
A short introduction to finite fields and their arithmetic

Pierre Karpman

April 26, 2022

Contents

1 Prime fields (and more) 1
1.1 Fermat-based approach . 1
1.2 Euclid-based approach . 3
1.3 Structure of the multiplicative group of a finite field 4

2 Extensions 5
2.1 Cardinality, uniqueness . 6
2.2 Building extensions from polynomials . 7

3 Arithmetic in binary fields 10
3.1 Data representation and basic operations 10
3.2 Product in modular polynomial rings: an xtime approach 11
3.3 Multiplication by a constant . 12
3.4 Product in modular polynomial rings: a carryless approach 14

4 Linearly-recurring sequences 16
4.1 Definitions and first properties . 16
4.2 Linear-feedback shift registers . 20
4.3 Computing an annihilator of a finite sequence 22

1 Prime fields (and more)

This section introduces the simplest examples of finite fields, i.e. prime fields, and some
important definitions and first results about finite fields.

1.1 Fermat-based approach

We start by recalling Fermat’s “little” theorem:

Theorem 1 (Fermat’s little theorem (FLT)). Let p be a prime, a P J1, p ´ 1K, then
ap´1 ” 1 mod p.

Proof. Following the strategy of Fermat, the proof is admitted. See however Corollary 11.

This immediately leads to the fundamental result:

Theorem 2. The ring Z{nZ is a field iff. n is prime.

Proof. If n ą 1 is not prime, then D a, b P J2, n ´ 1K s.t. n “ ab so a is a zero divisor
modulo n and hence not invertible.˚

If n is prime, then by Theorem 1 every a P J1, n´ 1K is invertible modulo n.

˚A ring with such non-trivial divisors of zero is called non-integral.

1

https://membres-ljk.imag.fr/Pierre.Karpman/cry_comp2021.pdf

Note that the above proof is essentially algorithmic in nature in that it provides a
way to compute inverses modulo p and then to divide in Z{pZ, which is the only one of
the basic operations (`,´,ˆ,˜) that is non trivial. In all of the following we will use the
notation Fp to denote the prime field Z{pZ, and rnsx where n is an integer and x the
element of an additive group to denote the scalar multiplication of x by n, i.e. the sum of
n copies of x together, or

řn
i“1 x.

We already introduce the following definition, which will however mostly be useful in
the next section.

Definition 3 (Characteristic). The characteristic of a ring A, denoted charpAq, is the
least positive integer n s.t. @x P A, rnsx “ 0, if it exists, and zero otherwise.

An equivalent definition for fields is to only consider the multiplicative identity 1
instead of an arbitrary x in the above statement; indeed since every non-zero x P A is by
definition equal to xˆ1, then by distributivity one has that rnsx “ rnspxˆ1q “ xˆprns1q
which is zero iff. rns1 “ 0.

Exercise 1.

1. Why does the above equivalent definition fails for rings in general (Hint: Consider
for instance a non-integral ring.)

2. Show that charpFpq “ p.

Exercise 2 (Prime fields arithmetic). Let p be a prime. We write R the cost in elementary
bit operations of an operation RED that “positively” reduces x P J´p2, p2K modulo p (by
that we mean that it computes the positive remainder of the division of x by p).

1. How many bits are necessary and sufficient to represent all the elements of Fp?

2. Give an algorithm that computes the sum or the subtraction of two elements of Fp.
What is its cost in elementary bit operations?

3. Same question for the product, assuming that schoolbook integer multiplication is
used.

4. Same question for computing the inverse of an element using the FLT. Give the cost
first in the algebraic model, that is in function of the number of products in Fp, then
in elementary bit operations.

In the last question, one may rely on a “fast exponentiation” algorithm, for which we give
an example in pseudo-code in Fig. 1.

Remark 4. The above exercise considers the (rather usual) case where the class modulo p
of an element x is represented by a non-negative integer in J0, p´1K. A possible alternative
for p ą 2 is to instead consider a balanced representation in J´pp´ 1q{2, pp´ 1q{2K, which
slightly decreases the size necessary to store a not-yet-reduced product. Consider indeed
x, y P J0, p ´ 1K, then xy is at most pp ´ 1q2; however for x, y P J´pp ´ 1q{2, pp ´ 1q{2K,
|xy| is at most ppp´ 1q{2q2 “ pp´ 1q2{4 and, adding a bit for the sign, one expects to save
one bit over the non-balanced representation. This saving may even be increased to two
bits when the physical representation already includes a sign bit even when it would not
be needed (this is for instance the case for IEEE754 floats).

2

https://membres-ljk.imag.fr/Pierre.Karpman/cry_comp2021.pdf

https://membres-ljk.imag.fr/Pierre.Karpman/cry_comp2021.pdf

1 /* Input:

2 - x, an element of a group G (with multiplicative notation)

3 - b, an integer > 1

4 Output:

5 - x**b in G

6 */

7 fastexp(x, b)

8 {

9 res = 1;

10 acc = x;

11 while(b > 0)

12 {

13 if (b % 2 == 1)

14 res = res * acc; // product in G

15 acc = acc * acc; // squaring in G

16 b = b / 2; // integer division

17 }

18 return res;

19 }

Figure 1: Fast exponentiation in a group.

1.2 Euclid-based approach

Given the importance of finite fields and of the ring Z{nZ in general, we wish to reprove
some of the above results using Euclid’s extended algorithm as a basis instead of the FLT.

Theorem 5 (Extended Greatest Common Divisor (XGCD)). Let a, b P Zzt0u, then
Du, v, d P Z s.t. ua ` vb “ d “ gcdpa, bq, where d is the greatest common divisor of
a and b, i.e. the largest positive integer that divides both a and b.

Proof. We first show that if u, v, d exist s.t. ua` vb “ d and d divides both a and b, then
d is indeed gcdpa, bq. Assume instead that d1 ą d divides both a “ a1d1 and b “ b1d1, then
dividing both sides by d1 we get ua1 ` vb1 “ d{d1 where the left-hand side is integral and
the right-hand side is not, which is a contradiction, so such a d1 cannot exist.

It remains to show that such a triplet exists, which we do algorithmically thanks to
Euclid’s algorithm. We start by proving the “standard” non-extended algorithm that only
computes d and address the computation of u and v next.

W.l.o.g. we assume that a ě b and use the fact that d “ gcdpa, bq “ gcdpb, a mod bq,
where x mod y denotes here the positive remainder of the division of x by y. Indeed one
has that a “ a1d and b “ b1d for some a1, b1, hence letting a “ qb`r we have r “ dpa1´qb1q
so d | r “ a mod b; conversely if there were d1 ą d that divided both r and b, then one
would have a “ d1pqb2 ` r2q for some b2, r2, so d1 would also divide a which contradicts
the fact that d “ gcdpa, bq. We then use this equality repeatedly to compute the sequence
r0 :“ a, r1 :“ b, r2 :“ r0 mod r1, . . . , ri :“ ri´2 mod ri´1, Since the ri’s are positive
and decreasing there is an index k ` 1 s.t. rk`1 “ 0, which is equivalent to the fact that
rk | rk´1 which itself implies that gcdpr0, r1q “ gcdprk´1, rkq “ rk.

We now conclude by showing how to compute u and v. Let T1 “

ˆ

0 1
1 ´r0 ˜ r1

˙

,

where x ˜ y denotes here the quotient in the division of x by y, then we have that
T1

`

r0 r1
˘t
“

`

r1 r2
˘t

. By defining T2, . . . ,Tk similarly and letting M “ Tk ¨ ¨ ¨T1 it

follows that M
`

r0 r1
˘t
“

`

rk 0
˘t

and the first row of M gives the desired relation.

3

https://membres-ljk.imag.fr/Pierre.Karpman/cry_comp2021.pdf

https://membres-ljk.imag.fr/Pierre.Karpman/cry_comp2021.pdf

Remark 6. The above algorithm (and the notion of GCD) is not restricted to integers
and may also for instance be applied to polynomials. There also exist many variants of
Euclid’s algorithm, some being asymptotically faster than the one presented above.

We may now reprove the second part of Theorem 2 by observing that one may recover
an inverse of any a P J1, p ´ 1K modulo p from ua ` vp “ gcdpa, pq “ 1 as (the possibly
reduced) u, since ua ” 1 mod p. It is also worth noting that this approach is not restricted
to finite fields as it allows to compute the inverse of any element of (say) an arbitrary ring
Z{nZ as long as it is coprime with n, those elements being indeed exactly the invertible
ones.

1.3 Structure of the multiplicative group of a finite field

While it is clear that the additive group of Fp is cyclic, this is quite less so for its multi-
plicative group. It is in fact the case that the multiplicative group of any finite field —and
prime fields in particular— is cyclic. We state this in the general case of a finite field Fq
with q (not necessarily a prime number) elements as:

Theorem 7. The multiplicative group Fˆq of Fq is cyclic. Any of its generators is called
a primitive element of Fq.

Before (partially) proving this theorem, we recall the following:

Definition 8 (Order of an element, order of a group). Let α P G be an element of a finite
group (written multiplicatively). The order of α, written ordpαq, is the least positive
integer t s.t. αt “ 1, where 1 denotes the identity in G.

The order of a finite group G, written ordpGq, is the number of elements (or cardinality)
of G.

From the above definitions, if we write xαy the subgroup of G generated by α, we have
ordpxαyq “ ordpαq. We also have the following classical theorem, whose proof we will
admit:

Theorem 9. Let α P G be an element of a finite group, then ordpxαyq | ordpGq.

An immediate application of Theorem 9 to Fˆq leads to the fact that the (“multiplica-
tive”) order of any non-zero element of Fq divides q ´ 1.

Let now α P Fˆq be an element of order t; there are t distinct elements in the subgroup
it generates, viz. A :“ t1, α, . . . , αt´1u. An important fact is then that A is exactly the
set of the roots in Fq of the polynomial P :“ Xt ´ 1; indeed all the elements of A are
indeed roots of P and by the following Proposition 10 there are at most t of them in Fq.

Proposition 10. Let P P FqrXs be a polynomial of degree d, then it has at most d roots
in Fq.

Proof. Left as an exercise. Hint: Use Euclidean division and an induction on the degree.

