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Abstract. This paper shows that the classical “Sandwich” method,
which prepends and appends a key to a message and then hashes the
data using Merkle-Damgard iteration, does indeed provide a secure Mes-
sage Authentication Code (MAC). The Sandwich construction offers a
single-key MAC which can use the existing Merkle-Damgard implemen-
tation of hash functions as is, without direct access to the compression
function. Hence the Sandwich approach gives us an alternative for HMAC
particularly in a situation where message size is small and high perfor-
mance is required, because the Sandwich scheme is more efficient than
HMAC: it consumes only two blocks of “waste” rather than three as in
HMAC, and it calls the hash function only once, whereas HMAC re-
quires two invocations of hash function. The security result of the Sand-
wich method is similar to that of HMAC; namely, we prove that the
Sandwich construction yields a PRF(Pseudo-Random Functions)-based
MAC, provided that the underlying compression function satisfies PRF
properties. In theory, the security reduction of the Sandwich scheme is
roughly equivalent to that of HMAC, but in practice the requirements
on the underlying compression function look quite different. Also, the
security of the Sandwich construction heavily relies on the filling and
padding methods to the data, and we show several ways of optimizing
them without losing a formal proof of security.

Keywords: Message Authentication Code, MAC, Hash Function, Com-
pression Function, Merkle-Damgard, Envelope MAC, RFC1828, HMAC.

1 Introduction

A Message Authentication Code (MAC) is a symmetric-key cryptographic prim-
itive that is widely used for ensuring authenticity and data integrity. It is an
algorithm, usually deterministic, that takes as its input a message M (which
may not be encrypted), processes it with a secret key K and then produces
a fixed-length output 7 called “tag”. A secure MAC protects tags from being
forged.

A MAC is commonly realized via a cryptographic hash function, like SHA-1
or SHA-256 [I], for its performance and availability in software libraries. A hash
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function is usually constructed by a smaller primitive called “compression func-
tion.” A compression function only processes messages of a fixed length. In order
to create a hash function that accepts messages of variable lengths, the messages
are padded and the compression function is iterated via a mode of operation. The
most widespread mode is so called Merkle-Damgard strengthening (padding) and
iteration. We are interested in hash functions that are implemented in this way.

The hash function, however, is keyless. In order to use it as a MAC, we must
somehow make the hash function keyed. We briefly review four types of keying
the hash function h, along the course of [2].

“PREFIX” METHOD. This faulty way prepends a key K to a message M and then
lets the hash value 7 = (K| M) be the tag. It is well known that this method is
vulnerable against so called the “extension attack.” Namely, an adversary asks
its oracle the tag 7 = h(K|| M) for a message M, computes a value 7" = h(r, M)
where 7 is used as the initial vector for h and M’ an arbitrary message, and then
succeeds in submitting the pair (M||M’,7') as a forgery.

“SUFFIX” METHOD. An obvious way to avoid the extension attack is to append,
rather than prepend, the key K to the message M and then obtain the tag
7 = h(M||K). This gets around the extension attack but suffers from the collision
attack. Namely, let M, M’ be two messages that produce a collision of the keyless
hash function h, so that h(M) = h(M'). Then an adversary queries its oracle
the tag 7 = h(M||K) and then submits a pair (M’,7) as a forgery. For more
discussions on the notion of collision resistance for keyless hash functions, see [3].

“SANDWICH” METHOD. The combination of the above two approaches origi-
nates from the “hybrid method” in [4], where the tag 7 is computed as 7 =
h(K||p|| M| K’) with two independent keys K, K’ and key filling (padding) p. A
proof of security of the hybrid method is essentially given in [5]. The single-key
version, in which the tag 7 is computed as 7 = h(K||p|| M| K), appears in the
standardization of IPSec version 1 [2/6l7] and is known as the “envelope MAC.”
The envelope MAC, however, is shown to be vulnerable against key recovery
attack [8] (which is more threatening than forgery attack.) We note that it is
the lack of appropriate filling between the message M and the last key K, rather
than the usage of a single key, that contributes to this key recovery attack.

