed description of your implementation and of its performance (both theo-

retical and practical). Be careful to document enough the output of this function so that
it provides all the informaiton needed to characterise the second preimage (you may for
instance freely use the “verbose” option of hs48).

How to proceed. You should first compute an expandable message with associated
fixed-point fp, and then search for a collision block cm s.t. cs48_dm(cm,fp) is equal to
one of the chaining values of mess. Once such a block is found, you need to form the
second preimage message mess2 by expanding the expandable message to an appropriate
number of blocks and suffixing the colliding block and the remaining blocks identical to
the ones of mess. Finally compute the hash of mess2 to validate your attack.

With a reasonably good implementation, finding a full attack should take significantly
less than ten minutes on average.

References

[BSS+13] Ray Beaulieu, Douglas Shors, Jason Smith, Stefan Treatman-Clark, Bryan
Weeks, and Louis Wingers, The SIMON and SPECK Families of Lightweight
Block Ciphers, IACR Cryptology ePrint Archive 2013 (2013), 404.

∗See also http://xoshiro.di.unimi.it/.

3

https://www-ljk.imag.fr/membres/Pierre.Karpman/cry_eng2018_tp_second_preim.pdf
https://www-ljk.imag.fr/membres/Pierre.Karpman/cry_eng2018_tp_second_preim.pdf
http://eprint.iacr.org/2013/404
http://eprint.iacr.org/2013/404
http://xoshiro.di.unimi.it/

https:

//www-ljk.imag.fr/membres/Pierre.Karpman/cry_eng2018_tp_second_preim.pdf

[KS05] John Kelsey and Bruce Schneier, Second Preimages on n-Bit Hash Functions
for Much Less than 2n Work , Advances in Cryptology — EUROCRYPT 2005
(Ronald Cramer, ed.), Lecture Notes in Computer Science, vol. 3494, Springer,
2005, pp. 474–490.

4

https://www-ljk.imag.fr/membres/Pierre.Karpman/cry_eng2018_tp_second_preim.pdf
https://www-ljk.imag.fr/membres/Pierre.Karpman/cry_eng2018_tp_second_preim.pdf
https://doi.org/10.1007/11426639_28
https://doi.org/10.1007/11426639_28