Note that Proposition 10 is not true over rings in general; for instance, 2X P Z{6ZrXs
has more than one root, viz. 0 and 3.

Corollary 11. Let α P Fˆq , then αq´1 “ 1. It follows that all the elements of Fˆq are
exactly the roots of Xq´1 ´ 1, and all the elements of Fq are exactly the roots of Xq ´X.

Proof. The first property is a consequence of Theorem 9, and the second of Proposition 10.

4

https://membres-ljk.imag.fr/Pierre.Karpman/cry_comp2021.pdf

https://membres-ljk.imag.fr/Pierre.Karpman/cry_comp2021.pdf

Note that this corollary may be seen as a generalisation of Theorem 1 to not-necessarily-
prime finite fields, and thusly provides a general inversion algorithm in finite fields.

It is enlightening to further study the structure of the elements of A (or equivalently
in our case, of the roots of Xt ´ 1). While ordpαq “ t by definition, it is clear that this
is not the case for all the other powers of α since for instance α0 “ αt “ 1 has order 1.
More generally, if s is not coprime with t, i.e. if gcdps, tq “: d ą 1, then writing s “ s1d,
t “ t1d, pαsqt

1

“ αs
1dt “ pαs

1

qt “ 1; we have thus proven ordpαsq “ tñ gcdps, tq “ 1.
This latter condition is in fact also sufficient. From gcdps, tq “ 1 and Theorem 5,

Du, v P Z s.t. us` vt “ 1. Suppose now that Du1 P J1, t´ 1K s.t. pαsqu
1

“ 1, then we must
have u1s “ kt for some positive k, and so u1 “ u1pus ` vtq “ uu1s ` u1vt “ ukt ` u1vt “
tpuk ` u1vq, so t must divide u1, which is a contradiction.

We have in fact proven:

Proposition 12. Let α P G, ordpαq “ t, then for s P J1, t´1K, ordpαsq “ t iff. gcdps, tq “
1.

Combining Propositions 10 and 12 leads to the following weaker form of Theorem 7:

Proposition 13. Let t be a positive integer dividing q´1, then either there are no elements
of order t in Fˆq or there are φptq of them, where φ : t ÞÑ #t1 ď s ď t, gcdps, tq “ 1u is the
totient function.

Proposition 13 illustrates a situation that often arises in the study of finite fields:
because of their strong algebraic structure, “asking” that a finite field includes an element
of order t “automatically” adds t ´ 1 other roots of Xt ´ 1, of which φptq ´ 1 are also of
order t.

To conclude the proof of Theorem 7, we will use the following important property of
the totient:

Proposition 14. Let n be a positive integer, then
ř

t |n φptq “ n.

Proof. We will use a counting argument applied to the cyclic group of order n. Let gn
be a generator of this group, then for all positive t that divide n, gt :“ gn˜tn generates a
subgroup of order t which by Proposition 12 has φptq generators. Conversely if ht is an
element of order t and since the group is cyclic, ht “ gxn for some x P J1, n´ 1K satisfying
xt “ kn, k ą 0. It follows that xt “ ktpn ˜ tq and then x “ kpn ˜ tq, so ht P xgty;
consequently there are exactly φptq elements of order t in the full group. We conclude
by noting that all elements of xgny generate a subgroup, whose order must divide n by
Theorem 9.

Since the elements of Fˆq have an order that must divide q ´ 1, a counting argument
applied to Propositions 13 and 14 shows that there must exist elements of order q´1, and
hence Fˆq is cyclic as needed to be shown.

Remark 15. Although we have (mostly) proven with Theorem 7 that the multiplicative
group of a finite field is cyclic, we have not given an efficient algorithm to find a generator
of this group.

Remark 16. The multiplicative group of a finite fields possesses much more structure
than “just” being cyclic. It is for instance much easier to compute discrete logarithms
therein than in “black-box” cyclic groups.

2 Extensions

In the previous section we have seen how to build and compute in finite fields Fp with
a prime number of elements. We now wish to consider extensions of such fields whose
number of elements is not necessarily prime any more.

5

https://membres-ljk.imag.fr/Pierre.Karpman/cry_comp2021.pdf

https://membres-ljk.imag.fr/Pierre.Karpman/cry_comp2021.pdf

2.1 Cardinality, uniqueness

Before building extension fields, we will state (and partially prove) two important results
regarding finite fields in general.

Theorem 17 (Cardinality). Every finite-field F has cardinality q “ pk where p is prime
and k is a non-zero positive integer.

Proof. We first show that charpFq is prime. Since q is finite Dn P Nzt0u s.t. rns1 “ 0, so
c :“ charpFq ą 0. Now assume by contradiction that c “ ab for some a, b P J2, c´ 1K. We
then have rabs1 “ 0 “ rasprbs1q; let β “ rbs1 ‰ 0, since we are in a field this latter element
must have a multiplicative inverse β´1 and it follows that prasβqβ´1 “ raspββ´1q “ ras1 “
0 with a ă c, which is a contradiction. So c must be a prime p.

To prove the remainder of the statement we will show (the stronger property) that
F must have the structure of a finite-dimensional Fp-vector space, which will allow us to
conclude.

First let us remark that equipped with the same laws as F, F1 :“ t1, r2s1, . . . , rp´1s1u –
Fp: indeed it is clear that the ris1, 1 ď i ă p are distinct, and that ras1ˆrbs1 “ rabs1 “ rab
mod ps1 follows from distributivity and the fact that charpFq “ p. We thereafter identify
the subfield F1 of F with Fp.

Now either Fp “ F and we are done, or there exists β2 P F that is Fp-linearly-
independent from β1 :“ 1, i.e. that cannot be written as λ1β1 for any λ1 P Fp. In that
latter case we consider the set F2 of linear combinations tλ1β1 ` λ2β2u with λ1, λ2 P Fp,
which is of size p2;: now either F2 “ F and we are done, or we again pick β3 P F not of
the form λ1β1 ` λ2β2 to build F3 of size p3. It is clear that we can iterate this process
until Fk “ F, which must be true for some k since q is finite. At that point one has that
every element of F can be written as the Fp-linear combination of tβ1, . . . , βku, that two
elements can be added “component-wise” in this representation, and that one can rescale
an element by an arbitrary scalar in λ P Fp by multiplying every component; we leave the
proof that F satisfies the remaining axioms of an Fp-vector space to the reader.

Remark 18. From the preceding proof, when q “ pk with k ą 1, the additive group of
Fq is not cyclic. This is to be contrasted with the cyclicity of the additive group of prime
fields and the one of the multiplicative group of any finite field.

Remark 19. The set tβ1, . . . , βku as above is said to form an Fp-basis of F, or a basis of
F over Fp. Note that in general such a basis is not unique.

We only state and do not prove the following fundamental result.

Theorem 20 (Unicity). Let F be a finite field with q elements, then every other field with
q elements (if any) is isomorphic to F.

From now on we will denote the unique (up to isomorphism) field with q elements by
Fq.

Remark 21. Let F, F1 be two finite fields with q elements, although from Theorem 20
one has that F – F1, F and F1 may still have different representations for their elements
and their arithmetic. From a practical point of view this means that even if F and F1
fundamentally possess the same structure, it might be easier to implement operations in
F than in F1.

: Suppose that there were λ1, λ
1
1 ‰ λ1, λ2, λ

1
2 ‰ λ2 P Fp s.t. λ1β1 ` λ2β2 “ λ11β1 ` λ2β2. Then

pλ1´λ
1
1qβ1 “ pλ

1
2´λ2qβ2 (with β1 ‰ 0 ‰ β2). By definition of β2, @λ1 P Fp, λ1β1 ‰ β2. Now if there were

λ1, λ2 P Fˆp with λ1β1 “ λ2β2, one would have λ1λ
´1
2 β1 “ β2 with λ1λ

´1
2 P Fp, leading to a contradiction.

6

https://membres-ljk.imag.fr/Pierre.Karpman/cry_comp2021.pdf

https://membres-ljk.imag.fr/Pierre.Karpman/cry_comp2021.pdf

2.2 Building extensions from polynomials

The basic idea used to build extensions of a prime field such as F2 is to observe that one
may easily define polynomials over any field; for instance polynomials in one indeterminate
X form the ring F2rXs.

Exercise 3. Let P “ X2`X ` 1, Q “ X4`X ` 1 P F2rXs, compute P `P , P `Q, PQ.

There are two obstacles that prevent F2rXs from being a finite field: it is infinite, and
not all of its non-zero elements are invertible. One may remark that these are also what
prevents Z from being a finite field and thus may try to adapt the strategy yielding the
finite fields Z{pZ to polynomials.

Fact 22. Let P P FqrXs be a polynomial of degree d ě 1, then FqrXs{xP y is a finite ring
of cardinality qd.

Exercise 4. Let P “ X2 ` X ` 1, Q “ X4 P F2rXs, compute the Euclidean division of
Q by P . Let R “ X,S “ X ` 1 P F2rXs, compute (the class of) RS in F2rXs{xP y, that
is, the unique polynomial of degree less than two equal to the remainder of the division
of RS by P . Same question where the product is computed in F2rXs{xX

2 ` Xy; is this
latter ring a field?

The last exercise shows that similarly to the fact that Z{nZ is a field iff. n is prime,
some constraint on P is also necessary for FqrXs{xP y to possibly be one. This constraint
is in fact the same as in the integral case, that is we require P not to have any non-trivial
factorisation over Fq.

Definition 23 (Irreducible polynomial). Let P be a polynomial of degree d ě 1 with
coefficients in some field K, we say that P is irreducible over K1 Ě K iff. it cannot be
written as the product of two non-constant polynomials with coefficients in K1.

Exercise 5. Is X2 ` 1 irreducible over R? What about over C? And over F2?

We now state the “equivalent” of Theorem 2 for polynomials over finite fields.

Theorem 24. Let P P FqrXs be a monic polynomial of degree d ě 1, then FqrXs{xP y is
a finite field with qd elements iff. P is irreducible over Fq.

