

Pierre Karpman

pierre.karpman@univ-grenoble-alpes.fr

https://www-ljk.imag.fr/membres/Pierre.Karpman/tea.html

2017-10-18

Hash functions 2017–10–18 1/32

First definition

Hash function

A hash function is a mapping $\mathcal{H}: \mathcal{M} \to \mathcal{D}$

So it really is just a function...

Usually:

- $M = \bigcup_{\ell < N} \{0, 1\}^{\ell}, \ \mathcal{D} = \{0, 1\}^{n}, \ N \gg n$
- ► *N* is typically $\ge 2^{64}$, $n \in \{1/2\%, 1/6\%, 224, 256, 384, 512\}$

Also popular now: extendable-output functions (XOFs): $\mathcal{D} = \bigcup_{\ell < N'} \{0,1\}^{\ell}$

- Hash functions are keyless
- So, how do you tell if one's good?

Hash functions 2017–10–18 2/32

Idealized hash functions: Random oracles

Random oracle

A function $\mathcal{H}: \mathcal{M} \to \mathcal{D}$ s.t. $\forall x \in \mathcal{M}, \ \mathcal{H}(x) \xleftarrow{\$} \mathcal{D}$

- "The best we can ever get"
- Sometimes useful in proofs ("Random oracle model", or ROM)
- Not possible to have one (except for small (co-)domains assuming a TRNG)
- ▶ But we can get *approximations* (e.g. SHA-3)

Hash functions 2017–10–18 3/32

Main security properties

What is hard for a RO should be hard for any HF \Rightarrow

- **1** First preimage: given t, find m s.t. $\mathcal{H}(m) = t$
- **2 Second preimage**: given m, find $m' \neq m$ s.t. $\mathcal{H}(m) = \mathcal{H}(m')$
- **3 Collision**: find $(m, m' \neq m)$ s.t. $\mathcal{H}(m) = \mathcal{H}(m')$

Generic complexity:

- 1), 2): $\Theta(2^n)$;
- 3): $\Theta(2^{n/2}) \leftarrow$ "Birthday paradox"

Hash functions 2017–10–18 4/32

Why do we care? Applications!

Hash functions are useful for:

- ► Hash-and-sign (RSA signatures, (EC)DSA, ...)
- Message-authentication codes (HMAC, ...)
- Password hashing (with a grain of salt)
- Hash-based signatures (inefficient but PQ)
- As "RO instantiations" (OAEP, ...)
- As one-way functions (OWF)

Hash functions 2017–10–18 **5/32**

So, how do you build hash functions?

- ▶ Objective #1: be secure
- ▶ Objective #2: be efficient
 - At most a few dozen cycles/byte!
 - → work with limited amount of memory

So...

- (#2) Build \mathcal{H} from a small component
- (#1) Prove that this is okay

Hash functions 2017–10–18 6/32

What kind of small component?

Compression function

A compression function is a mapping $f: \{0,1\}^n \times \{0,1\}^b \to \{0,1\}^n$

- A family of functions from n to n bits
- Not unlike a block cipher, only not invertible

Permutation

A permutation is an invertible mapping $\mathfrak{p}: \{0,1\}^n \to \{0,1\}^n$

Yes, very simple

Like a block cipher with a fixed key, e.g. $\mathfrak{p} = \mathcal{E}(0,\cdot)$

Hash functions 2017–10–18 7/32

From small to big (compression function case)

Assume a good f

- ▶ Main problem: fixed-size domain $\{0,1\}^n \times \{0,1\}^b$
- Objective: domain extension to $\bigcup_{\ell < N} \{0, 1\}^{\ell}$
- (Not unlike using a mode of operation with a BC)

The classical answer: the Merkle-Damgård construction (1989)

Hash functions 2017–10–18 8/32

MD: with a picture

$$pad(m) = \boxed{\begin{array}{c|cccc} m_1 & m_2 & m_3 & m_4 \\ \hline \\ h_0 = IV & \hline \\ \hline \\ h_1 & \hline \\ \hline \\ h_2 & \hline \\ \hline \\ h_3 & \hline \\ \hline \\ \hline \\ h_4 = \mathcal{H}(m)$$

That is: $\mathcal{H}(m_1||m_2||m_3||...) = f(...f(f(f(IV, m_1), m_2), m_3),...)$ pad $(m) \approx m||1000...00\langle length of m \rangle$

Hash functions 2017–10–18 9/32

MD: does it work?

