SHACAL
(— Submission to NESSIE —)

[Published in Proc. of First Open NESSIE Workshop, Leuven, Belgium,
November 13-14, 2000.]

Helena Handschuh and David Naccache

Gemplus Card International
34 rue Guynemer, F-92447 Issy-les-Moulineaux, France
{helena.handschuh, david.naccache}@gemplus.com

Submission Statement

This submission presents and analyses the block cipher SHACAL, as a submission
to NESSIE. It is based on the hash standard SHA-1 used in encryption mode. We
believe the main strength of this block cipher is its inheritance from the extensive
analysis that has been made on the hash function itself. We state that no hidden
weakness has been inserted in this block cipher, and we believe the design principles
to be sound. To the best of our knowledge, SHACAL is not covered by any patents.
We do not intend to apply for any patent covering SHACAL and undertake to update
the NESSIE project whenever necessary.

The estimated computational efficiency of SHACAL is 2800 cycles per 20 byte block
encryption, 2330 cycles per 20 byte block decryption and 3200 cycles per 64 byte
key setup. Timing measurements are given for a PC using an amd K6 processor
running at 233 Mhz. 1 million SHACAL encryptions take about 12 seconds and 1
million decryptions take about 10 seconds. 1 million key setups take 14 seconds.
The following report analyses the cryptographic hash function SHA in encryption
mode. A detailed analysis is given of the resistance of SHACAL against the most
powerful known attacks today. It is concluded that none of these attacks can be
applied successfully in practice to SHACAL. Breaking SHA in encryption mode re-
quires either an unrealistic amount of computation time and known/chosen texts,
or a major breakthrough in cryptanalysis.

We would like to thank Lars R. Knudsen and Matt J. Robshaw for their extensive
security analysis; without their help this submission would not have been possible.

1 Introduction

In the following we give a brief introduction to the Secure Hash Algorithm (SHA).

Many of the popular hash functions today are based on MD4 [5]. MD4 was
built for fast software implementations on 32-bit machines and has an output of
128 bits. Because of Dobbertin’s work [3,2] it is no longer recommended to use



2 Helena Handschuh and David Naccache

MD4 for secure hashing, as collisions has been found in about 22 compression
function computations.

In 1991 MD5 was introduced as a strengthened version of MD4. Other vari-
ants include RIPEMD-128, and RIPEMD-160. SHA was published as a FIPS
standard in 1993. All these hash functions are based on the design principles of
MD4. RIPEMD-128 produces hash values of 128 bits, RIPEMD-160 and SHA-1
produces hash values of 160 bits.

SHA was introduced by the American National Institute for Standards and
Technology in 1993, and is known as SHA-0. In 1995 a minor change to SHA-0
was made, this variant known as SHA-1. The standard now includes only SHA-1.
Descriptions of both algorithms follow.

Notation:

— +. Addition modulo 232 of 32 bit words.

— ROT;(W). Rotate 32 bit word W to the left by i bit positions.
— . Bitwise exclusive-or.

— &. Bitwise and.

— |. Bitwise or.

To hash a message proceed as follows.

1. Pad the message, such that the length is a multiple which fits the size of the

compression function, see [4].

2. Initialize the chaining variables AA, BB,CC, DD, EE, each of 32 bits, by

(a) AA = IV, = 67452301,

(b) BB = IV, = EFCDABSY,,

(c) CC = IV3 = 98BADCFE,,

(d) DD = IV, = 10325476,

(e) EE = IV5 = C3D2E1FO,.
3. For each message block of 512 bits:

(a) Set AA=A,BB=B,CC=C,DD=D,FE=FE.

(b) Expand the 512 bits to 2560 bits, cf. later.

(¢) Compress the 2560 bits in a total of 80 steps; each step updates in turn
one of the working variables A, B,C, D, and F, see section on compres-
sion function.

(d) Set AA=AA+ A BB=BB+ B,CC=CC+C,DD =DD+ D and
EFEE=FEFE+E.