Proof. If P is not irreducible, then its factors divide zero in FqrXs{xP y and thus do not
admit any inverse in this ring. In the converse case, all of the qd´ 1 non-zero polynomials
P 1 of FqrXs of degree less than d are coprime with P and thus using Theorem 5 for
polynomials one may compute P 1´1 s.t. P 1P 1´1 `QP “ 1.

In the above, we say that a field Fqd :“ FqrXs{xP y is an extension of Fq of degree d.
One may remark that by construction Fqd has the structure of a d-dimensional Fq-vector
space and that its characteristic is also equal to the one of Fq. More generally given two
finite fields F and F1, we may write F1{F to denote the fact that F1 is an extension of F
— conversely this means that F is a subfield of F— and rF1 : Fs to denote the degree of
the extension.

We admit the following result.

Theorem 25. Let F be an arbitrary finite field, then for every d ě 1 there exists at least
one irreducible polynomial of degree d in FrXs.

To this we add that it is computationally “efficient” to test if a given polynomial is
irreducible, and that irreducible polynomials form a dense subset of all the polynomials. It
then follows that there exists an efficient randomised procedure that returns an irreducible
polynomial of arbitrary degree over any finite field.

We also have the immediate corollary.

7

https://membres-ljk.imag.fr/Pierre.Karpman/cry_comp2021.pdf

https://membres-ljk.imag.fr/Pierre.Karpman/cry_comp2021.pdf

Corollary 26. There is a finite field with q elements iff. q “ pk, where p is prime and k
is a non-zero positive integer.

Proof. One direction is given by Theorem 17, the other by Theorems 24 and 25.

Finally since it is efficient to find an irreducible polynomial of arbitrary degree, it is
similarly efficient to compute a representation of an arbitrary finite field. Since there are
also in general several irreducible polynomials of the same degree, one may define several
fields with the same number of elements as, say, FqrXs{xP y, FqrXs{xQy with distinct P
and Q both of degree d and irreducible over Fq. However by Theorem 20 those two fields
would in fact be isomorphic (written FqrXs{xP y – FqrXs{xQy).

We now give a few examples in the binary case.

Example 27. One may check that P :“ X2`X ` 1 is irreducible over F2. Consequently
F2rXs{xP y is a degree-2 extension over F2, i.e. a finite field with 4 elements. Those
elements may be represented as polynomials as 0, 1 (the elements of the subfield F2), X
and X ` 1. The addition between the elements is the addition for polynomials and the
multiplication is done modulo P , i.e. XˆX “ X`1, XpX`1q “ 1, pX`1qpX`1q “ X.

Example 28. One may check that P :“ X4 ` X ` 1 and Q :“ X4 ` X3 ` 1 are both
irreducible over F2, so one may represent the field F24 both as F2rXs{xP y or F2rXs{xQy.

Example 29. Let P be as in Example 27, in the ring pF2rXs{xP yqrY s, the polynomial
Y 2 ` Y ` 1 is not irreducible over F2rXs{xP y since it factors as pY `XqpY `X ` 1q “
Y 2 ` XY ` Y ` XY ` X2 ` X “ Y 2 ` Y ` X2 ` X “ Y 2 ` Y ` 1. One may however
check that Q :“ Y 2 ` XY ` 1 is irreducible over the same field, so one may build a
degree-2 field extension pF2rXs{xP yqrY s{xQy. Taken together, the extensions over F2 and
F2rXs{xP y form an extension tower of two extensions of degree 2, which yields an extension
of degree 4 “ 2 ˆ 2 over the base field F2, i.e. a representation of F24 ; in other words,
F24 – F2rX,Y s{xP,Qy.

Example 30. Let P , Q be as in Example 28; we wish to explicit an isomorphism ϕ between
F :“ F2rXs{xP y and F1 :“ F2rY s{xQy

; whose existence is guaranteed by Theorem 20. That
is we want to determine a bijective map ϕ : F Ñ F1 s.t. @ a, b P F one has ϕpa ` bq “
ϕpaq ` ϕpbq and ϕpabq “ ϕpaqϕpbq.

From the definition, it is clear that we need to have ϕp0q “ 0 and ϕp1q “ 1, where
the right-hand side of both equalities “live in F1”. To determine the image of ϕ for the
remaining elements we may try to use the fact that the multiplicative group of a finite
field is cyclic. Observing that xXy “ Fˆ and xY y “ F1ˆ, we could try to extend ϕ by
taking α “ X, β “ Y , and ϕpαiq “ βi for all i. For any non-zero a, b one gets ϕpabq “
ϕpαiαjq “ ϕpαi`jq “ βi`j “ βiβj “ ϕpaqϕpbq for some i, j. Defined thusly ϕ would
indeed be a group homomorphism Fˆ Ñ F1ˆ, however it would not be one for the additive
group; this is not surprising since here ϕ would essentially be the “identity” mapping, and
F and F1 do use a different representation: in particular one requires ϕpX4 ` X ` 1q “
ϕpX4q ` ϕpXq ` ϕp1q “ 0 and taking ϕpXq “ Y yields Y 4 ` Y ` 1 “ Y 3 ` Y ‰ 0. More
generally, if we define the minimal polynomial minK1paq over K1 of an element a P K to
be the monic polynomial

řd
i“0 πiZ

i P K1rZs of least degree that annihilates a (i.e. s.t.
řd
i“0 πia

i “ 0) we have here the necessary condition that @a,minF2pϕpaqq “ minF2paq.
To show that adding this condition is also sufficient we first remark that if degpminpaqq “

k§ then k is also the rank of xaiyiPN as an F2-vector space. In our particular case the dimen-
sion of F over F2 is 4, so we have that if k “ 4 then every element of F can be written as an

;We use two names for the indeterminate so as to make it simpler to determine in which representation
an element is living.

§We drop the index F2 from “minF2” in the following for the sake of conciseness.

8

https://membres-ljk.imag.fr/Pierre.Karpman/cry_comp2021.pdf

https://membres-ljk.imag.fr/Pierre.Karpman/cry_comp2021.pdf

F2-linear combination of 1 “ a0, a, a2 and a3. Suppose now that we have ϕpαq “ β with
primitive α, β and where minpαq “ minpβq a polynomial of degree 4, then xαiy0ďiă4 (resp.
xβiy0ďiă4) is a basis of F (resp. F1) over F2. Moreover writing

ř4
i“0 πiZ

i for minpαq one has
that α4 “

ř3
i“0 πiα

i and β4 “
ř3
i“0 πiβ

i; α5 “
ř3
i“0 πiα

i`1 “
ř2
i“0 πiα

i`1 ` π3
ř3
i“0 πiα

i

and β5 “
ř3
i“0 πiβ

i`1 “
ř2
i“0 πiβ

i`1`π3
ř3
i“0 πiβ

i; more generally if a “ αj “
ř3
i“0 aiα

i

then ϕpaq “ βj “
ř3
i“0 aiβ

i and so ϕ is a homomorphism for the addition.
To conclude the construction of ϕ, it is now sufficient to find a suitable primitive

element β P F1 whose minimal polynomial equals minpαq for some primitive α P F. In our
example one can check that minpY 7q “ Z4`Z`1 and since 7 ffl 15 its multiplicative order
is 15; we then finally define ϕ as X ÞÑ Y 7, and all the other points are obtained by using
the fact that ϕ is an isomorphism.

Remark 31. In the above we have used the fact that in an extension Fqd of Fq, an element
with minimal polynomial (over Fq) of maximal degree d allows to additively generate Fqd
as the linear combinations of a0, . . . , ad´1. If a had a minimal polynomial of degree d1 ă d,
then a0, . . . , ad´1 would only generate a vector space of dimension d1, and thus not the
full field. Thus, in the same way as an element “encodes” the full multiplicative group Fˆ

qd

iff. it is of multiplicative order qd ´ 1, it encodes the full additive group iff. its minimal
polynomial over the base field is of maximal degree.

The above Example 30 goes a fair way to actually proving Theorem 20, as a full proof
would only need to show in the last step that a suitable primitive element with a prescribed
minimal polynomial always exists. We do not provide such a proof but sketch the main
steps and arguments.

Consider F{Fq, rF : Fqs “ d, then from Corollary 11 every element of F is a root of

P :“ Xqd ´ X, i.e. P splits over F. On the other hand one may show that over Fq the
decomposition of P into irreducible factors contains all the monic irreducible polynomials
of degree dividing d and it follows that those all split over F. To build an isomorphism
between F and another field F1 of the same cardinality, it is sufficient to map a primitive
element of F to one of F1 with the same minimal polynomial Q, which is akin to finding a
root of Q in F1. One concludes by observing that the minimal polynomial is always monic
and irreducible, and always of degree d if the associated element is primitive. Furthermore,
the primitivity of an element is entirely determined by its minimal polynomial in the
sense that all the primitive elements are exactly the roots of certain primitive irreducible
polynomials of maximum degree d. Note however that not all irreducible polynomials are
primitive, which means that in general not all elements with minimal polynomial of degree
d are primitive.

We now give an alternative description of the process used to build extension fields
in Theorem 24: one may build a degree-d extension Fqd of Fq by adding a root α of a
degree-d polynomial P that is irreducible in Fq. If we write Fqrαs for such a construction,
then α corresponds to (the class of) X in FqrXs{xP y; indeed in the latter case the minimal
polynomial of X is P , i.e. it is one of its roots.

In the case of finite fields the choice of the root used to build the extension Fqrαs does
not matter in the sense that adding one root of P to Fq is equivalent to adding all of
them; we say that Fqrαs is the splitting field of P .

Example 32. Let P :“ X2 ` 1 and denote one of its roots by i, then the field C of
complex numbers can be built as Rris, or equivalently RrXs{xP y.

In the above Example 32, the resulting field C is algebraically closed, or equivalently it
is the algebraic closure R of R: every polynomial of CrXs can be decomposed into linear
factors; in particular this means that one cannot build further extensions of C by adding
more roots of irreducible polynomials. In the case of finite fields, we know from Theorem 25

9

https://membres-ljk.imag.fr/Pierre.Karpman/cry_comp2021.pdf

https://membres-ljk.imag.fr/Pierre.Karpman/cry_comp2021.pdf

that the algebraic closure Fq of any finite field Fq is not finite. A more direct (albeit non
constructive) proof of this fact is that assuming that Fq is finite, then 1 `

ś

aPFqpX ´ aq

would have no root in Fq, which is a contradiction.