Efficiency?

- Only sequential calls to f
- ▶ ⇒ fine

Security?

- Still to be shown
- Objective: reduce security of H to that of f
 - "If f is good, then H is good"
- True for collision and first preimage, false for second preimage

Hash functions 2017–10–18 **10/32**

MD (partial) security proof

Method: simple contrapositive argument

• Attack $\{1^{\rm st}$ preim., coll. $\}$ on $\mathcal{H} \Rightarrow$ attack $\{1^{\rm st}$ preim., coll. $\}$ on \mathfrak{f}

First preimage case

If
$$\mathcal{H}(m_1 || m_2 || \dots || m_\ell) = t$$
, then $f(\mathcal{H}(m_1 || m_2 || \dots || m_{\ell-1}), m_\ell) = t$

Collision case (sketch)

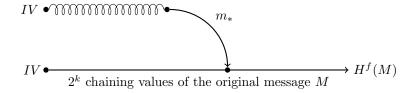
If
$$\mathcal{H}(m_1||m_2||\dots||m_\ell) = \mathcal{H}(m_1'||m_2'||\dots||m_\ell')$$
, show that $\exists i$ s.t. $(h_i \coloneqq \mathcal{H}(m_1||m_2||\dots||m_{i-1}), m_i) \neq (h_i' \coloneqq \mathcal{H}(m_1'||m_2'||\dots||m_{i-1}'), m_i')$ and $f(h_i, m_i) = f(h_i', m_i')$

Proper message padding useful to make it work!

Hash functions 2017–10–18 11/32

What about 2nd preimages??

No proof (with optimal resistance), can't have one:


- Generic attack on messages of 2^k blocks for a cost $\approx k2^{n/2+1} + 2^{n-k+1}$ (Kelsey and Schneier, 2005)
- ▶ Idea: exploit internal collisions in the h_is

This is not nice, but:

- Requires (very) long messages to gain something
- At least as expensive as collision search
- If n is chosen s.t. generic collisions are out of reach, we're somewhat fine
- ⇒ Didn't make people give up MD hash functions (MD5, SHA-1, SHA-2 family)

Hash functions 2017–10–18 12/32

Attack with an expandable message

https://www.iacr.org/authors/tikz/

Hash functions 2017–10–18 13/32

Is that unavoidable?

No! Simple patch: Chop-MD/Wide-pipe MD (Coron & al., 2005) and (Lucks, 2005)

- ▶ Build \mathcal{H} from $f: \{0,1\}^{2n} \times \{0,1\}^b \to \{0,1\}^{2n}$, truncate output to n bits (say)
- Collision in the output ⇒ collision in the internal state
- Very strong provable guarantees (Coron & al.)
 - Secure domain extender for fixed-size RO
- Concrete instantiations: SHA-512/224, SHA-512/256 (2015)

Hash functions 2017–10–18 14/32

Practical impact of the MD proof

- If one can't attack f underlying \mathcal{H} , all is well
- Else, ...???
- → Attacking f is a meaningful goal for cryptographers (≈ (semi-)freestart attacks)
- Ideally, *never* use a \mathcal{H} with broken f

Hash functions 2017-10-18 15/32

The MD5 failure

- MD5: designed by Rivest (1992)
- 1993: very efficient collision attack on the compression function (den Boer and Bosselaers); mean time of 4 minutes on a 33 MHz 80386
- MD5 still massively used...
- 2005: very efficient collision attack on the hash function (Wang and Yu)
- Still used...
- ▶ 2007: practically threatening collisions (Stevens & al.)
- Still used...
- ▶ 2009: even worse practical collision attacks (Stevens & al.)
- Hmm, maybe we should move on?

Hash functions 2017–10–18 **16/32**

Was this avoidable?

Yes!

- Early signs of weaknesses ⇒ move to alernatives ASAP!
- What were they (among others)?
 - 1992: RIPEMD (RIPE); practically broken (collisions) 2005 (Wang & al.)
 - 1993: SHA-0 (NSA); broken (collisions) 1998 (Chabaud and Joux); practically broken 2005 (Biham & al.)
 - ▶ 1995: SHA-1 (NSA); broken (collisions) 2005 (Wang & al.); practically broken 2017 (Stevens & al. (and me!))
 - ▶ 1996: RIPEMD-128 (Dobbertin & al.); broken (collisions) 2013 (Landelle and Peyrin)
 - ▶ 1996: RIPEMD-160 (Dobbertin & al.); unbroken so far
 - 2001: SHA-2 (NSA); unbroken so far

Hash functions 2017–10–18 17/32

Lesson to learn?

