
A short introduction to finite fields and their arithmetic

Pierre Karpman

April 8, 2021

1 Prime fields

This section introduces the simplest examples of finite fields, i.e. prime fields, and some
usual and basic definitions and results about finite fields.

1.1 Fermat-based approach

We start by recalling Fermat’s “little” theorem:

Theorem 1 (Fermat’s little theorem (FLT)). Let p be a prime, a P J1, p ´ 1K, then
ap´1 ” 1 mod p.

Proof. Following the strategy of Fermat, the proof is admitted.

This immediately leads to the fundamental result:

Theorem 2. The ring Z{nZ is a field iff. n is prime.

Proof. If n ą 1 is not prime, then D a, b P J2, n ´ 1K s.t. n “ ab so a is a zero divisor
modulo n and hence not invertible.

If n is prime, then by Theorem 1 every a P J1, n´ 1K is invertible modulo n.

Note that the above proof is essentially algorithmic in nature in that it provides a
way to compute inverses modulo p and then to divide in Z{pZ, which is the only one of
the basic operations (`,´,ˆ,˜) that is non trivial. In all of the following we will use the
notation Fp to denote the prime field Z{pZ, and rnsx where n is an integer and x the
element of an additive group to denote the scalar multiplication of x by n, i.e. the sum of
n copies of x together, or

řn
i“1 x.

Definition 3 (Characteristic). The characteristic of a ring A, denoted charpAq, is the
least integer n s.t. @x P A, rnsx “ 0, if it exists, and zero otherwise.

An equivalent definition for fields is to only consider the multiplicative identity 1
instead of an arbitrary x in the above statement; indeed since every non-zero x P A is by
definition equal to xˆ1, then by distributivity one has that rnsx “ rnspxˆ1q “ xˆprns1q
which is zero iff. rns1 “ 0.

Exercise 1. Show that charpFpq “ p.

Exercise 2 (Prime fields arithmetic). Let p be a prime. We write R the cost in elementary
bit operations to reduce x P J´p2, p2K modulo p (i.e. to compute the positive remainder
of the division of x by p).

1. How many bits are necessary and sufficient to represent all the elements of Fp?

2. Give an algorithm that computes the sum or the subtraction of two elements of Fp.
What is its cost in elementary bit operations?

1



https://www-ljk.imag.fr/membres/Pierre.Karpman/cry_comp2020.pdf

3. Same question for the product, assuming that schoolbook integer multiplication is
used.

4. Same question for computing the inverse of an element using the FLT. Give the cost
first in function of the cost M of products in Fp, then in elementary bit operations.

In the last question, one may rely on a “fast exponentiation” algorithm, for which we give
an example in Fig. 1.

1 /* Input:

2 - x, an element of a group G (with multiplicative notation)

3 - b, an integer > 1

4 Output:

5 - x**b in G

6 */

7 fastexp(x, b)

8 {

9 res = 1;

10 acc = x;

11 while(b > 0)

12 {

13 if (b % 2 == 1)

14 res = res * acc; // product in G

15 acc = acc * acc; // squaring in G

16 b = b / 2; // integer division

17 }

18 return res;

19 }

Figure 1: Fast exponentiation in a group.

While it is clear that the additive group of Fp is cyclic, this is maybe less so for its
multiplicative group. It is in fact the case that the multiplicative group of any finite
field —and prime fields in particular— is cyclic. We state this in this particular case and
without proof as:

Theorem 4. The multiplicative group Fˆp of Fp is cyclic. Any of its generators is called
a primitive element of Fp.

1.2 Euclide-based approach

Given the importance of finite fields and of the ring Z{nZ in general, we wish to reprove
some of the above results using Euclid’s extended algorithm as a basis instead of the FLT.

Theorem 5 (Extended Greatest Common Divisor (XGCD)). Let a, b P Zzt0u, then
Du, v, d P Z s.t. ua ` vb “ d “ gcdpa, bq, where d is the greatest common divisor of
a and b, i.e. the largest positive integer that divides both a and b.

Proof. We first show that if u, v, d exist s.t. ua` vb “ d and d divides both a and b, then
d is indeed gcdpa, bq. Assume instead that d1 ą d divides both a “ a1d1 and b “ b1d1, then
dividing both sides by d1 we get ua1 ` vb1 “ d{d1 where the left-hand side is integral and
the right-hand side is not, which is a contradiction, so such a d1 cannot exist.

2

https://www-ljk.imag.fr/membres/Pierre.Karpman/cry_comp2020.pdf


https://www-ljk.imag.fr/membres/Pierre.Karpman/cry_comp2020.pdf

It remains to show that such a triplet exists, which we do algorithmically thanks to
Euclid’s algorithm. We start by proving the “standard” non-extended algorithm that only
computes d and address the computation of u and v next.