3 Arithmetic in binary fields

Our goal is now to discuss some implementation aspects for extension fields, and binary
fields in particular. We will mostly focus on computing products, since additions are
trivial and inversion can be implemented with an exponentiation or a GCD algorithm,
which both only require addition and multiplication for their arithmetic.

3.1 Data representation and basic operations

Before describing algorithms and their implementation, we need to decide on a suitable
way to represent our field elements. Since we know that a binary field F2n has the structure
of a vector space Fn2 and that elements of F2 can be represented by 0 and 1, a natural
choice is to represent x P F2n as a vector of Fn2 , itself represented by a binary string of
length n. In a programming language, a binary string is often conveniently manipulated
as the (unsigned) integer that it represents; that is, one uses the canonical embedding
t0, 1u˚ ãÑ N, bk ¨ ¨ ¨ b1b0 ÞÑ

řk
i“0 bi2

i. We will use a similar convention in our case and
often denote elements of F2n by an integer J0, 2n ´ 1K; one must be cautious however not
to interpret this as the (wrong) fact that F2n – Z{2nZ. More generally, this convention
will be used for any element of an F2-vector space, not necessarily a finite field.

Example 33. Let F24 – F2rXs{xX
4`X`1y, then the element X3`X`1 is represented

by the binary string 1011, written 0xB. The irreducible polynomial X4`X`1 used in this
representation of F24 is represented by the binary string 10011, written 0x13; since this
defining polynomial is usually taken to be monic, if its degree is known from the context,
a compressed representation as 0011, written 0x3 may be used instead.

The representation of vectors of Fn2 as unsigned integers goes further than being a
compact encoding; basic operations in this representation are also readily available in
many instruction sets, and accessible through any decent programming language. We
illustrate this in C in the case of elements represented in a single 64-bit machine word, but
extension to larger or smaller inputs are straightforward.

— The addition of two vectors coincides with the bitwise XOR: u ^ v;.

— The pointwise product coincides with the bitwise AND: u & v;.

— The Hamming weight of a vector (i.e. the number of coordinates where it is non-zero)
coincides with the population count. On x86 processors with the POPCNT instruction
set extension, this can be computed using the popcnt instruction, accessible for
instance through the intrinsic _mm_popcnt_u64.

— In the more specific case of polynomials of F2rXs, multiplication by Xi coincides
with the left logical shift, though one must be careful to take possible overflows
into account (alternatively, one could say that such a bit shift for registers of size n
implement multiplication in F2rXs{xX

ny).

Similarly, the quotient (resp. remainder) in the division by Xi coincides with the
right logical shift: p >> i; (resp. bitwise AND with the string whose i lowest bits
are 1: p & ((1 << i) - 1)).

10

https://membres-ljk.imag.fr/Pierre.Karpman/cry_comp2021.pdf

https://membres-ljk.imag.fr/Pierre.Karpman/cry_comp2021.pdf

More generally, the product coincides with the carryless multiplication in base two.
On x86 processors with the PCLMULQDQ instruction set extension, this can be com-
puted (up to possible overflows) using the pclmulqdq instruction, accessible for
instance through the intrinsic _mm_clmulepi64_si128.

— In the more specific case of polynomials of F2rXs{xX
n ´ 1y, multiplication by Xi

coincides with the left circular shift (or rotation) on n-bit words.

3.2 Product in modular polynomial rings: an xtime approach

For a field F2n represented as F2rXs{xP y with P some irreducible polynomial of degree n,
the product of two field elements may be implemented by exactly using this representation,
i.e. from the product of two polynomials modulo P . Note also that the same would be
true even if P were not irreducible, in the same way that arithmetic in Z{pZ is in large
part a special case of the one in Z{nZ. In this section we describe how to implement the
product by using an “xtime” primitive operation; we will describe an alternative approach
in Section 3.4 that uses a different primitive operation.

We start with the useful subcase where one of the operands in the product is the
monomial X, resulting in an elementary operation customarily called xtime. We take
Q P F2rXs of degree at most n ´ 1 and wish to compute QˆX mod P , i.e. the unique
polynomial U s.t. degpUq ă n, QˆX “ V ˆP `U . This can be done easily by observing
that: 1) if degpQ ˆXq ă n then U “ Q ˆX; 2) if degpQ ˆXq ě n then it is exactly n
so degpV q “ 0; but V is also non-zero and since we are working in F2rXs it must be 1, so
then U “ QˆX ´ P .

If polynomials are represented as in Section 3.1, the above operation can be imple-
mented efficiently as in the example of Fig. 2.

1 /* Input:

2 - Q, a binary polynomial of degree < 4

3 Output:

4 - Q*X mod X**4+X+1

5 */

6 uint8_t xtime(uint8_t Q)

7 {

8 if (Q < 8) // the polynomial represented by Q has deg < 3

9 return Q << 1;

10 else

11 return (Q << 1) ^ 0x13;

12 }

Figure 2: Multiplication of Q by X modulo X4 `X ` 1.

If the underlying architecture uses two’s complement representation for signed integers,
the branchless alternative of Fig. 3 may be preferred.

Remark 34. The above xtime operation is sometimes described to correspond to the
clocking of a Linear-Feedback Shift Register (LFSR) in what is sometimes referred to as a
Galois configuration. This is following the view that in xtime, one shifts bits in a register
and linearly updates the state of the register with the leftmost, thrown-out bit. We defer
our discussion of LFSRs to Section 4.

We are now ready to address the general case, using xtime as a subroutine. This
essentially follows from distributivity, and using a process similar to the one of Fig. 1.

11

https://membres-ljk.imag.fr/Pierre.Karpman/cry_comp2021.pdf

https://membres-ljk.imag.fr/Pierre.Karpman/cry_comp2021.pdf

1 /* Input:

2 - Q, a binary polynomial of degree < 4

3 Output:

4 - Q*X mod X**4+X+1

5 */

6 uint8_t xtime_bl(uint8_t Q)

7 {

8 uint8_t m = -(Q >> 3); // ~0 if Q >> 3 == 1, 0 otherwise

9 return (Q << 1) ^ (m & 0x13);

10 }

Figure 3: Multiplication of Q by X modulo X4 `X ` 1, branchless.

The idea is to remark that one can write the product Q ˆ R mod P as Q
řn´1
i“0 RiX

i

mod P , where R “
řn´1
i“0 RiX

i. Then since the Ri’s belong to t0, 1u one only needs to
compute QˆXi up to i “ degpRq using repeated calls to xtime and sum those terms for
which Ri “ 1. This is detailed in Fig. 4.

1 /* Input:

2 - Q, R binary polynomials of degree < 4

3 Output:

4 - Q*R mod X**4+X+1

5 */

6 uint8_t gf16mul(uint8_t Q, uint8_t R)

7 {

8 uint8_t res = 0;

9 uint8_t acc = Q;

10 while (R > 0)

11 {

12 if (R & 1)

13 res ^= acc;

14 acc = xtime(acc);

15 R >>= 1;

16 }

17 return res;

18 }

Figure 4: Multiplication of Q by R modulo X4 `X ` 1.

3.3 Multiplication by a constant

One may sometimes be interested solely in the multiplication by a fixed (but arbitrary)
constant α P F2n – F2rXs{xP y rather than by an arbitrary element. Although it is of
course possible to still use a general multiplication algorithm to do so, this specialisation
opens the way to a more dedicated approach. The idea is to observe that multiplication
by a constant is a linear operation, and since F2n has the structure of an F2-vector space,
for every α there must exist a matrix Mα P Fnˆn2 implementing x ÞÑ xα as x ÞÑ xMα,
writing x for x to emphasise its structure as a vector and using the right product for Mα

(making x a row vector).
We first describe MX before generalising to arbitrary constants. In this case, MX in

12

https://membres-ljk.imag.fr/Pierre.Karpman/cry_comp2021.pdf

https://membres-ljk.imag.fr/Pierre.Karpman/cry_comp2021.pdf

fact implements xtime; taking the (somewhat arbitrary) convention that the polynomial
řn´1
i“0 QiX

i be represented as the vector
`

Q0 ¨ ¨ ¨ Qn´1
˘

, then one has:

MX “

ˆ

0n´1 In´1
p

˙

,

with 0n´1 P Fpn´1qˆ12 the all-zero column vector in dimension n ´ 1, In´1 P Fpn´1qˆpn´1q2

the identity matrix, and p “
`

P0 ¨ ¨ ¨ Pn´1
˘

an encoding of the defining polynomial
P minus its degree-n coefficient. This matrix is in fact the companion matrix of P ,¶ a
canonical representative of all matrices with minimal polynomial equal to P .

Example 35. In the field F24 – F2rXs{xX
4 `X ` 1y, one has:

MX “

¨

˚

˚

˝

0 1 0 0
0 0 1 0
0 0 0 1
1 1 0 0

˛

‹

‹

‚

.

Now to define Mα for an arbitrary element α one uses that the minimal polynomial
of X is of degree n, which means that Mα P xMXi “ M i

Xy0ďiăn. Concretely, writing
α “

řn´1
i“0 αiX

i, one simply has Mα “
řn´1
i“0 αiMXi .

Example 36. Continuing Example 35, take α “ X3 `X ` 1, then:

M1 “

¨

˚

˚

˝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

˛

‹

‹

‚

, MX3 “

¨

˚

˚

˝

0 0 0 1
1 1 0 0
0 1 1 0
0 0 1 1

˛

‹

‹

‚

, Mα “

¨

˚

˚

˝

1 1 0 1
1 0 1 0
0 1 0 1
1 1 1 0

˛

‹

‹

‚

.

From an implementation perspective, the vector-matrix product xMα can be efficiently
implemented in the binary case by using a broadcast approach. The idea is to remark that
the result is the sum of the rows of Mα for which the corresponding coordinate in x is
non-zero, and this can be computed efficiently if Mα is stored in row-major format. We
illustrate this in Fig. 5, in dimension 64 (assuming a two’s complement representation for
signed integers).