4. Output the hash value [AA || BB || CC' || DD || EE].

1.1 Compression function

Let the message blocks of 512 bits be denoted M = [W° | W | ... | W],
where W; are 32-bit words. For SHA-0 the expansion of 512 bits to 2560 bits is
defined

Wi=WSB3aeWwBow oW 1% 16<i<79. (1)

In SHA-1 the expansion is defined
Wi=ROT\(W 3 oW 8aeW Mgwi16) 16 <i<79. (2)



SHACAL 3

These expansions are the only difference between SHA-0 and SHA-1.
Define the following functions.

fit(X.Y, Z) = (X&Y)|(-X&Z) (3)
faor(X,Y, Z) = (X @Y © 2) (4)
fmai(X,Y, Z) = (X&Y)|(X&Z)|(Y&2) (5)

The above 80 steps are then defined

A = W'+ ROTs(AY) + fY(B',C",D") + E' + K* (6)
Bitl — Al (7)
C'™! = ROT30(B") (8)
pitl — o (9)
Ett = D! (10)

fori=0...,79, where

fi=fiy, 0<i<19
fi= feor, 20<4i<39,60<i<79
fP= fnaj, 40 < < 59.

The constants K* are defined

K' = 5A827999,,0<i <19

K = 6ED9EBA1,, 20 < i < 39
K = 8F1BBCDC,, 40 < i < 59
K = CA62C1D6,, 60 < i < 79

The output after 80 steps, A80, B30 C80 D80 E30 ig then used to update the
chaining variables AA, BB,CC,DD, FE.

In the following, Round 1 will refer to the first 20 steps, Round 2 to the next
20 steps and so on.

The best attack known on SHA-0 when used as a hash function is by Chabaud
and Joux [1]. They show that in about 26! evaluations of the compression func-
tion it is possible to find two messages hashing to the same value. A brute-force
attack exploiting the birthday paradox would require about 28° evaluations.
There are no attacks reported on SHA-1 in the open literature. In the following
we shall consider only SHA-1.

1.2 SHACAL or using SHA in encryption mode

SHA was never defined to be used for encryption. However, the compression
function can be used for encryption. Each of the above 80 steps are invertible
in the A, B,C, D, and F variables. Therefore, if one inserts a secret key in the
message and a plaintext as the initial value, one gets an invertible function from



4 Helena Handschuh and David Naccache

the compression function by ignoring the final addition with the initial values.
This is the encryption mode of SHA considered in this report. Thus SHACAL
is a 160-bit block cipher defined for a 512-bit secret key. Shorter keys may be
used by padding the key with zeroes to a 512-bit string. However, SHACAL is
not intended to be used with a key shorter than 128 bits.

2 Attacking SHA in encryption mode

The two best known attacks on systems similar to SHA in encryption mode are
linear cryptanalysis and differential cryptanalysis. There has been a wide range
of variants of the two attacks proposed in the literature but the basic principles
are roughly the same. Also, many other attacks on encryption schemes have been
suggested but they are less general than the two above mentioned ones, and do
not apply to encryption schemes in general. In this report we shall consider only
linear cryptanalysis and differential cryptanalysis. These attacks apply to SHA
in encryption mode, but as we shall see, the complexities of attacks based on
there approaches are completely impractical, if possible at all.

SHA uses a mix of two group operations, modular additions modulo 232 and
exclusive-or (bitwise addition modulo 2). If we use the binary representation
of words, i.e., A = ay_12%" 1 + -+ + a12 + ag, and similarly for S, the binary
representation of the sum Z = A + S may be obtained by the formulae

zZj=a;+8j+o0j-1 and 0j =a;Sj +aj05-1+ 8051, (11)

where 0;_1 denotes the carry bit and o_; = 0 (cf. [6]). This formulae will be
used in the sequel several times.

2.1 Linear Cryptanalysis

Linear cryptanalysis attempts to identify a series of linear approximations A; to
the different operational components in a block cipher, be they S-boxes, integer
addition, boolean operations or whatever. The individual linear approximations
are then combined to provide an approximation for the greater proportion of
the encryption routine. The combination of approximations is by simple bitwise
exclusive-or so the final approximation is A1 ® As & --- P A,.