Nowadays these hybrid/envelope techniques seem to attract little interest,
mainly due to the above key recovery attack and the affirmative adoption of
HMAC (described below) in IPSec version 2 ([7] is “obsoleted” by [9] which is
also now “historic.” [@] is still present only for the purpose of backward com-
patibility.) This paper calls attention back to this classical method. It is the
contribution of this paper to show that the “Sandwich” scheme, which basi-
cally works as 7 = h(K]||p||M||p’|| K), indeed yields a secure, single-key MAC, as
long as the underlying compression function satisfies Pseudo-Random-Function
(PRF) properties and appropriate fillings p, p’ and padding methods are com-
bined with. It should be remarked that as a byproduct the Sandwich scheme
precludes the key recovery attack.
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HMAC. HMAC is introduced in [I0] with a (rather rough but formal) proof
of security. Its new proof with complete reduction to the compression function
is given in [II]. HMAC works as follows. It first computes the intermediate
value v = h((K @& IPAD)|[IPAD’||M) and then computes the tag 7 = h((K &
OPAD)||OPAD'||v), where & denotes bitwise exclusive-OR and IPAD, IPAD',
OPAD, OPAD’ are pre-defined constants. Note that unlike the other methods
mentioned so far, HMAC requires two invocations of hash function h.

ORGANIZATION OF THIS PAPER. In Sect. [2] we identify the improvements in
performance of the Sandwich scheme as compared to that of HMAC. In Sect.
we review some preliminaries of hash function, which are necessary in Sect. [
to define the basic construction of the Sandwich scheme and to state its main
security result. In Sect. Bl we compare this result to that of HMAC [I1].

Section [is devoted for the security proof of the basic Sandwich construction,
preceded by necessary definitions in Sect. [fl As to the reduction techniques in
Sect. [T we follow the line of [I1], rather than that of [5] which essentially contains
a proof of security for two-key hybrid method. Our approach enables us to prove
the security of the single-key Sandwich scheme and also to compare our result
directly with that of HMAC in [I1].

It is also the contribution of this paper to introduce several variants of the
basic Sandwich construction. Sections [8 [ and [I0 discuss these derivatives and
show ways to modify the filling and padding methods in the basic construction,
with improved efficiency and without loss of formal proofs of security. We em-
phasize the fact that although these improvements seem only subtle and minor,
they become valuable in a situation with severe resource requirements and/or
with short messages. The security results in Sect. B and make use of the
multi-oracle families introduced in [5].

2 Performance Comparison to HMAC

In Table [l we summarize the performance comparison between the Sandwich
method and HMAC. The Sandwich method consumes (at most) two blocks of
“waste,” corresponding to the very first and last blocks for the key. HMAC, on
the other hand, consumes one more block for processing the intermediate value
v, totaling three blocks (The “waste” is defined to be the number of invocations
of compression function in the scheme minus that in the usual Merkle-Damgard.)

Also, the Sandwich method calls a hash function only once, as in h(K || M || K),
whereas HMAC requires two invocations of a hash function, one for produc-
ing the intermediate hash value v = h((K @ IPAD)|[IPAD'|M), and then
another for processing the hash value v with the key K as in h = ((K &
OPAD)||OPAD’ ||U)

These problems of HMAC are discussed and improved in [I2] (which appears
in the standardization of CDMA2000 [I3], where these drawbacks are critical.)
Yet, the improved algorithm [12] still requires two invocations for long messages.
The Sandwich scheme affords a way to authenticate any message with just one
invocation.



358 K. Yasuda
Table 1. Numbers of waste blocks and hash function calls

Waste blocks Hash function calls

Sandwich 1-2 1
HMAC 3

3 Hash Function Basics

COMPRESSION FUNCTION. A compression function f is a keyless function f :
{0,1}7*4 — {0,1}". The first n bits of the input to f are referred to as a
“chaining variable,” where as the last d bits of the input are referred to as a “data
input” or “message block.” Typical values of n and d are (n,d) = (160,512) for
SHA-1 and (n,d) = (256, 512) for SHA-256. Hereafter in this section we fix our
choice of compression function f.

MERKLE-DAMGARD ITERATION. The Merkle-Damgérd iteration allows us to
extend the domain of f from {0,1}"*9 to {0,1}%*, the set of bit strings whose
lengths are multiples of d bits. Namely, the function Fry : {0, 1}%* — {0,1}" is
constructed as follows: Let M € {0,1}%* and divide M into message blocks as
M =my] - |me, m; € {0,1}%. Then the hash value Fry (M) is defined by:

V1 — f(IV||m1), Vi < f(vi_1||mi) for ¢ = 27 .. .,f, FIV(M) déf Ve,

where the initial vector IV € {0,1}" is a pre-defined constant.