We conclude with the remark that the matrix Mα of the multiplication by α may also
be used to reduce the computation of inverses in F2n to linear algebra in Fnˆn2 . Indeed
it is clear that M´1

α “Mα´1 , and the only potential difficulty in using this approach as
a general inversion algorithm would be to recover α´1 from M´1

α (or in fact α from Mα

in general). However this latter task is made rather easy by observing that due to the
special structure of MX , the only non-zero coefficient in the first row of MXi is in the
ith coordinate (with indices starting from zero); it is thus straightforward to recover an
expression of α in the basis xXiy0ďiăn. In fact this observation tells us that if what we
wish to compute is α´1 rather than its full multiplication matrix, it is in fact enough to
compute only the first row of M´1

α .
Without more refinements, this approach for computing the inverse is not competitive

with for instance using a GCD algorithm, since it ignores most of the special structure of
the input. It may however be improved, for instance by exploiting a tower structure (if
present) and being made recursive.

Example 37. Continuing Example 36, we compute

Mα´1 “M´1
α “

¨

˚

˚

˝

1 0 1 0
0 1 0 1
1 1 1 0
0 1 1 1

˛

‹

‹

‚

,

¶Or rather, one of the four possible definitions for the companion matrix, since this particular one
reflects our ordering for the coefficients of polynomials and the fact that we multiply on the right.

13

https://membres-ljk.imag.fr/Pierre.Karpman/cry_comp2021.pdf

https://membres-ljk.imag.fr/Pierre.Karpman/cry_comp2021.pdf

1 /* Input:

2 - x, a binary vector of dimension 64

3 - M, a binary 64*64 matrix in row-major format

4 Output:

5 - x*M

6 */

7 uint64_t mmul64(uint64_t x, uint64_t M[64])

8 {

9 uint64_t res = 0;

10 for (int i = 0; i < 64; i++)

11 {

12 uint64_t m = -(x & 1);

13 res ^= m & M[i];

14 x >>= 1;

15 }

16

17 return res;

18 }

Figure 5: Vector-matrix multiplication in F64ˆ64
2 .

whose first row reveals that α´1 “ X2 ` 1.

3.4 Product in modular polynomial rings: a carryless approach

It is clear that to compute a product in a modular ring, one may compose the computation
of the product in the corresponding “full” (not modular) ring with a reduction step. The
goal of this section is to describe such a reduction algorithm for polynomials (adapted
from Barrett’s similar algorithm for integers), i.e. which on input P,Q computes the
unique polynomial R s.t. degpRq ă degpP q and R ” Q mod P , that uses full polynomial
multiplication and addition as primitive operations; one also needs to compute quotients
and remainders of divisions by monomials Xd, but those are easy since they only consist
in keeping the monomials of degree more and less than d respectively, as already remarked
in Section 3.1. This reduction algorithm is then especially useful if one is able to compute
products efficiently, which is for instance the case in F2rXs if an instruction such as
PCLMULQDQ is available; in that case both the full product and the reduction will essentially
rely on this instruction. We will also see that, justifying Remark 21, the cost of this
reduction algorithm will depend on the “shape” of the reduction polynomial P : this
means that for a fixed field (up to isomorphism), the implementation of arithmetic using
this approach will be more efficient in some representations than in others.

The algorithm is defined in Fig. 6. To prove its cost and its correctness, we will use an
invariant on A` B and a variant on B. Namely, we have that A` B is always congruent to
Q modulo P , and that the degree of B decreases by at least d´ du ě 1 at every iteration
(where du :“ degpUq) until its degree becomes less than d, at which point the algorithm
terminates in the next iteration at the latest. It follows that the algorithm returns the
correct result after at most pdegpQq ´ dq{pd ´ duq iterations, and it will then be more
efficient when du is small. Now to prove the invariant A ` B ” Q mod P we observe
that this is initially true; also degpAq ă d since A is initially zero and one only adds to
it polynomials of degree less than d. Then the previous equivalence can be written as
A ` Blo ` Bhi ” Q mod P , where Blo (resp. Bhi) denotes the terms of B of degree at
most d ´ 1 (resp. degree at least d), i.e. Blo “ B % X**d, Bhi “ X**d(B / X**d), and

14

https://membres-ljk.imag.fr/Pierre.Karpman/cry_comp2021.pdf

https://membres-ljk.imag.fr/Pierre.Karpman/cry_comp2021.pdf

the conclusion follows from the fact that U ” X**d mod P . Finally the variant on B

comes from the fact that the degree of B / X**d is at least d less than the one of B when
degpBq ě d and zero otherwise, and that the one of U is du by definition.

1 /* Input:

2 - P, Q; deg(P) = d

3 Output:

4 - R ~ Q mod P, deg(R) < d

5 */

6 REDBL(P, Q)

7 {

8 A = 0;

9 B = Q;

10 U = X**d % P;

11 while (B > 0)

12 {

13 A += B % X**d;

14 B = (B / X**d)*U;

15 }

16 return A;

17 }

Figure 6: Reduction of Q modulo P , using a Barrett-like approach.

We now give in Fig. 7 an example of an implementation of the above algorithm in C,
using PCLMULQDQ accessed from the _mm_clmulepi64_si128 intrinsic. More precisely, this
is a full implementation of the multiplication in F264 – F2rXs{xX

64 `X4 `X3 `X ` 1y
that uses the above for the reduction step. In some more details, lines 8 and 9 set the
low 64 bits of two 128-bit registers to the binary representation of the operands Q and
R respectively, while line 10 does it for the representation of X64 modulo the chosen
irreducible polynomial, i.e. X4 ` X3 ` X ` 1. Line 12 assigns to b the result of the
carryless (i.e. “binary polynomial”) multiplication of q and r. This is a polynomial of
degree at most 126, which then fits into 128 bits. The last operand 0x00 means here that
the two inputs of degree at most 63 are to be found in the 64 low bits of the first two
operands. Line 15 performs a similar computation between b and u, but this time with
last operand 0x01, meaning that the first polynomial is defined by the 64 high bits of b,
i.e. the terms of degree above 64 then divided by X64; that is, this line corresponds to
the computation of line 14 in Fig. 6. Note that at this point, the polynomial represented
by b has degree at most 66 “ 126´p64´ 4q. Line 16 adds the full result to a that already
contains the previous value of b (however only the 64 low bits of this register, corresponding
to the terms of degree less than 64, will eventually be used). Line 17 proceeds as line 15;
at this point the polynomial represented by b has degree at most 6, so we know that
another iteration would result in the zero polynomial and there would be nothing more to
add to a. This means that the fully-reduced result is to be found in the 64 low bits of a
after line 18, which are then returned in line 20. We conclude with two remarks: first the
implementation in Fig. 7 runs in “constant time”, in the sense that the amount of work
does not depend on the input (in particular it always does the maximum work needed to
fully reduce the product, which may be more than what is sometimes needed); this may
be useful in contexts when one does not want the computation time to leak information
about the operands. Second, we again emphasize that this running time was kept low by
using an irreducible polynomial s.t. dU is particularly small.

15

https://membres-ljk.imag.fr/Pierre.Karpman/cry_comp2021.pdf

https://membres-ljk.imag.fr/Pierre.Karpman/cry_comp2021.pdf

1 /* Input:

2 - Q, R binary polynomials of degree < 64

3 Output:

4 - Q*R mod X**64 + X**4 + X**3 + X + 1

5 */

6 uint64_t gf2_64mul(uint64_t Q, uint64_t R)

7 {

8 __m128i q = _mm_set_epi64x(0, Q);

9 __m128i r = _mm_set_epi64x(0, R);

10 __m128i u = _mm_set_epi64x(0, 0x1B);

11 __m128i a;

12 __m128i b = _mm_clmulepi64_si128(q, r, 0x00);

13

14 a = b;

15 b = _mm_clmulepi64_si128(b, u, 0x01);

16 a = _mm_xor_si128(a, b);

17 b = _mm_clmulepi64_si128(b, u, 0x01);

18 a = _mm_xor_si128(a, b);

19

20 return _mm_extract_epi64(a, 0);

21 }

Figure 7: Multiplication of Q by R modulo X64 `X4 `X3 `X ` 1.

4 Linearly-recurring sequences

In this section we will study two aspects of linearly-recurring sequences: we will first look
at how sequences with a known recurrence can be efficiently computed, and then look at
the opposite problem of computing the smallest linear recurrence that generates a known
sequence. We will focus on sequences over finite fields (and with examples mostly drawn
from F2) for simplicity, but the general theory (and the results we will present) similarly
works (at least to some extent) over (not-necessarily finite) rings.

4.1 Definitions and first properties

We consider sequences punq over some finite field F, except if specified otherwise. We will
use a few useful conventions:

— We allow negative indices, and for all such n ă 0 define un to be 0.

— The only sequence for which u0 “ 0 is the all-zero sequence. That is, any sequence
with at least one non-zero term has its index defined such that the first non-zero
term is in position 0.

— If P P FrXs is a polynomial, we will denote by ppnq the sequence of its coefficients.

— We may use both terms “index” and “rank” to refer to n for a term un P punq. We
tend to favour the former when talking about a specific term, and the latter when
talking about a property that is true for all terms after a given one.

We now give:

Definition 38 (Convolution of two sequences). Let punq, pvnq be two sequences, its con-
volution ppu ˚ vqnq “: pwnq is the sequence defined by wn “

ř8
i“0 uivn´i. Equivalently,

wn “
ř

i`j“n uivj , which makes it clear that ppu ˚ vqnq “ ppv ˚ uqnq.

16

https://membres-ljk.imag.fr/Pierre.Karpman/cry_comp2021.pdf

https://membres-ljk.imag.fr/Pierre.Karpman/cry_comp2021.pdf

Note that if ppnq and pqnq are sequences representing the coefficients of polynomials
P and Q, then ppp ˚ qqnq represents the coefficients of P ˆ Q. That is, the convolution
product is the “extension” to sequences of the polynomial product.

We now give two definitions for linearly-recurring sequences, and will then prove their
equivalence. The first “primal” characterisation defines a sequence from a linear recurrence
that from finitely-many successive terms of the sequence specifies how to generate the
following one, and the second “dual” characterisation defines a sequence from a linear
relation that annihilates it after a given rank.