If the linear approximations A; hold with probability p; then we define the
bias to be ¢; = |p;—1/2|. Provided ¢; # 0 for each approximation A; then they are
potentially useful in a range of sophisticated linear cryptanalytic attacks. After
combination, the overall bias of A1 ® A; & --- @ A, is typically estimated using
the so-called Piling-Up Lemma as € = 21 Hf;ol €;. If the final approximation
over the bulk of SHA-1 has bias € then the data requirements for an attack are
given by ¢ - €~2 where ¢ is some constant that is dependent on the exact form
of an attack. For the attacks we consider here practical experience suggests that
¢ =~ 8, but to be conservative we will assume that ¢ = 1.

We mentioned that we needed an approximation over the greater proportion
of the cipher. Just as in differential cryptanalysis, there are a variety of tricks



SHACAL 5

and techniques available to the cryptanalyst to gain a few extra steps for free
and they potentially allow the recovery of key material from the outer steps of
the cipher at the same time. The number of outer steps that can be removed
in this way is very specific to the approximations being used and the structure
of the cipher. However we will see that the biases are so low with the linear
cryptanalysis of SHA-1 that this level of detail is likely to be more little more
than a distraction.

We will describe our approach. For each of the four rounds we will attempt to
identify the longest perfect linear approximation in SHA-1 and what appear to
be its most useful extensions. We will then make many conservative assumptions
and use these approximations to assess a lower bound on the data requirements
in a linear cryptanalytic attack.

Some Preliminaries In the analysis that follows we will typically only consider
single-bit approximations across the different operations. Practical experience
shows that attempts to use heavier linear approximations very soon run into
trouble. While it is conceivable for some operations that heavier linear approxi-
mations will have a larger bias individually, it is usually much harder to use them
as part of an attack and as such they are typically not useful. We will use the
notation e; to denote the single-bit mask used to form a linear approximation.
Thus e; is a 32-bit word that has zeros in all bit positions except for bit 7. We
will set the least significant bit position to be bit zero.

In all rounds there are four integer additions. However two of these are with
constants; one is key material the other a round constant. At first it is tempting
to ignore these two additions, but in fact the value of the key material has an
important impact on the bias of the approximation.

Even without this consideration, using linear approximations across two (or
more) successive additions is a complex problem. As an example, we might con-
sider addition across two integer additions = (a + b) + ¢. Consider the first
integer addition y = @ 4+ b in isolation. Then the bias for the linear approxima-
tions a[i] @ b[i] = y[i] (0 < i < 31) is 270+, If we were then to consider the
second integer addition x = y + ¢ we might be tempted to use the Piling-Up
Lemma directly, but that would give us misleading results.

For example, in bit position ¢ = 2, the Piling-Up Lemma would tell us that
the approximation holds with bias 273 x 273 x 2 = 275 But note that the
output from one integer addition is used directly as the input to the second
integer addition thus this two operations are not independent. Instead, if we
evaluate the boolean expressions directly using the least significant three bits of
a, b, and ¢ then we find that the bias is in fact 273.

In the case of SHA-1 we have an even more complicated situation. We have
the following string of additions that we need to approximate z = (a+b)+k+c
where k is a key- (and round-) dependent constant. The approximation we plan
to use is z[i] = a[i] + b[é] + k[i] + c[i] (0 < ¢ < 31). The bias that is observed will
depend on the value of k.