- DON'T USE BROKEN ALGORITHMS
- MOVE AWAY FROM BROKEN ALGORITHMS
- DO CARE ABOUT "THEORETICAL" ATTACKS
- BROKEN CRYPTO IS NOT "COOL"

Perfect bad example: Git

- Don't use SHA-1 in 2005!
- Don't hide needed security properties!

Also:

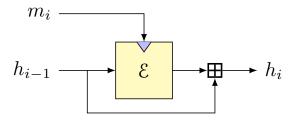
Don't use SHA-1, even if you just care about preimage attacks

Hash functions 2017–10–18 **18/32**

Back to design: how to do f?

- Start like a block cipher
- Add feedforward to prevent invertibility

Examples:


```
"Davies-Meyer": f(h, m) = \mathcal{E}_m(h) \boxplus h
"Matyas-Meyer-Oseas": f(h, m) = \mathcal{E}_h(m) \boxplus m
```

- Systematic analysis by Preneel, Govaerts and Vandewalle (1993). "PGV" constructions
- ► Then rigorous proofs (in the ideal cipher model) (Black & al., 2002), (Black & al., 2010)

Hash functions 2017–10–18 **19/32**

Re: Davies-Meyer

Picture:

Used in MD4/5 SHA-0/1/2, etc.

Hash functions 2017–10–18 20/32

Re: Re: Davies-Meyer

Why is the "message" the "key"?

- Disconnect chaining value and message length!
- E's block length: fixed by security level
- $ightharpoonup \mathcal{E}$'s key length: fixed by "message" length
- Large "key" ⇒ more efficient
- Example: MD5's "block cipher" (also bad): 128-bit blocks, 512-bit keys

DM incentive: use very simple *message expansion* ("key schedules")

- To be efficient!
- Warning: can be a source of weakness (MD5, SHA-0, SHA-1.
 Should that be surprising?)

Hash functions 2017–10–18 21/32

Major PGV Warning

PGV constructions are proved secure in the *ideal cipher model*, **BUT**

- Real ciphers are not ideal!
- Real ciphers don't have to be ideal to be okay ciphers
 - ► IDEA (Lai and Massey, 1991): weak key classes (Daemen & al., 1993)
 - TEA (Wheeler and Needham, 1994): equivalent keys (Kelsey & al., 1996)

What can go wrong?

Hash functions 2017–10–18 22/32

Bad case of crypto design

Microsoft needed a hash function for ROM integrity check of the XBOX

- Used TEA in DM mode (Steil, 2005)
- Because of an earlier break of their RC4-CBC-MAC scheme (ibid.)
- Terrible idea, because of existence of equivalent keys!
- TEA $(k, m) = \text{TEA}(\hat{k}, m) \Rightarrow \text{DM-TEA}(h, k) = \text{DM-TEA}(h, \hat{k}) \Rightarrow \text{easy collisions!}$
- Got hacked...
- ▶ IDEA for a hash function: also bad (Wei & al., 2012)

NEVER DESIGN YOUR OWN CRYPTO!

Hash functions 2017–10–18 23/32

It's not all that bad, tho

- AES in a PGV construction so far unbroken (see e.g. Sasaki (2011))
 - But small parameters ?
- Ditto, SHA-256 as a block cipher: "SHACAL-2" (Handschuh and Naccache, 2001)
 - Enormous keys, 512 bit!

Hash functions 2017–10–18 24/32

Now just a few examples

The MD4/MD5/SHA-0/SHA-1 family

- Merkle-Damgård construction
- Davies-Meyer compression function
 - 512-bit messages, 128-bit (resp. 160-bit) chaining values for MD4/5 (resp. SHA-0/1)
 - Ad-hoc "block cipher" inside the compression function: unbalanced ARX Feistel
 - Very simple message expansion
- All broken (MD4 could be broken by hand)

RIPEMD family

 Somewhat similar, but uses two parallel lines merged at the end

SHA-2

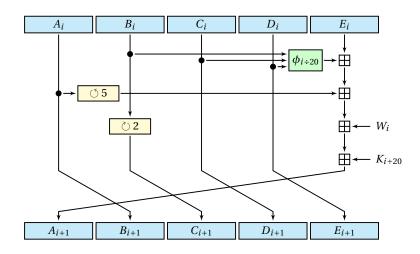
Somewhat similar, but heavier message expansion

Hash functions 2017–10–18 25/32

ARX? Whazzat?