PADDING. The current implementation of hash function is equipped with a
padding so called the Merkle-Damgard strengthening. It is a padding method
that takes the form of M||x(|M]|) € {0,1}%* for messages M € {0,1}=" whose
lengths are at most N bits (Note that the function 7 takes as its input the
length |M]| in bits of the message M.) A typical value of N is 264, The Merkle-

Damgard iteration and strengthening are combined to yield the hash function
def

B {0, 135N — {0,1}" by h(M) <& Fry (M]|x(|M])).

DuAL FAMILIES. There are two ways of keying the compression function f. One
is to key it via the first & bits of data input, yielding f/ : {0,1}"*? — {0,1}"
with K € {0,1}* and p Cia—k>o0, precisely defined by f/ (v]|2) e Ff||K||2)

for v € {0,1}", z € {0,1}?. The other way keys the chaining variable, yielding

f2 0,13 — {0,1}" with K € {0,1}" defined by fZ(m) & f(K]|lm) for

m € {0,1}%. If we are allowed to call only h (and not f), then we do not have
direct access to the chaining variable. Hence fV appears explicitly whenever
we try to key, whereas f® appears only implicitly for the purpose of security
analysis.

OTHER KEYED FAMILIES. The Merkle-Damgard iteration FIVV can be also (im-
plicitly) keyed, by replacing the initial vector IV with a key K € {0,1}™. This
gives us a function family { Fjz : {0,1}%* — {0,1}"}. We then extend the domain
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Fig. 1. Sandwich scheme, basic version

{0,114 to {0, 1}* via the trivial padding M||10”, where v %' d— (|M| mod d) —1
(We view v as a function of M and often write v(M) to denote this quantity.)

This defines another function family {Fy : {0,1}* — {0,1}"} via Fyg (M) def

Fi (M][107).

4 Our Contribution

Figure [[l depicts the basic construction of the Sandwich scheme (We call it “ba-
sic,” because later in Sect. 8 @ and [0 we introduce several derivatives with opti-
mized filling or padding.) The basic Sandwich method S takes as its input a mes-
sage M and a key K € {0,1}* and lets the hash value 7 = h(K||0P||M||107| K)
be the tag, with v = v(M). The message M is divided into d-bit blocks as
M =my||...|me, where ¢ = [(|M|+1)/d] and my is a bit string whose length

varies from 0 (the null string) to d — 1 bits. Note that the length of the data

K0P M|107]| K is A def d(€+ 1)+ k bits, which is input to the padding function

7, and we are assuming |7T(A)] = p. We view X as a function of M and often
write A(M) to denote this quantity. Now we have the basic Sandwich scheme
Sk :{0,1}N — {0,1}", where N=N —d — 1 — k.

The main contribution of this paper is to show that the basic Sandwich ap-
proach S gives a secure, single-key MAC. More precisely, we prove that it yields
a PRF-based MAC, under the conditions that w(A) # 07 for any A and that
both fV and f* are PRFs.

5 Security Comparison to HMAC

The security of HMAC also relies on the pseudorandomness of fV and f* [11].
In order for these functions to be PRFs, they must resist adversary’s queries to
its oracles. In Table 2] we compare these numbers.

It should be noted that the two “2”s in Table 2] come from very different
nature. The “2” in the Sandwich scheme has roots in collision resistance, whereas
the “2” in HMAC originates from a key derivation. f* in the Sandwich method
must resist two oracle queries m,m’ of adversary’s choice, while fV in HMAC
only needs to resist constant queries IV ||[IPAD’ and IV||[OPAD’. In this regard,
HMAC is based on a weaker assumption.

Theoretically, there is no difference between the requirement that fV is a
PRF and one that f> is a PRF, as long as k = n (The difference is just which
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Table 2. Numbers of oracle queries that compression function must resist

YV (Keyed via message block) f~ (Keyed via chaining variable)

Sandwich q+1
HMAC 2

bits of input are keyed). In practice, however, the nature of data input and that
of chaining variable are quite dissimilar, for an adversary can directly access the
former but not the latter. In fact, existing compression functions like SHA-1 and
SHA-256 are designed so that data input and chaining variable are processed
in completely separate procedures. It seems that we have to wait for further
research [I4UT5] on existing compression functions to identify this difference in
them.