6 Helena Handschuh and David Naccache

Let us consider a simplified case, x = k + y. Imagine we make the approxi-
mation x[i] = k[i] + y[i] (0 < i < 31), where y[i] is plaintext dependent bit and
where k[i] is a (fixed) key bit. Clearly if we consider only the least significant
bit, ¢ = 0, then the approximation always holds. For bit ¢ = 1, the approxima-
tion holds always if k[0] = 0, but only with probability 0.5, that is bias zero, if
k[0] = 1. If we are using bit ¢ > 1 for the approximation then integers k for which
(k & (2 — 1)) = 0 give a maximum bias, since there will be no carry bits in bit
positions lower than ¢, and the approximation holds always, see formulae (11).
This maximum is less than or equal to 272 for any bit position i > 1. Note that
the number of these “weaker” keys that give a maximal bias is dependent on
the bit position i. When i = 2 we have that one in four keys gives the maximal
bias. If i = 30 then we have that only one key in 23° gives this maximal bias. We
also note that some values of k give a zero bias. Namely values of k that satisfy
(k & (2¢ — 1)) = 271, For such values there are no carry bits for positions less
than ¢ — 1. But since k[i — 1] = 1 in this case, there will be a carry bit in position
i if and only if y[i — 1] = 1. If y is allowed to vary over all values (the approach
usually taken in linear cryptanalysis) then the approximation z[i] = k[i] + y][i]
holds with probability 0.5, thus zero bias.

All rounds The cyclical structure of SHA-1 means that in all four rounds
we can readily identify a family of linear approximations that always hold over
four steps. We use I' to denote a general pattern of bits to be used in the
approximation and z¢ to denote the left rotation of a 32-bit word = by c¢ bit
positions.

AB C D E bias

r- - - -

! 1/2
- - -

%0 1/2
I - -

! 1/2
- - 130 _

l 1/2
o - [30

This is a “perfect” linear approximation over any four steps of SHA-1. In
extending this approximation we will need to take into account the effects of the
different boolean functions that are used in the different rounds. Our extended
linear approximations will be formed according to these three rationale:

1. When approximating forward one step in any of the rounds, we try to avoid
introducing an approximating bit in word E.

2. We try to use single-bit approximations in each word whenever possible, and
we always try and use the least significant bit of a word.



SHACAL 7

3. We try and use as many internal cancellations as possible to keep the linear
approximation as simple as possible.

These rationale do not necessarily guarantee that the linear approximations
we construct are the best for the cryptanalyst. However they embody well-
founded analytic techniques that are very likely to give the best constructable
linear approximations.

Rounds 2 and 4 In these rounds the boolean function used to combine the
words is the simple bitwise exclusive-or b @ ¢ & d. This function in fact poses
some difficulty to the cryptanalyst in terms of trying to manage the number of
bits used in the approximations.

In Rounds 2 and 4 we can extend the basic “perfect” linear approximation
that we have already shown for all rounds in the following way. This gives a
linear approximation that acts over seven steps and holds with probability one
(i.e. the bias is 1/2). In anticipation of its extension, we set I" = eg according to
our rationale in the previous section.

A B C D E bias
€9 - - - -

l 1/2
- €s - - _

l 1/2
_ _ €0 _ _

l 1/2
- - - eo -

l 1/2
_ _ _ _ €o

l 1/2
ey €27 €30 €o €o

l 1/2

ep e27 D eg e3p D eas €30 D eo -
! 1/2

- eo  e25 D esg eas Deso e30 D e

We conjecture that this is the longest “perfect” linear approximation over
the steps in Rounds 2 and 4. If we are to use this in an attack then we will need
to extend it. If we consider the only extension that is possible at the top then
we have the following one-step linear approximation:

A BCDE

€29 €2 €2 €2 €2

!



8 Helena Handschuh and David Naccache

At the foot of the seven-step linear approximation we need to use the follow-
ing one-step approximation:

A B C D E

- €g ea5 D e30 €25 D e30 €30 D eo

e30 Deg ea7 Degs  eag €25 D eg ez5 D eg

Using the techniques mentioned in the preliminary section, we estimate that
the maximum bias for this nine-step linear approximation (taking into account
the best possible value for the key material) is less than 272 x 272 x 2 = 273 and
more than 273 x 273 x 2 = 275, This bias would apply to one in 232 keys since we
require a key condition on the approximation in step one and a key condition on
the approximation in step nine. For roughly one in 22 keys there will be no bias
to this linear approximation. The expected value of the bias might be expected
to lie between 272 x 273 x 2 = 27% and 274 x 27% x 2 = 277, Experiments
give that the bias using the best key conditions is around 27%9 and that the
average bias over all keys is 27°:%. For one in four keys there is no bias in the
approximation.

