Crypto Engineering (GBX9SY03) TD Hash functions

2017-10-18

Exercise 1: Multicollisions for Merkle-Damgård hash functions

In 2004, Joux showed a simple attack illustrating the fact that Merkle-Damgård hash functions were not "ideal". This attack consists in computing a collision on many (more than two) messages, i.e. finding m_0 , m_1 , ..., m_q that all have the same hash, more efficiently than what is possible for a random oracle.

In this exercice, we can safely ignore padding issues.

Q. 1: We assume that the expected number of collisions in the elements of two lists L_0 and L_1 of random n-bit elements is $\approx \#L_0 \times \#L_1/2^n$. Let $\mathcal{H}: \{0,1\}^* \to \{0,1\}^n$ be a random oracle; what is the expected complexity of finding an r-collision for \mathcal{H} ?

Hint: try to find the optimal balance in the list sizes for the case r = 3, and generalize the formula.

- **Q. 2:** Recall the structure of a Merkle-Damgård hash function $\mathcal{H}: \{0,1\}^* \to \{0,1\}^n$ based on a compression function $\mathfrak{f}: \{0,1\}^n \times \{0,1\}^b \to \{0,1\}^n$. Let m, m' be two messages such that |m| = |m'| = b. Explicit the relation between $\mathcal{H}(m)$, $\mathcal{H}(m||m')$ and \mathfrak{f} .
- **Q. 3** Take \mathcal{H} as in Q. 2. Let m_0 and m_0' be two one-block messages colliding through \mathcal{H} (i.e. $h_0 := \mathcal{H}(m_0) = \mathfrak{f}(\mathrm{IV}, m_0) = \mathcal{H}(m_0') = \mathfrak{f}(\mathrm{IV}, m_0')$). Assuming \mathfrak{f} is ideal, how efficiently can you compute a collision (m_1, m_1') for $\mathfrak{f}(h_0, \cdot)$? Once you know such a collision, how many messages colliding with $\mathcal{H}(m_0||m_1)$ can you easily (i.e. in constant time) create? Conclude about the cost of computing a 2^r -collision for \mathcal{H} and why Merkle-Damgård hash functions are not ideal.
- **Q. 4** The *concatenation combiner* is a simple construction taking two hash functions \mathcal{H}_1 and \mathcal{H}_2 and defined as $CAT_{\mathcal{H}_1,\mathcal{H}_2}(m) := \mathcal{H}_1(m)||\mathcal{H}_2(m)$. Assuming \mathcal{H}_1 and \mathcal{H}_2 have an output size of n bits and follow the Merkle-Damgård construction, how efficiently can you compute a collision for $CAT_{\mathcal{H}_1,\mathcal{H}_2}$? Is it possible to significantly improve the collision-resistance of SHA-1 by using $CAT_{SHA-1,MD5}$?

Exercise 2: Davies-Meyer fixed-points

In this exercise, we will see one reason why *Merkle-Damgård strengthening* (adding the length of a message in its padding) is necessary in some practical constructions.

- **Q. 1** Recall the "Davies-Meyer" construction of a compression function $\mathfrak f$ from a block cipher $\mathscr E$.
- **Q. 2** Considering the feed-forward structure of Davies-Meyer, under what conditions would you obtain a fixed-point for such a compression function?

- **Q. 3** Show how to compute the (unique) fixed-point of $f(\cdot, m)$ for a fixed m. Given h, is it easy to find m such that it is a fixed-point, if $\mathscr E$ is an ideal block cipher?
- **Q.4** A semi-freestart collision attack for a Merkle-Damgård hash function \mathcal{H} is a triple (h, m, m') s.t. $\mathcal{H}_h(m) = \mathcal{H}_h(m')$, where \mathcal{H}_h denotes the function \mathcal{H} with its original IV replaced by h. Show how to use a fixed-point to efficiently mount such an attack for Davies-Meyer + Merkle-Damgård, when strengthening is not used.

Note: Fixed-points of the compression function can be useful to create the *expandable messages* used in second preimage attacks on Merkle-Damgård.

Exercise 3: Meet-in-the-middle preimage attack on BRSS/PGV-13 + MD

BRSS/PGV-13 is an alternative to Davies-Meyer, defined as $f(h,m) = \mathcal{E}(m,h) \oplus c$ for a cipher \mathcal{E} and with c a constant. It can be shown in the ideal cipher model that a Merkle-Damgård function with such a compression function is secure up to the birthday bound for both collision and preimage attacks (Black & al., 2010).

- **Q.** 1 If \mathscr{E} is ideal, what is the complexity, given h and t, of finding m such that f(h, m) = t? Conclude about the preimage security of f itself.
- **Q. 2** Show how to compute a two-block preimage for \mathscr{H} with the above compression function, using a meet-in-the-middle attack, and roughly evaluate its complexity (both time and memory).
- **Q. 3** Give a rough explanation of how the attack of Q. 2 is prevented when using a Davies-Meyer compression function.

Exercise 4: Hash-based message-authentication codes

- **Q. 1** Recall the definition of a message-authentication code (MAC), existential forgery, and universal forgery.
- **Q. 2** Let us first assume that \mathcal{H} is a random oracle. Explain (roughly) why the "prefix-MAC" construction $PM_{\mathcal{H}}(k,m) := \mathcal{H}(k||m)$ is secure? Is there a difference with the "suffix-MAC" variant $SM_{\mathcal{H}}(k,m) := \mathcal{H}(m||k)$?
- **Q. 3** Now assume that \mathcal{H} is a Merkle-Damgård hash function. Suppose I know m and its tag $t := \mathrm{PM}_{\mathcal{H}}(k, m)$, and that the size of k is known. How easily can I compute another message and its corresponding tag under $\mathrm{PM}_{\mathcal{H}}(k, \cdot)$? Is this MAC secure against existential forgery?
- **Q. 4** Still assuming that \mathcal{H} is a Merkle-Damgård function, show how collisions on \mathcal{H} lead to an existential forgery attack of $SM_{\mathcal{H}}$. What is the expected complexity of this attack for an otherwise secure \mathcal{H} ? Is this better than what you would expect for a "good" MAC?
- **Q. 5** Is it reasonable to instantiate prefix/suffix-MAC with SHA-3? With SHA-256? With SHA-512/256?

Note: It can be proven (Yasuda, 2007) that, using appropriate padding rules, the "Sandwich-MAC" construction SANDWICH $_{\mathscr{H}}(k,m) := \mathscr{H}(k||p||m||p'||k)$ (where p and p' denote padding) is secure, without requiring \mathscr{H} to be a random oracle (in particular, it can be built with a Merkle-Damgård construction).