Definition 39 (Linearly-recurring sequence (primal characterisation)). A sequence punq
is linearly-recurring if D k P N, pgnq over F s.t. gi “ 0 for all i ě k, and for all n`1 ě k one
has that un`1 “

řk´1
i“0 giun´i. Equivalently, for all n` 1 ě k one has that un`1 “ pg ˚uqn.

Example 40. Let F “ F2, u0 “ u1 “ g0 “ g1 “ 1, then the first 10 terms of punq are [1,
1, 0, 1, 1, 0, 1, 1, 0, 1].

Let F “ F2, u0 “ 1, u1 “ 0, u2 “ 1, u3 “ 0, g0 “ g1 “ 0, g2 “ g3 “ 1, then the first 20
terms of punq are [1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1].

The relation un`1 “
řk´1
i“0 giun´i of Definition 39 may of course be “shifted” to express

any term un`j in function of the un`j´i, 1 ď i ă k, preceding ones. A popular way to do

so is to define un`k “
řk´1
i“0 g

1
iun`i which, since the index i is reversed, also changes the

definition of pgnq into pg1nq as g1i “ gpk´1q´i.
We may now observe that up to another simple change in the definition of pgnq, the

relation un`1 “ pg ˚ uqn implies prg ˚ uqn “ 0 for some prgnq. Indeed if un`1 “
řk´1
i“0 giun´i,

then surely un`1 ´
řk´1
i“0 giun´i “ 0, and the left-hand term can be rewritten as un ´

řk
i“1 gi´1un´i, or

řk
i“0 rgiun´i with rg0 “ 1, rgi “ ´gi´1 for 1 ď i ă k. This leads to the

second, dual characterisation of linearly-recurring sequences, which as we will argue is in
fact the “right” one.

Definition 41 (Linearly-recurring sequence (dual characterisation)). A sequence punq is
linearly-recurring if D k P N, A ‰ 0 P FrXs a polynomial of degree k s.t. @n ě k, pa˚uqn “
0. The polynomial A is said to annihilate punq after the rank k, and is called an annihilator
of the sequence.

It may seem arbitrary to specifically regard the above sequence panq as a polynomial
A, but we will later justify this by highlighting the relation between a linearly-recurring
sequence annihilated by A and the ring FrXs{xAy.

Proposition 42. The two Definitions 39 and 41 are equivalent.

Proof. From the discussion preceding Definition 41.

Example 43. An annihilator for the first sequence of Example 40 is X2 ` X ` 1. An
annihilator for the second sequence is X4 `X3 ` 1.

Using the dual characterisation of a linearly-recurring sequence, it is easy to define
the linear complexity of a sequence, which is the smallest degree for which an annihilator
exists (if there is one). Formally:

Definition 44 (Linear complexity of a sequence). The linear complexity of a sequence
punq is the smallest integer ` (if it exists) s.t. D `1 P N, A ‰ 0 P FrXs, degpAq “ ` and
@n ě `1, pu ˚ aqn “ 0. If there is no such `, the linear complexity of punq is defined to be
infinite, noted 8.

17

https://membres-ljk.imag.fr/Pierre.Karpman/cry_comp2021.pdf

https://membres-ljk.imag.fr/Pierre.Karpman/cry_comp2021.pdf

By definition, linearly-recurring sequences are exactly the sequences of finite linear
complexity.

Definition 44 extends to finite (or truncated) sequences where one only considers a
finite number of terms. There, except in the trivial case of a sequence with a single
term, the linear complexity is always finite and at most the rank of the largest non-zero
term. Indeed, either there are at least two non-zero terms and the last one can always be
expressed as a linear combination of the previous ones, or there is a single non-zero term
which by convention is at index 0 and the sequence is then annihilated by the constant
polynomial 1. Yet, as it should become clear thanks to the following Example 46, the
notion may become ambiguous, since there may for instance be cases where a polynomial
of (essentially minimal) degree one annihilates the last term, but not any of the others.
We will thus adopt the following:

Definition 45 (Linear complexity of a sequence (finite case)). Let punq be a finite se-
quence, and `1 the smallest integer for which DA ‰ 0 P FrXs s.t. @n ě `1, pu ˚ aqn “ 0,
then the linear complexity of punq is the least degree ` of any such polynomial A.

We will later see in Section 4.3 how to compute an annihilator satisfying the condition
of Definition 45 (and thus the linear complexity) of any finite sequence.

Example 46.

1. Let F “ F2, the finite sequence r1, 1, 0, 1s is annihilated into r1, 0, 0, 0s by X2 `X `
1, which is the polynomial of least degree to do so, and this sequence has linear
complexity 2.

2. Let F “ F2, the sequence r1, 1, 0, 1, 1, 1, 1, . . .s is annihilated into r1, 0, 1, 1, 0, . . .s by
X ` 1, which is the polynomial of least degree to do so, and this sequence has linear
complexity 1.

3. Let F “ F2, the periodic sequence r1, 0, 1, 0, 1, . . .s is annihilated into r1, 0, . . .s by
X2`1, which is the polynomial of least degree to do so, and this sequence has linear
complexity 2.

4. Let F “ F2, the periodic sequence r1, 0, 1, 1, . . .s is annihilated into r1, 0, 1, 1, 0, . . .s
by X4 ` 1, which is the polynomial of least degree to do so, and this sequence has
linear complexity 4.

5. Let F “ F2, the periodic sequence r1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, . . .s (the second
sequence of Example 40) is annihilated into r1, 0, 1, 1, 0, . . .s by X4 `X3 ` 1, which
is the polynomial of least degree to do so, and this sequence has linear complexity
4.

6. Let F “ F2, the finite sequence r1, 0, 1, 1s is annihilated into r1, 1, 1, 0s by X ` 1,
r1, 1, 0, 0s by X2 `X ` 1, and r1, 0, 0, 0s by X3 `X2 ` 1 which is the polynomial of
least degree to do so, and this sequence has linear complexity 3.

The above examples illustrate some notable properties of the linear complexity. A
first one is that from (1) and (2), it is possible for the linear complexity of a finite prefix
of a sequence to be larger than the one of the full sequence. Indeed it is not hard to
build such sequences, as is done in the above: simply start from a finite sequence of linear
complexity ` and complete it with a sequence of strictly smaller complexity. In this case,
an annihilator of least degree does not necessarily annihilate the sequence “early”, since
it is only required to annihilate the suffix and there is no particular reason that it would
also annihilate the independent prefix.

18

https://membres-ljk.imag.fr/Pierre.Karpman/cry_comp2021.pdf

https://membres-ljk.imag.fr/Pierre.Karpman/cry_comp2021.pdf

Another property illustrated by (3), (4) and (5) is that a periodic sequence of period T
has linear complexity at most T since it is always annihilated by ´XT `1 (or equivalently,
XT ´ 1). The linear complexity may however also be smaller.

This last property, together with the fact that defining the linear complexity in the
finite case is rather cumbersome (see (6)), justifies why one may be tempted to analyse
a finite sequence by making it periodic, rather than cutting it short. This results in
the definition of the cyclic linear complexity, which simply consists in considering the
“standard” linear complexity of Definition 44 for a finite sequence that is made infinite by
repeating itself indefinitely. This results in:

Definition 47 (Cyclic linear complexity of a sequence). Let punq be a periodic sequence
of period T , U “

řT´1
i“0 uiX

i P FrXs the polynomial formed by its T first coefficients. The
cyclic linear complexity of punq is the degree of the least non-zero polynomial A P FrXs
s.t. AU ” 0 mod XT ´ 1.

This calls for several comments. First, the notion is well-defined since XT ´ 1 itself
always satisfies the condition; as can be seen from some of the cases of the above Exam-
ple 46, it may be that this is also the solution of least degree. Second, the formulation of
this condition purely in terms of polynomials is justified from the fact that annihilating
punq after a given rank (which is always possible, as per the previous remark) is equivalent
to annihilating T consecutive terms “completely” using a cyclic convolution, which itself
is equivalent to the polynomial product modulo XT ´1. In more details, let A ‰ 0 P FrXs
of degree ` ď T , `1 be such that for all n ě `1 pa ˚ uqn “ 0, that is

ř`
i“0 aiun´i “ 0. Since

punq is periodic of period T , un`T “ un, and so the terms un´i in the previous equality
may be “replaced” by upn´iq%T (where x%N denotes the non-negative remainder of the

division of x by N) and it follows that for all n P J0, T ´ 1K,
ř`
i“0 aiupn´iq%T “ 0. This

latter implication may then be expressed as pa ˚ uqöT “ 0, where the ith term pu ˚ vqöTi
of the cyclic convolution of period T of the two finite sequences punq and pvnq is defined
as

řT´1
i“0 uivpn´iq%T . We leave it to the reader to check that this latter corresponds to the

product in FrXs{xXT ´ 1y.

Remark 48. An alternative, possibly cleaner, formulation of Definition 47 solely in terms
of the structure R :“ FrXs{xXT ´ 1y would be to define the cyclic linear complexity as
the least degree of a non-zero A P R that annihilates U if it exists, and T otherwise. Note
that such an A exists iff. U is a non-trivial zero divisor in R, which may well happen since
the latter is not an integral domain.

An important, rather immediate consequence of Definition 47 is that the cyclic linear
complexity of the T -periodic sequence represented by the polynomial U is directly related
to the common factors of U and XT ´ 1. Indeed, the condition that AU be zero in
FrXs{xXT ´ 1y is equivalent to requiring that AU “ pXT ´ 1qB in FrXs, for some other
polynomial B, and the degree of A is minimised when B is constant. Thus writing U and
XT ´ 1 as the products of their irreducible factors over F, it is clear that an annihilator
A of least degree is given by the product of the factors of XT ´ 1 not found in U .

In the special case where pXT ´ 1q splits in F, one may reexpress this in terms of a T -
adic “Fourier” transform. Recall from our study of the structure of Fˆ that if XN´1 splits
in F then its roots can be written as t1, ω, . . . , ωN´1u for some ω P F of (multiplicative)
order N , and the elements of order N in F are exactly tωt | gcdpt,Nq “ 1u. We then get:

Definition 49 (N -adic transform). Let P P FrXs be a polynomial of degree N ´ 1,
ω P F be an element of order N . Its N -adic transform pP P FN is given by

`

evalpP, ωiq
˘

,
0 ď i ă N .