We have identified a nine-step linear approximation. To facilitate our overall
analysis we will add a step to this nine-step approximation. We could add a
step at the beginning or at the end. It seems to be easier for the cryptanalyst
to add the following one-step approximation to the beginning of the existing
approximation.

A B C D E

€24 D €2 €29 D eyq €29 D €2 €29 D €2 €29

€29 €2 €2 €2 €2

Following our previous methods we will estimate that that maximum bias
(under the most propitious key conditions for the analyst) lies in the range
(274,277) and that the average bias lies in the range (277,2710). For a little
over one in four keys there will be no bias. Experiments demonstrate that the
best key values (which occur for one in 229+30+2 random keys) give a bias of
2754 but that the bias for the average key is performing a little better than
expected with a bias of 2767, Since the case of the best key values is so rare, we
propose to use 279 as a conservative representative of the bias of this ten-step
linear approximation in Rounds 2 and 4.

Round 1 As in our analysis of Rounds 2 and 4 we consider the best extension to
the basic four-step “perfect” approximation that applies in all rounds. Here the
boolean function is bc @ (1 @ b)d. There are no perfect approximations across
this operation, though there are several approximations with bias 272.



SHACAL 9

Immediately we can see the following four-step extension to the existing basic
linear approximation:

A B D E
- - - - eO

! 1/4
€o €27 - €0 -

l 1/2
- €y €5 - €o

l 1/4
eg e27 - €5 D eg -

! 1/2
- €o €25 - €25 D eg

The bias for this extension can be computed as 273. In extending further we
need to approximate across the addition operation in a bit position other than
the least significant. We will consider a worst-case scenario for the key values so
that the bias of this approximation is perhaps around 272. Of course it can be
expected to be much less.

The following two-step extension allows us to form a ten-step approximation
to the steps in Round 1 that holds with a bias of no more than 276 in the best
case and in the range (277,27%) on average.

A B C D E

- €o €25 - ey Deg
e25 D eg ear D e - €0 -

- e25 D ey ez5 Deig - €o

Experiments confirm the ten-step linear approximation. The average bias was
2772 and with the best key conditions (which hold for one in 225 random keys)
the bias over twenty trials was 2764,

We will conservatively use 27¢ as the estimate for the bias for this ten-step
linear approximation to the steps in Round 1.

Round 3 Once again we consider extensions to the basic linear approximation
that applies in all rounds. Here the boolean function is bc @ cd @ bd. There
are no perfect approximations across this operation, though there are several
approximations with bias 272.

Immediately we can see the following four-step extension to the existing basic
linear approximation:



10 Helena Handschuh and David Naccache

A B C D E

- - - - 60

| 1/4
€p €27 - €o0 -

| 1/2
- € €25 - €0

| 1/4
€p €27 - €25 -

l 1/2
- €p €25 - €25

The bias for this extension can be computed as 273. In extending further we
need to approximate across the addition operation in a bit position other than
the least significant. We will consider a worst-case scenario for the key values
so that the bias of this approximation is perhaps a little less than 272 for this
particular integer addition. We of course expect it to be less.

The following two-step extension allows us to form a ten-step approximation
to the steps in Round 1 that holds with a bias of no more than 275 in the best
case (for the analyst) and in the range (27%,277) on average.

A B C D E
- €p €25 - €25
!
€25 €20 €30 - -
!

- €25 €18 €30 -

Experiments confirm this ten-step linear approximation and for the best key
conditions (which hold for one in 22° random keys) the bias was 27%¢ and for
the average case the bias was 2764 on average.

We will conservatively use 275 as the estimate for the bias for this ten-step
linear approximation to the steps in Round 3.

Putting things together The ten-step linear approximation we identified for
Rounds 2 and 4 is valid over 40 steps of the full SHA-1. Therefore we estimate
that in using this approximation the bias as at most (276)* x 23 = 2721, This of
course is a highly conservative estimate. Among the many favorable assumptions
for the cryptanalyst is that this ten-step linear approximation can be joined to
itself. It cannot. Extending this approximation in either direction is likely to
provide a severe drop in the exploitable bias of the linear approximation.

