
Crypto Engineering (GBX9SY03)
TP — Square attack on 31/2 rounds of AES

2017-10-20

Grading

This TP is graded as part of the contrôle continu. You must send a written report (in a portable
format) detailing your answers to the questions, and the corresponding source code (with com-
pilation and execution instructions) by Friday next week (2017-10-27T23:59+0200) to:

pierre.karpman@univ-grenoble-alpes.fr.

Working in teams of two is allowed (but not mandatory), in which case only one report needs
to be sent, with the name of both students clearly mentioned.

Introduction

The goal of this TP is to implement a simple, yet effective attack on a reduced version of the AES.
This attack (taking the many names of “square”, “‘saturation” or “integral” attack) is structural,
in the sense that it does not depend on many details of the AES, but rather on its overall SPN
structure. In fact, it was first developed for the SQUARE cipher, which is a predecessor of the
AES (Daemen & al., 1997), and later generalized to even wider settings (Biryukov and Shamir,
2001).

The attack, like many others in symmetric-key cryptography, is based on a distinguisher, i.e.
a property that allows to decide if one is interacting with a specific algorithm (e.g. the AES) or
a “random” one (e.g. a random permutation). In our case, the distinguisher works on 3 rounds
of the AES and consists in the fact that for 256 well-chosen plaintexts p0, . . . , p255, we have that
AES3(p0)⊕ . . .⊕AES3(p255) = 0, i.e. the XOR of the 256 ciphertexts encrypted by 3-round AES is
the all-zero value. As this property is unlikely to hold for a random permutation, we can use it
to distinguish.

We will use this distinguisher to recover the key for 31/2 rounds of AES (a 1/2 round is a round
without MixColumn, cf. below). The idea to do so is the following:

1. Make queries to the 31/2 oracle that would allow to observe the distinguisher (on 3 rounds),
i.e. query AES31/2 with an unknown key on p0, . . . , p255 as above.

2. Partially decrypt the oracle answers by 1/2 rounds, by making a guess on part of the key.

3. If the guess allows to observe the distinguisher on the partially decrypted ciphertexts, it
is assumed to be correct; otherwise another one is made.

1

mailto:pierre.karpman@univ-grenoble-alpes.fr

https://www-ljk.imag.fr/membres/Pierre.Karpman/cry_eng2017_tp_aessq.pdf

AES structure and a 3-round distinguisher

Recall that the AES round function is the composition of four functions: AddRoundKey (ARK),
SubBytes (SB), ShiftRows (SR) and MixColumns (MC). The last round omits the MixColumn
function and will be counted as a 1/2-round (however, this last round does include an extra ARK
at the very end. It can thus be written as ARK ◦ SR ◦ SB ◦ ARK). The property which we exploit in
the distinguisher derives from the fact that XORing all the 2n n-bit values 0,1, . . . ,2n −1 results
in 0. In more details, we use the following facts:

1. We call λ the set {0x00, . . . ,0xFF} of all 8-bit values from 0 to 255. If S is a permutation, we
have that

⊕
x∈λS(x) =⊕

x∈λ x = 0.

2. We consider a set λ′ of 256 vectors of F4
28 for which one (w.l.o.g. the first) coordinate takes

all possible values, and the three others are constant. We write such a set as (?,c,c,c)t ;
that is, a coordinate marked c takes the same value in all 256 elements of λ′, and one
marked ? takes each possible value of F28 exactly once. Note that the three positions
marked c do not have to take the same constant value. An example of a set having the
property (?,c,c,c)t is {(i ,0,1,2)t , i ∈ F28 }

Now, as the MixColumn matrix M of the AES does not have any zero coefficient, each
coordinate of the elements of the set {M ·x, x ∈λ′} takes each possible value of F28 exactly
once, i.e. the output set is of the form (?,?,?,?)t . Note that as for the “c” notation
above, there is no requirement that all four coordinates of the vectors of this output set
be the same. For instance, the set {(0,0,0,0)t }∪ {(αi ,αi+1,αi+2,αi+3)t , i = 0, . . . ,254} for α
a generator of F∗

28 is of the form (?,?,?,?)t .

3. We consider a setλ′′ of 256 vectors of F4
28 of the form (?,?,?,?)t . For any matrix A = (ai , j)

of M4(F28) (and thence for M in particular), the sum of all elements of B := {A · x, x ∈
λ′′} is the all-zero vector. Indeed, for any of the four coordinates i , the sum across all
elements of B can be rewritten as:⊕

x∈λ
ai ,0x ⊕⊕

x∈λ
ai ,1x ⊕⊕

x∈λ
ai ,2x ⊕⊕

x∈λ
ai ,3x,

with all ai , j s either zero or invertible, hence the above is equal to 0⊕0⊕0⊕0. We write
this property of the output set B as ([,[,[,[)t .