19

https://membres-ljk.imag.fr/Pierre.Karpman/cry_comp2021.pdf

https://membres-ljk.imag.fr/Pierre.Karpman/cry_comp2021.pdf

From the above discussion, the exact choice of element of order N for ω does not
matter, since two different choices lead to identical transforms up to a permutation of
coordinates.

We then have:

Theorem 50. Let punq be a periodic sequence of period T of cyclic linear complexity `,
represented by U P FrXs of degree T ´ 1. Then if Dω P F of order T , and denoting by pU
the T -adic transform of U , one has the equality ` “ wtppUq.

Where in the above wtp¨q denotes the number of non-zero coordinates, or weight of its
argument.

Proof. From the existence of ω P F of order T , one has that XT ´ 1 factors in F as
śT´1
i“0 pX´ω

iq, and a non-zero annihilator A of least degree ` is given by
śT´1
i“0 pX´ω

iq - U .
Since pX ´ωiq - U iff. evalpU, ωiq ‰ 0, the number of terms in the latter product is equal
to the number of ωi’s on which the evaluation of U is non-zero, i.e. wtppUq.

Theorem 50 (and the more general characterisation given above) immediately suggest
an algorithm to compute the cyclic linear complexity of a periodic sequence. If the T -adic
transform can be computed in quasi-linear time, then it will not be possible to do (much)
better in general. However the algorithm given in Section 4.3 (or similar techniques) may
improve on this approach if a bound on ` is known (or assumed), since its cost will depend
(at most quadratically) on this bound, and not on the possibly larger period.

4.2 Linear-feedback shift registers

We will now look at linearly-recurring sequences from a slightly different point of view,
viz. the one of linear-feedback shift registers (or LFSRs for short). Over finite fields, this
is most suited to analyse periodic sequences.

We start with a general definition of LFSRs:

Definition 51 (Linear-feedback shift register). A linear-feedback shift register is a register
St “ rStn´1, . . . , S

t
0s of size n ą 0 over a finite field F, indexed by a discrete “time”

parameter t P N s.t.:

1. At every t, an output value st :“ Stn´1 is produced.

2. The state St`1 of the register S is given by St`1 “ rStn´2, . . . , S
t
0, 0s`ΦpStq, where Φ

is a linear feedback function that maps a register rRn´1, . . . , R0s to another register
r
řn´1
i“0 Φn´1

i Ri, . . . ,
řn´1
i“0 Φ0

i Ris for some fixed coefficients Φj
i P F,} and where the

addition between two registers is defined from their canonical embedding into Fn.

From their definitions we immediately have the following properties for LFSRs (in fact
also true of any sequence obtained similarly by iterating a non-necessarily linear function
on a state S):

1. An LFSR generates an infinite sequence.

2. The sequence generated by an LFSR is always periodic after some rank n.

3. The sequence generated by an LFSR has a finite linear complexity.

4. The maximum (over S0 and Φ) period of an LFSR of size n over F is at most #Fn´1.

Exercise 6. Prove the above statements.

} This could be summarised by simply saying that as a linear map, Φ can be represented by a matrix.

20

https://membres-ljk.imag.fr/Pierre.Karpman/cry_comp2021.pdf

https://membres-ljk.imag.fr/Pierre.Karpman/cry_comp2021.pdf

The general form of Definition 51 is in fact unnecessarily complex, and one usually
favours one of two simpler variants where Φ is restricted to be s.t. Φn´1

i , . . . ,Φ1
i are zero

for all i, or s.t. Φn´1
i , . . . ,Φ0

i are zero for all i ă n ´ 1. In the former case, the LFSRs
obtained thusly closely follow the primal characterisation of linearly-recurring sequences of
Definition 39 and are sometimes called “Fibonacci” LFSRs, while in the latter the LFSRs
closely follow the dual characterisation of Definition 41 and are sometimes called “Galois”
LFSRs. We will now make these remarks more concrete and show how, in the same way
as Definitions 39 and 41 both define linearly-recurring sequences, these two special forms
of LFSRs may be used interchangeably to generate the same sequences. We will do this
by first connecting effectively the two forms with the Definition 39 for linearly-recurring
sequences, and highlight the relation between the dual form and Definition 41 in a later
step.

“Primal” LFSRs. Consider an LFSR of size n with some initial state S0 and a feedback
function Φ s.t. Φn´1

i , . . . ,Φ1
i are zero for all i. In other words, Φ is a map rRn´1, . . . , R0s ÞÑ

r0, . . . , 0,
řn´1
i“0 ΦiRis (where we drop the exponent ‘0’ in Φ0 for the sake of conciseness),

and the state St`1 is defined as rStn´2, . . . , S
t
0,
řn´1
i“0 Φi S

t
i s.

The sequence formed by the output values st is such that st “ S0
pn´1q´t for 0 ď t ă n,

and more generally st “ S
t´pn´1q`i
i for 0 ď i ă n, provided that t ´ pn ´ 1q ` i ě 0.

When t ě n, one further gets more explicitly that st “ S
t´pn´1q
0 “

řn´1
i“0 Φi S

t´pn´1q´1
i “

řn´1
i“0 Φi S

t´n
i . Using St´ni “ st´pi`1q, this may then be rewritten solely in terms of st’s

as st “
řn´1
i“0 Φi st´pi`1q, or equivalently st`1 “

řn´1
i“0 Φi st´i. Finally this last expression

is immediately identifiable with the one for un`1 in Definition 39, where in particular Φ
exactly gives the non-zero terms of the sequence pgnq.

“Dual” LFSRs. Consider an LFSR of size n with some initial state S0 and a feed-
back function Φ s.t. Φn´1

i , . . . ,Φ0
i are zero for all i ă n ´ 1. In other words, Φ is

a map rRn´1, . . . , R0s ÞÑ rΦn´1Rn´1, . . . ,Φ
0Rn´1s (where we drop the indices ‘n ´ 1’

in the Φi
n´1’s for the sake of conciseness), and the state St`1 is defined as rStn´2 `

Φn´1 Stn´1, . . . , S
t
0 ` Φ1 Stn´1,Φ

0 Stn´1s.
The sequence formed by the output values st is such that s0 “ S0

n´1, s1 “ S0
n´2 `

Φn´1 s0, and more generally for 0 ď t ă n, st “ S0
pn´1q´t `

řt´1
i“0 Φpn´tq`i si; for t ě n,

st “
řt´1
i“t´n Φpn´tq`i si. Starting the index i from zero, this latter expression becomes

st “
řn´1
i“0 Φi st´n`i, and if one defines Φ1 from Φ1i “ Φn´1´i one may further rewrite it as

st “
řn´1
i“0 Φ1i st´1´i, or again st`1 “

řn´1
i“0 Φ1i st´i. This last expression may then again

readily be identified with the one for un`1 in Definition 39, where in particular Φ1 exactly
gives the non-zero terms of the sequence pgnq.

The equivalence of the two types of LFSRs in terms of generated sequence should
now be apparent: given an LFSR in dual form, one may construct an equivalent primal
description by “reversing” the coefficients of the feedback function and by using the first
n output values for the initial state. Conversely, a primal description may be converted
into a dual one by again reversing the feedback function and by “inverting” the sequence
computation to obtain the initial state from the first n outputs. This last step is easy to
perform by using the above expression st “ S0

pn´1q´t `
řt´1
i“0 Φpn´tq`i si, from which one

gets S0
pn´1q´t “ st ´

řt´1
i“0 Φpn´tq`i si, valid for 0 ď t ă n.

Example 52. Let F “ F2, and consider the dual LFSR of size four with initial state
rS0

3 , . . . , S
0
0s “ r1, 0, 1, 1s and feedback function Φ3 “ Φ2 “ 0, Φ1 “ Φ0 “ 1. Then the first

20 terms s0, . . . of the output sequence are: r1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1s.
This same sequence may then be generated by a primal LFSR whose initial state is set

21

https://membres-ljk.imag.fr/Pierre.Karpman/cry_comp2021.pdf

https://membres-ljk.imag.fr/Pierre.Karpman/cry_comp2021.pdf

to rs0, . . . , s3s “ r1, 0, 1, 0s and with feedback function Φ3 “ Φ2 “ 1, Φ1 “ Φ0 “ 0, and
indeed this is exactly how we have described it in the second part of Example 40.

Example 53. Let F “ F2, and consider the primal LFSR of size four with initial state
rS0

3 , . . . , S
0
0s “ r1, 1, 0, 0s and feedback function Φ3 “ Φ2 “ Φ1 “ Φ0 “ 1. Then the first

20 terms s0, . . . of the output sequence are: r1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0s.
This same sequence may then be generated by a dual LFSR with reversed (although in fact
here identical) feedback function Φ and with initial state S0

3 “ s0 “ 1, S0
2 “ s0 ` s1 “ 0,

S0
1 “ s0 ` s1 ` s2 “ 0, S0

0 “ s0 ` s1 ` s2 ` s3 “ 0.

To see why dual LFSRs are strongly connected to Definition 41, it is useful to first make
the important observation that the process of computing St`1 from St exactly corresponds
to a multiplication by a constant in some modular polynomial ring. Interpreting St as a
polynomial

řn´1
i“0 S

t
iX

i of FrXs, one indeed has that ΦpStq “ Stn´1
řn´1
i“0 ΦiXi is congruent

to Stn´1X
n modulo Xn ´

řn´1
i“0 ΦiXi, and it follows that StX “ Stn´1X

n `
řn´2
i“0 S

t
iX

i`1

is congruent to ΦpStq `
řn´2
i“0 S

t
iX

i`1 “ St`1 modulo Xn ´
řn´1
i“0 ΦiXi. In other words,

letting Ψ :“ Xn ´
řn´1
i“0 ΦiXi, one may identify St with ςξt P FrXs{xΨy, for some initial

state ς – S0, and where ξ is a root of Ψ and denotes the class ofX in FrXs{xΨy. This finally
makes the connection between LFSRs and Remark 34 which me made when studying the
“xtime” operation that can be used to implement the arithmetic of extension fields.