For Round 1 we might conservatively estimate that the 20 steps can be
approximated using a linear approximation with bias no more than (276)2 x
2 = 2711, Likewise we might estimate that the 20 steps in Round 3 can be
approximated using an approximation with bias no more than (27°)2 x 2 =279,



SHACAL 11

Under the most favorable conditions for the cryptanalyst (conditions that
we believe cannot actually be satisfied) if SHA-1 is to be approximated using a
linear approximation then the bias will be no more than 272! x 2711 x 279 x
22 = 2739 Note that the key conditions necessary to give the best bias for the
approximations in Rounds 1 and 3 hold exceptionally rarely and so we ignore
this case and we deduce that the bias is overwhelmingly likely to fall beneath
2740 On the other hand, note that the approximation outlined has a zero-bias
for many keys and so other approximations would have to be used by the analyst
in these cases giving a reduced working bias.

Thus a linear cryptanalytic attack on SHA-1 requiring less than 289 known
plaintexts is exceptionally unlikely.

2.2 Differential Cryptanalysis

Differential cryptanalysis is a chosen plaintext attack where the attacker is al-
lowed to choose pairs of plaintexts of his liking, and pairs of a predetermined
difference. This difference is often defined as the exclusive-or sum of the two
plaintexts. The idea is that the difference in the plaintexts allows the attacker
to probabilisticly determine the difference in the intermediate ciphertexts of the
cipher. If one is able to determine the difference in the ciphertexts after the last
few rounds of the cipher with a high probability, one can often make a search
for the key (bits) used in the last round. If these key bits can be determined,
the attacker can decrypt all ciphertexts by one round, and repeat the attack on
a cipher one round shorter than the original, which is typically easier than the
attack on the full cipher.

The main tool in differential cryptanalysis is the characteristic and the dif-
ferential. A characteristic is a list of the predicted differences in the ciphertexts
after each round of the cipher starting with the plaintext differences, and has a
probability connected to it. Characteristics are typically built from concatenat-
ing one-round characteristics. The probability of a characteristic is then taken
as the product of the probabilities of all involved one-round characteristics. Here
one assumes that the involved one-round characteristics are independent, which
is most often not exactly the case, but as often it is a good approximation. A dif-
ferential is a collection of characteristics which have identical starting and ending
values. Thus, an s-round differential typically specifies only the difference in the
plaintexts and in the ciphertexts after s rounds. The differences in the interme-
diate ciphertexts are allowed to vary. Thus, the probabilities of a differential are
in general higher than for a corresponding characteristic. To enable a successful
attack based on differential cryptanalysis, the existence of good characteristics
is a necessity, whereas to prove resistance against the attack, one must ensure
that all differentials have a low probability. The detection of good differentials
has proved to be very difficult for most ciphers, and often one considers only
characteristics.

Most often in differential cryptanalysis the definition of difference is defined
as the exclusive-or of the two texts involved in a pair. Also for SHA this seems
to be the best and obvious definition.



12 Helena Handschuh and David Naccache

Differentials for SHA What makes differential cryptanalysis difficult on SHA
is first, the use of both exclusive-ors and modular additions, a second, the func-
tions .fif; fror; fmaj-

First we consider the relation between exclusive-or differences and integer
addition. Integer addition of a constant word K to the 32-bit words A and
B which only differ in few bits does not necessarily lead to an increase of bit
differences in the sums A+.S and B+ S. This may be illustrated by the following
special case: Suppose the words A and B only differ in the i-th bit, ¢ < 31. Then
it holds that with probability %, A+ S and B+ S also differ in only the i-th bit.
Using formulae (11) one sees that A+ S and B + S with probability i differ in
exactly two (consecutive) bits. There is a special and important case to consider,
namely when A and B differ in only the most significant bit, position 31. In that
case A+ S and B + S differ also only in the most significant bit.