ARX: Addition, Rotation, XOR

- A minimal set of operations to build (symmetric) cryptography
- Used as early as 1987 in the FEAL block cipher (Shimizu and Miyaguchi)
- Sometimes enriched with bitwise Boolean functions


Example: SHA-1

$$A_{i+1} = A_i^{\circlearrowleft 5} + \phi_{i \div 20}(A_{i-1}, A_{i-2}^{\circlearrowleft 2}, A_{i-3}^{\circlearrowleft 2}) + A_{i-4}^{\circlearrowleft 2} + W_i + K_{i \div 20}$$

- A: the internal state registers (32-bit)
- K: round constant
- \triangleright W: expanded message word (the "key")
- ϕ : one of IF, MAJ, XOR

Hash functions 2017–10–18 26/32

SHA-1: alternate view

Hash functions 2017–10–18 27/32

More on SHA: message expansion

SHA-1 has 80 steps, W_i s are 32-bit, we only have 512-bit messages What are the 2560 bits of $W_{0,\dots,79}$?

- 1 $W_{0,...,15} = M_{0,...,15}$ (512 bits of M)
- $W_i = (W_{i-3} \oplus W_{i-8} \oplus W_{i-14} \oplus W_{i-16})^{\circlearrowleft 1}, \ 16 \le i < 80$

Note: SHA-0 is exactly like SHA-1, except for:

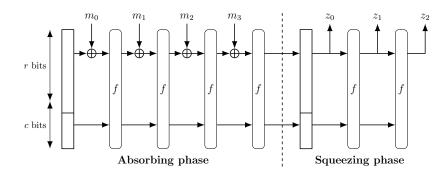
$$W_i = W_{i-3} \oplus W_{i-8} \oplus W_{i-14} \oplus W_{i-16}, \ 16 \le i < 80$$

And yet...

- First (theoretical) collision attack:
 - ► SHA-0 → 1998
 - ► SHA-1 → 2005
- Fastest (actual) collision computation:
 - ► SHA-0 → 1 hour on a desktop PC (Manuel and Peyrin, 2008)
 - ▶ SHA-1 \rightarrow 110 year on a GPU (Stevens & al., 2017)

And now for something different

If you need a hash function today \Rightarrow SHA-3 (initially Keccak, (Bertoni & al., 2008))


- Winner of an academic competition run by NIST (2008–2012)
- Sponge construction (not Merkle-Damgård)
- Based on a permutation (not a compression function)
- Permutation is an SPN (not a Feistel, not ARX)

Sponge:

- 1 Compute $i := \mathfrak{p}(\mathfrak{p}(\ldots \mathfrak{p}(m_1||0^c) \oplus m_2||0^c) \ldots)$
- 2 Output $\mathcal{H}(m) := \lfloor i \rfloor_r ||[\mathfrak{p}(i)]_r|| \dots ||[\mathfrak{p}^n(i)]_r||$

Hash functions 2017–10–18 29/32

Picture of a sponge

https://www.iacr.org/authors/tikz/

Hash functions 2017–10–18 **30/32**

Sponge nice features

- Indifferentiable from a RO (same, as Wide-pipe MD) (Bertoni & al., 2008)
- Quite flexible
 - For fixed permutation size: speed/security tradeoff
- Natively a XOF
- Can be extended to do (authenticated) encryption
- Simpler to design a permutation; less of a waste?
- Close structure: JH construction, another SHA-3 competitor (Wu, 2008)

Hash functions 2017–10–18 31/32

Conclusion

- Don't design crypto yourself!
 - There is no generic way to design a hash function
 - Every small detail counts (recall e.g. SHA-0, TEA)
- Use SHA-3 (SHA-2 still okay)
- Don't trust ISO standards
- NEVER USE MD5/SHA-1
 - Even if you only care about preimage attacks

Hash functions 2017–10–18 32/32