The connection with Definition 41 now follows from the two easy facts that: 1) the
minimal polynomial (over F) of ξ P FrXs{xΨy divides Ψ, hence St`n ´

řn´1
i“0 Φi St`i –

ςξtpξn ´
řn´1
i“0 Φi ξiq “ 0; 2) the previous equality carries over the output sequence, since

its terms are obtained by applying an F-linear form to the states S. In other words, Ψ
annihilates pstq; this leads to the following:

Proposition 54. The linear complexity of the sequence generated by an LFSR of size n
is at most n.

We conclude this short presentation of LFSRs by discussing two points that highly
benefit from the above interpretation of (dual) LFSRs.

Computing far-away terms of the output sequence. To compute an arbitrary term
st of the output sequence, it is sufficient to compute the state St from which it is defined.
Since the latter may be identified with ςξt P FrXs{xΨy, one may compute it from one
exponentiation and one multiplication in FrXs{xΨy, and this can be done efficiently using
any suitable fast exponentiation algorithm.

Generating sequences of maximum period. Since the state S of an LFSR is finite,
the output sequence pstq it generates is necessarily periodic after a finite rank, and the
maximum period is equal to the number of non-zero states, i.e. #Fn ´ 1. Since reaching
this maximum period means that all such states need to be “visited”, one gets that the
initial state S0 does not influence the ability of an LFSR to generate such a sequence,
apart from the obvious condition that it be not all zero. Now identifying again St with
ςξt P FrXs{xΨy, it is clear that a necessary condition for an LFSR to produce a sequence
of maximum period is that ξ has multiplicative order #Fn ´ 1 in FrXs{xΨy. This is also
in fact sufficient (as long as ς ‰ 0): we have seen above that one could recover the state of
an LFSR from n consecutive terms of the output sequence, and it follows that the latter
cannot have a period smaller than the one of the state, and thence the order of ξ.

4.3 Computing an annihilator of a finite sequence

We have just used in the previous section the fact that given a few consecutive output
terms of the sequence generated by an LFSR, it is easy to recover its state. Consequently,

22

https://membres-ljk.imag.fr/Pierre.Karpman/cry_comp2021.pdf

https://membres-ljk.imag.fr/Pierre.Karpman/cry_comp2021.pdf

if one additionally knows the feedback function, it is enough to observe a few terms to be
able to generate all the following ones. In this section we will see that this requirement
is in fact not necessary by showing that the feedback function can itself be reconstructed
from sufficiently many terms of the sequence. This result has many applications, one
of the most immediate ones being the computation of minimal polynomials: given for
instance an element ξ P F1, its minimal polynomial over a subfield F of F1 can be found as
the feedback polynomial of the sequence punq, un :“ TrF1{Fpξ

nq, where the trace function

TrF1{F of F1 onto F is (among other things) a morphism for the addition.7

Given pstq the sequence generated by an LFSR of known size n, a simple approach to
recover the feedback function Φ w.r.t. the primal definition is to solve the obvious under-
lying linear system. Indeed, considering 2n consecutive terms (w.l.o.g. s0, . . . , s2n´1), one
may write n equations si`n “

řn´1
j“0 Φj si`j , which is enough to recover the n unknown

coefficients of Φ provided that the rank of the system is n.5 This can be summarised in
matrix form by saying that all one needs to do is solving the system:

`

Φn´1 ¨ ¨ ¨ Φ0

˘

ˆ

¨

˚

˝

s2n´2 ¨ ¨ ¨ sn´1
...

. . .
...

sn´1 ¨ ¨ ¨ s0

˛

‹

‚

“
`

s2n´1 ¨ ¨ ¨ sn
˘

.

While any general-purpose algorithm may be used for that, writing the system in this
form however makes it obvious that it is highly structured. For instance, only 2n scalars
are sufficient to describe it instead of n2 ` n in general, and n´ 1 coefficients of one row
of the matrix may be obtained from the row above (resp. below) by simply shifting it to
the left (resp. right). It is thus reasonable to expect that such a system may be solved
more efficiently than a generic one, and we will indeed sketch one algorithm that does so.

We now briefly describe the “Berlekamp-Massey” algorithm for computing an annihi-
lator of a finite sequence. If applied to sufficiently many terms of the output sequence of
an LFSR, the returned annihilator will then correspond to the feedback function w.r.t.
the dual definition and then solve the above problem. Yet the algorithm is more general,
in that it always returns an annihilator even when the sequence was not produced in such
a way.

The algorithm starts from the observation that given a sequence punq, u0 ‰ 0, one
may iteratively compute an annihilator A by “using” u0 to cancel later non-zero terms.6

Suppose that ui1 is the first non-zero term of punq that follows u0, then ui1´pui1u
´1
0 qu0 “ 0,

and so ´ui1u
´1
0 Xi1 ` 1 annihilates punq at rank i1; more generally, the first i1 ` 1 terms

of pa1 ˚ uq are necessarily u0, 0, . . . , 0 by construction and the assumption on i1.
If all the terms after index i1 are also zero, A1 annihilates the full sequence (except,

unavoidably, the first term) and we are done. Otherwise let pa1 ˚uqi2 be the first non-zero
term, the objective is to find A2 s.t. pa2˚uqi2 “ 0. In that case this can be done effectively
without “breaking” the annihilation of previous terms ă i2 by exploiting the linearity of
the convolution and the fact that u0 is still “available” to cancel further terms. For the
sake of simplicity and w.l.o.g., we will now assume that the sequence has been normalised
so that u0 “ 1; letting A11 “ ´pa˚uqi2X

i2 , A2 “ A1`A
1
1, then pa2 ˚uq “ pa

1
1 ˚uq`pa1 ˚uq

and by construction pa1 ˚ uq0ăiăi2 “ 0, pa11 ˚ uqăi2 “ 0,‚ pa11 ˚ uqi2 “ ´pa ˚ uqi2 and so

7If rF1 : Fs “ d P N, a possible definition for TrF1{F is as TrpMF
ξ q, where MF

ξ is the matrix of multiplication
by ξ over F w.r.t to any representation and basis, and Tr is here the usual trace function for matrices.

5We will always make this assumption in the following, since otherwise pstq is all-zero after some rank,
and then not very interesting.

6If there are no such terms, the sequence is trivially annihilated by 1 after rank 1 and we are done.
‚This is because pa11 ˚ uqi for i ă i2 is simply equal to a multiple of ui´i2 , which is zero as per our

convention.

23

https://membres-ljk.imag.fr/Pierre.Karpman/cry_comp2021.pdf

https://membres-ljk.imag.fr/Pierre.Karpman/cry_comp2021.pdf

pa2 ˚uq0ăiďi2 “ 0 as desired. Now again if pa2 ˚uq annihilates the full remaining sequence,
we are done, otherwise one iterates the same process, with a twist.

The key observation, is that while it is always possible to use u0 in the same fashion
to annihilate every term except the first one, this may result in a trivial annihilator that
is as long as the sequence itself. However, if one focuses only on annihilating terms “as
far as possible” by using an annihilator “as short as possible” (i.e. of degree as small as
possible), one may use a previous non-trivial (hopefully short) annihilator for part of the
sequence and “shift” it so that it annihilates one more term. The general process is then
the following: suppose that one has Aj , Ak s.t. paj ˚ uqij “ 0, paj ˚ uqij`1 “: xj ‰ 0,
pak ˚uqik “ 0, pak ˚uqik`1 “: xk ‰ 0, ij ă ik, degpAjq ă degpAkq (we know from the above
that one can always use u0 at various offsets to obtain such annihilators in the non-trivial
cases). The goal is to find Ak`1 of minimal degree s.t. pak`1 ˚ uqik`1

“ 0. Then letting

A1k :“ ´xkx
´1
j Xk´jAj , Ak`1 :“ Ak`A

1
k, by linearity of the convolution pak`1˚uqik`1

“ 0;
one may then iterate this process until an annihilator for the full sequence is found.

For the annihilator produced by the following process to be the shortest possible (or
minimal), one needs to specify how the “auxiliary” annihilator (Ai in the above) is updated
through the execution of the algorithm. If it is never changed this corresponds to always
using u0 to construct the annihilator, and as we already mentioned this may result into
annihilators as long as the sequence even when shorter ones may exist. One may show
(but we will admit) that a change is necessary and sufficient every time there is a jump in
the degree of the current annihilator; that is, if (using the above’s notation) degpAk`1 ą
degpAkq, Ak becomes the “new Aj”, otherwise the latter is left unchanged. A possible
proof is by induction, both on the degree of the thusly obtained annihilator and on a lower
bound on the linear complexity of the sequence and showing their equality.

We conclude by briefly mentioning the cost of this algorithm. Every step of the above
annihilates at least one term of the sequence. If ` is its (possibly unknown) linear com-
plexity, a minimal annihilator will be found after annihilating at most 2` terms,˚˚ so after
at most 2` steps. Since every step costs Op`q arithmetic operations in F, the total cost is
Op`2q, which is then indeed better than a general-purpose resolution of a linear system.
There is also an added benefit over the latter when (as often in applications) only an
upper-bound n on ` is known: here the cost depends quadratically only on (the possibly
smaller) `, plus an unavoidable term linear in n to check that the annihilator is indeed
one for 2n terms, whereas general-purpose linear algebra would either need to solve one
size-n system with cost Opnωq (where ω is a feasible exponent for matrix multiplication),
or ` systems up to size ` (and up to ` additional verifications) for a cost of Op`ω`1 ` `nq.

˚˚This is in the case where the sequence was produced by an LFSR of size `; more terms may be necessary
in the presence of an arbitrary prefix.

24

https://membres-ljk.imag.fr/Pierre.Karpman/cry_comp2021.pdf

	Prime fields (and more)
	Fermat-based approach
	Euclid-based approach
	Structure of the multiplicative group of a finite field

	Extensions
	Cardinality, uniqueness
	Building extensions from polynomials

	Arithmetic in binary fields
	Data representation and basic operations
	Product in modular polynomial rings: an xtime approach
	Multiplication by a constant
	Product in modular polynomial rings: a carryless approach

	Linearly-recurring sequences
	Definitions and first properties
	Linear-feedback shift registers
	Computing an annihilator of a finite sequence