The functions fif, fzor, fma; all operate in the bit-by-bit manner. Thus, one
can easily find out how the differences in the outputs of each of the functions
behave depending of the differences of the three inputs. Namely, one can con-
sider three inputs of one bit each and an output of one bit. Table 1 shows this
for all three functions. The notation of the table is as follows. The first three
columns represent the eight possible differences in the one-bit inputs, x,y, z. The
next three columns indicate the differences in the outputs of each of the three
functions. A ‘0’ denotes that the difference always will be zero, a ‘1’ denotes that
the difference always will be one, and a ‘0/1” denotes that in half the cases the
difference will be zero and in the other half of the cases the difference will be
one. Note that the function f,,, is linear in the inputs, i.e. the difference in the
outputs can be determined from the differences in the inputs. However, as we
shall see, f,or helps to complicate differential cryptanalysis of SHA.

T Y 2 foor fif fmaj
000 O 0 0
001 1 0/1 0/1
010 1 0/1 0/1
011 O 1 0/1
100 1 0/1 0/1
101 0 0/1 0/1
110 0 0/1 0/1
111 1 O/l 1

Table 1. Distribution of exor differences through the f-functions.

In the following we consider some characteristics for all rounds and for each
of the three different rounds.

All rounds The characteristic of Figure 2 holds with probability one over (any)
five steps in any of the four rounds. The question mark (?) indicates an unknown



SHACAL 13

A B C D E prob

€26 0 0 0 €31
0

l 1
0626 0 0

l 1
7062400

l 1
?7 7 0 exn O

l 1
77 7 0 exn

l 1
7?7 7 70

Table 2. 5-step characteristic.

value. Thus, a pair of texts which differ only in the first words in bit position
26 and in the fifth words in bit position 31, result in texts after five steps which
are equal in the fifth words. The difference in the other words of the texts will
depend on the particular round considered and of the texts involved.

Rounds 1 and 3 First we consider the five step characteristic of the previous
section. With the functions f;¢ and fi.q; this gives the following characteristic
over five steps.

A B C D E prob

€96 0 0 O €31

1 1
0626000
! 2
0062400
| 2
0006240
| 2
0 0 0 O eo
| 2
6240000

This characteristic can be concatenated with a three-step characteristic in
the beginning and a two-step characteristic at the end, yielding the following
ten-step characteristic.



14 Helena Handschuh and David Naccache

A B C D E prob

0 €1 €26 0 0

! i
0 O €31 €926 0

| i
0 0 O €31 €26

| i
€926 0 0 O €31

1 1
0 €926 0 0 O

! 2
0 O €24 0 0

| 2
0 0 0 e O

| 2
0 0 0 O €24

| 2
€24 0 0 O 0

| 2
€929 €24 0 0 0

! i

ey exg ez 0 0

This ten-step characteristic has a probability of 2713, As is clearly indicated,
extending this characteristic to more steps, e.g., 20, will involve steps with bigger
Hamming weights in the differences in the five words than in the first above 10
steps.

We conjecture that the above is one of the characteristics with the highest
probability over 10 steps, and that any characteristic over 20 steps of Round 1
or Round 3 will have a probability of less than 2726,

Rounds 2 and 4 With respect to differential cryptanalysis the function f,o,
used in Rounds 2 and 4 behaves significantly different from the functions used
in Rounds 1 and 3. First note that if we replace all modular additions with
exclusive-ors, the steps in Rounds 2 and 4 are linear for exclusive-or differences, in
other words, given an input difference one can with probability one determine the
output difference after any number of maximum 20 steps. As indicated above, the
mixed use of exclusive-ors and modular additions has only little effect for pairs of
texts with differences of low Hamming weights. Therefore good characteristics
for these steps should have low Hamming weights through as many steps as
possible. Consider first the 5-step characteristic of Table 2. The first four steps
will evolve as follows.



SHACAL 15

A B C D E prob
€26 0 0 0 €31
l 1
0 €96 0 0 O
l 3
€26 0 ey 0 O
l 3

€231 e 0 e O
1
l 16

€4,24,26,29 €24,31 €24 0 €2y

Here we have used the notation eq, ... q, for 4, @ - - @ e,,. It can be seen that
for this characteristic the Hamming weights of the differences in the ciphertext
words will increase for subsequent steps. Consider as an alternative the following
characteristic.