Also, the coefficients in the security reduction of the Sandwich scheme are
fundamentally the same as those in that of HMAC. The result given in Sect. [ is
essentially tight, due to the general “birthday attack” [I6]. For more discussions
on the exact tightness of this type of reduction, see [11].

6 Security Definitions

The notation z < X denotes the operation of selecting an element x uniformly
at random from a set X. An adversary is an algorithm A, possibly probabilistic,
that may have access to a oracle. The notation A® = x denotes the event that A
with the indicated oracle outputs z. Oracles are often defined in a “game” style.
We then write AY = z to denote the event that A outputs x in the experiment
of running A as specified in game G.

PRFs. Any PRF is a secure MAC [I7]. All the MACs that appear in this pa-
per are PRF-based. Consider a function family {fx : X — Y}xexpy. A prf-

adversary A tries to distinguish between two oracles, one being fx (-), K & KEY
and the other being f(-), f & {f : X — Y}. Succinctly, define

Adv?T(4) X pr [AfK’Ki = 1] _Pr [Afi = 1}

to be the prf-advantage of A against f.

CAU. The notion of “computationally Almost Universal (cAU)” measures a sort
of collision resistance. An au-adversary A, given access to no oracle, just outputs
a pair of messages (M, M’) € X x X. Then define

Advi(A) % pr [ Fre(M) = fre(M)AM # M'| A= (M, M), K & KEy}
to be the au-advantage of A against f.

RESOURCES. An adversary A’s resources are measured in terms of the time
complexity ¢, the number ¢ of oracle queries and the length p in bits of each
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query. The time complexity ¢ includes the total execution time of an overlying
experiment (the maximum if more than one experiments are involved) plus the
size of the code of A, in some fixed model of computation. We write T;() to
denote the time needed for one computation of f on a input whose length is p
bits. For x € {prf, au,...} we write

Advi(t,q, 1) 4 max Advi(A),

where max is run over adversaries, each having time complexity at most ¢ and
making at most ¢ oracle queries, each query of at most p bits. One or more of
the resources are often omitted from the notation if irrelevant in the context. In
particular, we often omit the time complexity of an au-adversary A, due to the
following lemma.

Lemma 1. For any time complexity t, we have
AV (£, 1) < AdV3(2- T (1) o).

Proof. Let A be an au-adversary against f that has time complexity at most ¢
and outputs messages of at most p bits each. By definition we have

Advi(A) = 3 (Pr[{M, M} = (M, 01"} | A = (41, 01")]
M, M’

x | fic(M) = fic(M')

KiKEYD,

where the summation is over all pairs {M, M’} of two distinct messages whose
lengths are at most p bits each. Hence, there exists a pair (M, M’) of distinct
messages such that Adv}"(A) < Pr[fx(M) = fx(M')]. Then we can create a
new adversary B that has M, M’ hardwired as a part of its code and simply
outputs these messages. O

7 Security Proof of the Basic Construction

The following theorem states the security result of the basic Sandwich scheme.

Theorem 1. Let f: {0,1}""P — {0,1}" be a compression function and Sk :
{0,1}=N — {0, 1} the basic Sandwich scheme constructed from f, as described
in Sect. [} Then the basic Sandwich scheme S is a PRF, provided that both fV
and f® are PRFs. More formally, we have

prf < prf q X . H . prf /7 1
Adv? (t7q,u)Adva(t,q+l)+(2> ((2 MH) ADRIE2)+ ),

where t' =4 - [(p/d)+ 1] - T}.

The following three lemmas prove the above theorem.
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Adversary B Adversary C
Query IV]|0” to oracle fV s 0;7T1,...,7g & {0,1}"
and obtain K = f¥ (IV]|0?) P, g =1} i+, ,q}
Run A; On A’s query M do: Run A; On A’s query M do:
Compute v «— Fi (M) s s+1
Query v||m(A(M)) to oracle [V My — M
and obtain 7 = fV (v|7(})) Reply 75 to A
Reply 7 to A Output (M;, M;)

Output whatever A outputs

Fig. 2. Description of adversaries B and C

Game G Game G’

P70, = {0,137} £Y S {F {0,137 — {0,137}
K fY(1v]jo) K& {0,1}"