We now define a Λ-set as a set of 256 16-byte plaintexts with one byte taking all possible
values (?), and the fifteen other being constant (c, or in white in Figure 1). Thanks to the above
facts, we can now graphically follow the propagation of aΛ-set over three rounds of the AES, in
Figure 1*.

In words, the sum after 3 rounds of AES of all the 256 ciphertexts whose corresponding
plaintexts form a Λ-set is zero.

Exercice 1: Warming up

Download the AES standard at

https://csrc.nist.gov/csrc/media/publications/fips/197/final/documents/fips-197.pdf

and the tarball

https://www-ljk.imag.fr/membres/Pierre.Karpman/cry_eng2017_tp_aessq.tar.bz2

*Figure slightly adapted from https://www.iacr.org/authors/tikz/.

2

https://www-ljk.imag.fr/membres/Pierre.Karpman/cry_eng2017_tp_aessq.pdf
https://csrc.nist.gov/csrc/media/publications/fips/197/final/documents/fips-197.pdf
https://www-ljk.imag.fr/membres/Pierre.Karpman/cry_eng2017_tp_aessq.tar.bz2
https://www.iacr.org/authors/tikz/

https://www-ljk.imag.fr/membres/Pierre.Karpman/cry_eng2017_tp_aessq.pdf

?

Λ-set

ARK

?
SB

?
SR

?
MC

?
?
?
?

ARK

?
?
?
?

SB

?
?
?
?

SR

?
?

?
?

MC

?
?
?
?

?
?
?
?

?
?
?
?

?
?
?
?

ARK

?
?
?
?

?
?
?
?

?
?
?
?

?
?
?
?

SB

?
?
?
?

?
?
?
?

?
?
?
?

?
?
?
?

SR

?
?
?
?

?
?
?
?

?
?
?
?

?
?
?
?

MC

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

ARK

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

Figure 1: The 3-round Square distinguisher

Q. 1 This question is largely independent of the others. Explain the role of the function xtime
in the file aes-128_enc.c, and show that it is correct. Write your own variant of xtime for a
different representation of F28 (note that X 8+X 6+X 5+X 4+X 3+X +1 is irreducible over F2[X]).

Q. 2 Implement the functions next_aes128_round_key and prev_aes128_round_key. Ver-
ify the correctness of your implementation by using the test values provided in the standard
document.

A good way to build a keyed function F from a block cipher E is to define F (k1||k2, x) as
E (k1, x)⊕E (k2, x) (see Bellare & al., 1998; Lucks, 2000; and many others). Such a keyed function
may then for instance be used to encrypt in CTR mode, or as the basis of a MAC.

Q. 3 Implement the above construction with three (full) rounds of AES for E . Show that the
3-round square distinguisher for such an E also works for the corresponding F , and write a
test program to confirm this.

Exercice 2: Key-recovery attack for 31/2-round AES

Implement a key-recovery attack for 31/2-round AES (i.e. four rounds, with the last one omitting
the MixColumn), using the square distinguisher. The steps to do so are the following.

Q. 1 Implement the partial decryption by 1/2 round of one state byte, given one byte of the key.

Q. 2 Implement the entire attack, and test it on randomly generated keys (e.g. obtained from
/dev/urandom). That is, query your reduced AES on a Λ-set and iteratively find each byte of
the last round key. This can simply be done by guessing the value for each key byte separately

3

https://www-ljk.imag.fr/membres/Pierre.Karpman/cry_eng2017_tp_aessq.pdf

https://www-ljk.imag.fr/membres/Pierre.Karpman/cry_eng2017_tp_aessq.pdf

and discarding wrong guesses by partially decrypting and checking the 3-round distinguisher.
However, don’t forget to:

d Filter out false positives (if any) by using a few additional Λ-sets.

d Invert the key expansion to recover the original master key.

Q. 3 Check that changing the representation of F28 as in (Exercice 1, Q. 1) leads to a differ-
ent cipher, but that the attack still works. Check the same when changing the S-box used in
SubBytes and/or the MDS matrix used in MixColumn.

Note: The 3-round distinguisher shown in this exercice can be used in a key-recovery attack
up to 6 rounds of AES-128, still exploiting the same kind of process (see Ferguson & al. (2000)
for the original attack and Todo & Aoki (2014) for an alternative using FFT techniques). The
complexity of this 6-round attack is about 232 chosen plaintexts and 250 encryptions, which is
expensive but manageable in practice.

4

https://www-ljk.imag.fr/membres/Pierre.Karpman/cry_eng2017_tp_aessq.pdf

