
Crypto Engineering (GBX9SY03)
TD Hash functions

2017-10-18

Exercise 1: Multicollisions for Merkle-Damgård hash functions

In 2004, Joux showed a simple attack illustrating the fact that Merkle-Damgård hash functions
were not “ideal”. This attack consists in computing a collision on many (more than two) mes-
sages, i.e. finding m0, m1, . . ., mq that all have the same hash, more efficiently than what is
possible for a random oracle.
In this exercice, we can safely ignore padding issues.

Q. 1: We assume that the expected number of collisions in the elements of two lists L0 and L1

of random n-bit elements is ≈ #L0 ×#L1/2n . Let H : {0,1}∗ → {0,1}n be a random oracle; what
is the expected complexity of finding an r -collision for H ?
Hint: try to find the optimal balance in the list sizes for the case r = 3, and generalize the formula.

Q. 2: Recall the structure of a Merkle-Damgård hash function H : {0,1}∗ → {0,1}n based on a
compression function f : {0,1}n × {0,1}b → {0,1}n . Let m, m′ be two messages such that |m| =
|m′| = b. Explicit the relation between H (m), H (m||m′) and f.

Q. 3 Take H as in Q. 2. Let m0 and m′
0 be two one-block messages colliding through H (i.e.

h0 := H (m0) = f(IV,m0) = H (m′
0) = f(IV,m′

0)). Assuming f is ideal, how efficiently can you
compute a collision (m1, m′

1) for f(h0, ·)? Once you know such a collision, how many messages
colliding with H (m0||m1) can you easily (i.e. in constant time) create? Conclude about the cost
of computing a 2r -collision for H and why Merkle-Damgård hash functions are not ideal.

Q. 4 The concatenation combiner is a simple construction taking two hash functions H 1 and
H 2 and defined as CATH 1,H 2 (m) := H 1(m)||H 2(m). Assuming H 1 and H 2 have an output
size of n bits and follow the Merkle-Damgård construction, how efficiently can you compute a
collision for CATH 1,H 2 ? Is it possible to significantly improve the collision-resistance of SHA-1
by using CATSHA-1,MD5?

Exercise 2: Davies-Meyer fixed-points

In this exercise, we will see one reason why Merkle-Damgård strengthening (adding the length
of a message in its padding) is necessary in some practical constructions.

Q. 1 Recall the “Davies-Meyer” construction of a compression function f from a block ci-
pher E .

Q. 2 Considering the feed-forward structure of Davies-Meyer, under what conditions would
you obtain a fixed-point for such a compression function?

1

https://www-ljk.imag.fr/membres/Pierre.Karpman/cry_eng2017_td_hf.pdf

Q. 3 Show how to compute the (unique) fixed-point of f(·,m) for a fixed m. Given h, is it easy
to find m such that it is a fixed-point, if E is an ideal block cipher?

Q. 4 A semi-freestart collision attack for a Merkle-Damgård hash function H is a triple (h,m,m′)
s.t. H h(m) = H h(m′), where H h denotes the function H with its original IV replaced by h.
Show how to use a fixed-point to efficiently mount such an attack for Davies-Meyer + Merkle-
Damgård, when strengthening is not used.

Note: Fixed-points of the compression function can be useful to create the expandable mes-
sages used in second preimage attacks on Merkle-Damgård.

Exercise 3: Meet-in-the-middle preimage attack on BRSS/PGV-13 + MD

BRSS/PGV-13 is an alternative to Davies-Meyer, defined as f(h,m) = E (m,h)⊕ c for a cipher
E and with c a constant. It can be shown in the ideal cipher model that a Merkle-Damgård
function with such a compression function is secure up to the birthday bound for both collision
and preimage attacks (Black & al., 2010).

Q. 1 If E is ideal, what is the complexity, given h and t , of finding m such that f(h,m) = t?
Conclude about the preimage security of f itself.

Q. 2 Show how to compute a two-block preimage for H with the above compression func-
tion, using a meet-in-the-middle attack, and roughly evaluate its complexity (both time and
memory).

Q. 3 Give a rough explanation of how the attack of Q. 2 is prevented when using a Davies-
Meyer compression function.

Exercise 4: Hash-based message-authentication codes

Q. 1 Recall the definition of a message-authentication code (MAC), existential forgery, and
universal forgery.

Q. 2 Let us first assume that H is a random oracle. Explain (roughly) why the “prefix-MAC”
construction PMH (k,m) :=H (k||m) is secure? Is there a difference with the “suffix-MAC” vari-
ant SMH (k,m) :=H (m||k)?

Q. 3 Now assume that H is a Merkle-Damgård hash function. Suppose I know m and its tag
t := PMH (k,m), and that the size of k is known. How easily can I compute another message
and its corresponding tag under PMH (k, ·)? Is this MAC secure against existential forgery?

Q. 4 Still assuming that H is a Merkle-Damgård function, show how collisions on H lead
to an existential forgery attack of SMH . What is the expected complexity of this attack for an
otherwise secure H ? Is this better than what you would expect for a “good” MAC?

Q. 5 Is it reasonable to instantiate prefix/suffix-MAC with SHA-3? With SHA-256? With SHA-
512/256?

Note: It can be proven (Yasuda, 2007) that, using appropriate padding rules, the “Sandwich-
MAC” construction SANDWICHH (k,m) :=H (k||p||m||p ′||k) (where p and p ′ denote padding)
is secure, without requiring H to be a random oracle (in particular, it can be built with a
Merkle-Damgård construction).

2

https://www-ljk.imag.fr/membres/Pierre.Karpman/cry_eng2017_td_hf.pdf