On query M On query M

reply [V (Fg(M)[[m(A(M)))  reply f¥ (Fg(M)|m(X(M)))

Fig. 3. Intermediate games G and G’

Lemma 2. If fV is a PRF and F (constructed from f as in Sect. [3) is cAU,
then the basic Sandwich scheme S is a PRF. More formally, we have

AdvET(t,q, 1) < AdVRT (g + 1) + (g) - AdvE ().
Proof. Let A be a prf-adversary against S that has time complexity at most
t and makes at most ¢ > 2 oracle queries, each of at most p bits. We shall
construct a prf-adversary B against fV and an au-adversary C against F, each
using A as a subroutine, as described in Fig.[2l Note that B has time complexity
at most ¢ and makes at most ¢ + 1 oracle queries, and C' outputs two messages,
each of at most p bits. We show that

AdVE(4) < AdV(B) + (g) AV (C).

Let G, G’ be two games defined in Fig. Bl These games define oracles for the
adversary A.

Claim. We have

AT (B) < Pr [sz?ﬂi = 1] - Pr[va‘i = 1]

:Pr[ASK’Ki = 1} —Pr{Ag = 1].
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Proof. If oracle fV to B is given by fy/, K & {0,1}*, then observe that B cor-
rectly simulates the oracle Sg, K & {0,1}* for A. Hence Pr BIES & 1} =

Pr [ASK’K‘E = 1]. On the other hand, if oracle fV to B is given by fV S
{f:{0,1}"*? — {0,1}"}, then running B* exactly corresponds to running AY.
Thus Pr [B/7% = 1) = Pr[49 = 1],

Claim. Game G is equivalent to Game G'.

Proof. Recall that we assume the condition m(A(M)) # 0P for every M. Hence
in Game G we have Fy(M)||m(A(M)) # IV||0P for every query M, and while
replying to A’s queries the random function fV is never invoked on the input
value IV]|0P. This means that in Game G the key K = fV(IV||0?) is a random
value independent from A’s queries, and the equivalence to Game G’ follows.

Now we assume, without loss of generality, that the adversary A never repeats a
query and that the total number of A’s queries is always exactly g rather than at
most ¢, no matter how replies to A’s queries are made. Let M, ..., M, represent
A’s queries in order.

Let E be the event that Fy(M;)|m(A(M;)) = Fr(M;)||m(A(M;)) occurs for
some 1 < i < j < q. Observe that as long as F does not occur, Game G’ for A and
running A with the oracle S & {S:{0,1}=N — {0,1}"} proceed exactly the
same. Therefore, by the Fundamental Lemma of Game Playing [I8], we obtain

Pr[a = 1] - Pr [ASi = 1| < Pr[E].

Claim. We have

Pr[E] < (g) AV (C).

Proof. Let E’ denote the event that Fy(M;)
so that Pr[E] < Pr[E']. For 1 < a < f < ¢
Fr(M,) = Fy(Mpg) occurs while Fj(Mz) #
3. Notice that the events E;ﬂ forl1 < a <
\/1§a<ﬁgq E;ﬂ. Then

Fp(M;) for some 1 <i < j<gq,
let E’ s denote the event that
F (Mﬁ)foralll<a<ﬁ<
B < q are disjoint and E' =

AdvifC)=Pr | \/ ELzA(i.j) = (a.f)

1<a<f<q
= X Pl AG) = (af)
1<a<f<q
= X pe[E) ) = (0]
1<a<f<q

1 1 > ! r|E).
", ] = g P g Pl

2/ 1<a<f<q
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Now we see that
AdvE(4) 2 Pr[aS RS o 1] pr[ 48 = 1]
= Pr[a% KT 51| = Pe[49 = 1] 4+ Pr[A9 5 1] - Pr[atT = 1]
< AP (B) + (g) AV (C).
O

Lemma 3. Let f : {0,1}""¢ — {0,1}" be a compression function. If F (con-
structed from f as in Sect.[d) is cAU, then so is F'. More formally, we have

AdVE(E, 1) < AdvA(E, i + d).