A B C D E
€1 €3 €1 €11 €1,3,11

1
! 16

€6 €1 €1 €1 €11
! 1
4

€1 €6 €31 €1 €1
! 1
4

€31 €1 €4 €31 €1
1
! i

€31 €31 €31 €4 €31
1
! 3

€31 €31 €29 €31 €4
1
! i

€29 €31 €29 €29 €31
1
! i

€2 €29 €29 €29 €29
1
! i

e7 €2 €27 €29 €29
1
! T6

€2,12,27 €7 €o €27 €29
1
l 3

€17,27,29 €212,27 €5 €0 €27

This characteristic was found by a computer search. Of all possible input dif-
ferences with up to one-bit difference in each of the five input words, totally
335 — 1 characteristics, the last 9 steps of the above characteristic has the low-
est Hamming weights in the ciphertexts differences of all steps. For this search
we replaced modular additions by exclusive-ors. The nine steps can be concate-
nated with a one-step characteristic in the beginning, as shown above. In real
SHA the probability of these 10 steps is approximately 2725, where we have used



16 Helena Handschuh and David Naccache

the above estimates for the behaviour of exclusive-or differences after modular
additions. This may not give a bound for the best characteristics over 10 steps
of SHA, but a complete search seems impossible to implement, moreover it gives
sufficient evidence to conclude that there are no high probability characteristics
over 20 steps of Rounds 2 and 4. We conjecture that the best such characteristic
will have a probability of less than 2732

Putting things together Using the estimates for best characteristics for
Rounds 1, 2, 3, and 4 of the previous section, we get an estimate of the best
characteristic for all 80 steps of SHA, namely 2726 x 2732 x 2726 4 232 — 9116
We stress that this estimate is highly conservative. First of all, the estimates
for each round were conservative, and second, there is no guarantee that high
probability characteristics for each round in isolation, can be concatenated to
the whole cipher. Therefore we conclude that differential cryptanalysis of SHA
is likely to require an unrealistic amount of chosen texts if it is possible at all.

3 Conclusions

In the previous section we deduced that a linear cryptanalytic attack on SHA-1
as an encryption function would require at least 2%° known plaintexts and that
a differential attack would require at least 2!'6 chosen plaintexts. Note that we
are explicitly considering constructable linear approximations and differential
characteristics. It may well be that there are other approximations and char-
acteristics over SHA-1 that are not revealed by this type of analysis. Instead
they would have to be searched for using brute-force. Since there is no known
short-cut to such a search this possibility has to be viewed as being so unlikely
as to not merit practical consideration.

Our techniques in constructing the approximations and characteristics were
ad hoc, but based on considerable practical experience. We have been very cau-
tious in our estimates and feel very confident in asserting that a linear or dif-
ferential cryptanalytic attack using less than 230 plaintext blocks is infeasible.
We note that at this point a 160-bit block cipher is beginning to leak plaintext
information anyway when used to encrypt this much text with the same key.

Finally we mention that additional cryptanalytic considerations such as lin-
ear hulls, multiple linear approximations, and various kinds of differentials are
unlikely to make any significant difference to our analysis and estimates. There-
fore they make no practical difference to the conclusion we have already drawn.

References

1. F. Chabaud and A. Joux. Differential collisions in SHA-0. In H. Krawczyk, editor,
Advances in Cryptology: CRYPTO’98, LNCS 1462, pages 56—71. Springer Verlag,
1999.

2. H. Dobbertin. Cryptanalysis of MD5 compress. Presented at the rump session of
EUROCRYPT’96, May 1996.



NN

SHACAL 17

. H. Dobbertin. Cryptanalysis of MD4. To appear in Journal of Cryptology, 1996.

. A. J. Menezes, P. C. van Oorschot, and S. A. Vanstone. Handbook of Applied
Cryptography. CRC Press, 1997.

R.L. Rivest. The MD4 message digest algorithm. In S. Vanstone, editor, Advances
in Cryptology - CRYPTO’90, LNCS 537, pages 303-311. Springer Verlag, 1991.

. R.A. Rueppel. Analysis and Design of Stream Ciphers. Springer Verlag, 1986.