Proof. Let A be an au-adversary against F' that has time complexity at most
t and outputs messages (M, M') of at most u bits each. Then we can easily
construct an au-adversary B against F', by letting B simply output the pair
(M||10¥D M |110¥(M)). Note that M # M’ implies M || 10*M) = M/|[10¥ (M),

O

Lemma 4. Let f : {0,1}"*% — {0,1}" be a compression function. If f* is a
PRF, then F (constructed from [ as in Sect.[3) is cAU. More formally, we have

1

Advire) < (2- |1 = 1) - Aavbi@ )+,

where t' =t +2- [p/d] - Ty, Ty being the time for one evaluation of f.

Proof. This result is obtained in [TT]. |

Now from the above lemmas we have
Adv(t,q, 1) < Adv?rvf (t,g+1)+ (g) - AdvE (1)
< AdVRI(t g+ 1) + (g) CAdvE (u + d)
< AdvP(t,q+1) + (g) : ((2 m + 1) AV (K, 2) + ;n) :

where t' = 2 - Tp(p) +2- [(n/d) + 1] - Ty < 4-[(n/d) + 1] - T¢. This proves
Theorem [

8 Variant A: Reducing the First Filling 07

The filling 0P after the first key K may be considered as consuming, particularly
if p is large. Figure [ describes a variant of the basic Sandwich scheme, which
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uses a one-bit filling 0 rather than 0P. Note that in this variant a message M is
now divided into blocks as M = mq|ms]|| ... [|m¢ with |mi| =p—1, |mg| =--- =
|me—1] = dand 0 < |my| < d—1.In case |M| < p—2 the entire message M = my
is processed by the very first block (In this variant the condition 7(u) # 0P~*
is not required. Also, the functions v and A and the number N are re-defined
accordingly.)

K||0||m1||10” K’||1||7r

N Dﬁ

Fig. 4. Variant A: Reducing the filling 0”7 to 0

This variant is secure. However, its analysis is more complex than that of the
basic construction. The proof of security requires novel techniques that are not
included in that of the basic version. Intuitively, this is because now an adversary
can change the value of K via querying different m;. Owing to the pseudoran-
domness of fV (and appropriate fillings 0 and 1 after the key K), for different
my,my,m!, ... the adversary “sees” independently random keys K, K’ , K", ...
(This, however, demands that fV be resistant against 2¢q oracle queries rather
than ¢+ 1.) Now the difficulty lies in the treatment of the event that a “collision”
is detected. Observe that there can be two different cases for a collision. One
is with the same key as in Fz(M) = Fr(M’') with M # M’, and the other
with different keys as in Fy (M) = Fy, (M') (and not necessarily M # M’.) The
first case can be handled in the same way as in the basic version. The problem
is that we also have to bound the latter probability by the pseudorandomness
of f¥.

We deal with this problem along the course of prefix-free PRFs and multi-
oracle families [5]. Recall that F' is a prefix-free PRF if f* is a PRF. Next we
extend the result of multi-oracle families in [5] from PRF's to prefix-free PRFs.
We can then bound the collision probability by the multi-oracle family of F'. This
does not affect the query number for f* (It still remains to be 2) but worsens
the coefficient roughly by a factor of 2. We state the result concretely in the
following theorem.
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Theorem 2. Let f : {0,1}""¢ — {0,1}" be a compression function and Sk :
{0,1}=N — {0,1}" the Variant A constructed from f. Then we have

prf prf q . X H . prf /7 1
AdVET(t, g, 1) < Adv?™ (,29) + (2) (4 (m +2) Advfb(t,2)+2n>,

where t' =t +2q- [p/d] - Ty.

9 Variant B: Improving the Second Filling 10¥

We go back to the basic Sandwich construction and discuss how to avoid the
waste that occurs when the message size | M| happens to be exactly equal to a
multiple of d bits. Note that in such a case, the filling bits 1][09~! is appended
after the message M, producing an extra one block of compression function. We
show a technique to get rid of this increase.

K|||—0)P m|_1) ..... m£|||_1)0" K|||—0)||7T()\)
IV — N > eeees —)Dﬁb_) T
KHOP My eeeee my_q K||1||7T(>\)

NN

Fig. 5. Variant B: Case my is not null (upper) and m, null (lower)

The technique works as follows: If the message size |M| is not equal to a
multiple of d, then the usual filling 1]/0” is appended after the message M,
and then the key K is appended, followed by 0||w()). On the other hand, if
the message size |M| happens to be exactly a multiple of d, then no filling is
appended after the message M instead, we directly append the key K after the
message M and then append the padding 1]|7(A\) (Again, the function A and the
number N are re-defined accordingly, and we assume m(\) # 0P~! for all A in
this variant.)

This variant is also secure, and the proof of security does not require much
modification to that of the basic version. So let us review the reduction proofs
and see this new scheme actually preserves the security. First, the construction of
adversary B naturally transforms into the new setting. The equivalence between
Game G and Game G’ still holds, for we assume m(\) # 0P~! and hence K is
a random value independent from A’s queries. A collision on the input value
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for f* can be divided into two cases in accordance with the padding K ||0 and
K||1, but both cases are bounded by Adv%'. So there is no degradation in the
reduction:

Theorem 3. Let f : {0,1}""¢ — {0,1}" be a compression function and Sk :
{0,1}=N — {0,1}" the Variant B constructed from f. Then

prf < prf q X . H . prf /7 1
Adv? (t7q,u)Adva(t,q+l)+(2> ((2 MH) AQRIE2)+ ),

where t' =4 - [(p/d)+ 1] - T}.

We can extend this idea to gain further improvement, if there is enough “room”
in the last block. Namely, let o be the maximum number such that K||1||mg||7(\)
fits in the last block with m, € {0,1}? (Again, the number X is re-defined accord-
ingly.) For a message M with |my| > o, we use the first case m[|10”| K |07 (\)
as is in the last two blocks. On the other hand, if |my| < ¢ (including the case
my null), then we process the data K||1||mg||w(A) with only one computation
in the very last block (and in the latter case note that for m, # mj we require

myl|m(X) 7# myllw(X).)

10 Variant C: Handling the Last Padding 7 ()

In this section we study the case where the block size d is too small to accommo-
date both the key K and padding 7(A) in one block. The purpose of introducing
this variant is twofold. One is to show the general applicability of the Sandwich
approach with a low-ratio compression function. The other is to point out the
powerfulness of the multi-oracle family techniques that we also used in Sect. 8

Ko my e m[|10” K[[1" w(A)

NI TN

Fig. 6. Variant C: Padding with low-ratio compression function

The difference between this variant and the basic version is in the last padding.
In this variant we use two blocks in order to process the second key K and the
padding 7(\) via K ||1P||w(\) (This, of course, does not provide any improvement
in efficiency, and again, the function A and the number N are re-defined.)

This variant is also secure, but the difficulty in analysis lies in the very last
block. That is, we can “extract” a prf-adversary B against fV and an au-
adversary C against F' as in Sect. [l but there still remains a “gap” (The gap
arises from the very last block.) We have to fill in this gap somehow by the
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pseudorandomness of f®. We do this via the multi-oracle family of f>. This
does not increase the query number “2,” and the degradation in the reduction
is only minor:

Theorem 4. Let f : {0,1}"F¢ — {0,1}" be a compression function and Sk :
{0,1}=N — {0,1}" the Variant C constructed from f. Then

AdVET(t, g, 1) < AdVRT (g + 1)
ay [H ) prf /7 1 ) prf /1
+ (2) ((2 m +1) Advfb(t,2)+2n> +q- AV (1", 1),

where t' =4 - [(n/d) + 1] - Ty and t" =t +2q - T}.

11 Concluding Remarks

The Sandwich approach offers a secure, single-key MAC which is more efficient
than HMAC. The improvement in performance becomes beneficial especially for
situations with severe resource requirements and/or with short messages. For
short messages, the optimization techniques in variants A and B are quite effec-
tive. Any combination of the three variations A, B and C would work, provided
that appropriate filling and padding methods are devised and used with.

The security reduction of the Sandwich scheme, in theory, is roughly equiva-
lent to that of HMAC. They both rely on the pseudorandomness of fV and f".
The difference between the requirement of fV being a PRF and that of f> a
PRF would result in a difference between the security of the Sandwich scheme
and that of HMAC. Thus in reality we have to wait for further research on exist-
ing hash functions like SHA-1 and SHA-256 in order to analyze how they satisfy
the two requirements and to identify the differences.

Lastly, we remark that the key recovery attack known for previous hybrid
and envelope MACs no longer applies to the Sandwich scheme presented here.
A straight-forward observation tells us that a key recovery against the Sandwich
scheme essentially amounts to the key recovery against fV.
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