W.l.o.g. we assume that a ě b and use the fact that d “ gcdpa, bq “ gcdpb, a mod bq,
where x mod y denotes here the positive remainder of the division of x by y. Indeed one
has that a “ a1d and b “ b1d for some a1, b1, hence letting a “ qb`r we have r “ dpa1´qb1q
so d | r “ a mod b; conversely if there were d1 ą d that divided both r and b, then one
would have a “ d1pqb2 ` r2q for some b2, r2, so d1 would also divide a which contradicts
the fact that d “ gcdpa, bq. We then use this equality repeatedly to compute the sequence
r0 :“ a, r1 :“ b, r2 :“ r0 mod r1, . . . , ri :“ ri´2 mod ri´1, . . .. Since the ri’s are positive
and decreasing there is an index k ` 1 s.t. rk`1 “ 0, which is equivalent to the fact that
rk|rk´1 which itself implies that gcdpr0, r1q “ gcdprk´1, rkq “ rk.

We now conclude by showing how to compute u and v. Let T1 “

ˆ

0 1
1 ´r0 ˜ r1

˙

,

where x ˜ y denotes here the quotient in the division of x by y, then we have that
T1

`

r0 r1
˘t
“

`

r1 r2
˘t

. By defining T2, . . . ,Tk similarly and letting M “ Tk ¨ ¨ ¨T1 it

follows that M
`

r0 r1
˘t
“

`

rk 0
˘t

and the first row of M gives the desired relation.

Remark 6. The above algorithm (and the notion of GCD) is not restricted to integers
and may also for instance be applied to polynomials. There also exist many variants of
Euclid’s algorithm, some being asymptotically faster than the one presented above.

We may now reprove the second part of Theorem 2 by observing that one may recover
an inverse of any a P J1, p ´ 1K modulo p from ua ` vp “ gcdpa, pq “ 1 as (the possibly
reduced) u, since ua ” 1 mod p. It is also worth noting that this approach is not restricted
to finite fields as it allows to compute the inverse of any element of (say) an arbitrary ring
Z{nZ as long as it is coprime with n, those elements being indeed exactly the invertible
ones.

2 Extensions

In the previous section we have seen how to build and compute in finite fields Fp with
a prime number of elements. We now wish to consider extensions of such fields whose
number of elements is not necessarily prime any more.

2.1 Cardinality, uniqueness

Before building extension fields, we will state (and partially prove) two important results
regarding finite fields in general.

Theorem 7 (Cardinality). Every finite-field F has cardinality q “ pk where p is prime
and k is a non-zero positive integer.

Proof. We first show that charpFq is prime. Since q is finite Dn P Nzt0u s.t. rns1 “ 0, so
c :“ charpFq ą 0. Now assume by contradiction that c “ ab for some a, b P J2, c´ 1K. We
then have rabs1 “ 0 “ rasprbs1q; let β “ rbs1 ‰ 0, since we are in a field this latter element
must have a multiplicative inverse β´1 and it follows that prasβqβ´1 “ raspββ´1q “ ras1 “
0 with a ă c, which is a contradiction. So c must be a prime p.

To prove the remainder of the statement we will show that F must have the structure
of a finite-dimensional Fp-vector space, which will allow us to conclude.

First let us remark that equiped with the same laws as F, F1 :“ t1, r2s1, . . . , rp´1s1u –
Fp: indeed it is clear that the ris1, 1 ď i ă p are distinct, and that ras1ˆrbs1 “ rabs1 “ rab

3

https://www-ljk.imag.fr/membres/Pierre.Karpman/cry_comp2020.pdf


https://www-ljk.imag.fr/membres/Pierre.Karpman/cry_comp2020.pdf

mod ps1 follows from distributivity and the fact that charpFq “ p. We thereafter identify
the subfield F1 of F with Fp.

Now either Fp “ F and we are done, or there exists β2 P F that is Fp-linearly-
independent from β1 :“ 1, i.e. that cannot be written as λ1β1 for some λ1 P Fp. In that
latter case we consider the set F2 of linear combinations tλ1β1 ` λ2β2u with λ1, λ2 P Fp,
which is of size p2;∗ now either F2 “ F and we are done, or we again pick β3 P F not of
the form λ1β1 ` λ2β2 to build F3 of size p3. It is clear that we can iterate this process
until Fk “ F, which must be true for some k since q is finite. At that point one has that
every element of F can be written as the Fp-linear combination of tβ1, . . . , βku, that two
elements can be added “component-wise” in this representation, and that one can rescale
an element by an arbitrary scalar in λ P Fp by multiplying every component; we leave the
proof that F satisfies the remaining axioms of an Fp-vector space to the reader.

Remark 8. The set tβ1, . . . , βku as above is said to form an Fp-basis of F, or a basis of F
over Fp. Note that in general such a basis is not unique.

We only state and do not prove the following fundamental result.

Theorem 9 (Unicity). Let F be a finite field with q elements, then every other field with
q elements (if any) is isomorphic to F.

From now on we will denote the unique (up to isomorphism) field with q elements by
Fq.

Remark 10. Let F, F1 be two finite fields with q elements, although from Theorem 9
one has that F – F1, F and F1 may still have different representations for their elements
and their arithmetic. From a practical point of view this means that even if F and F1
fundamentally posess the same structure, it might be easier to implement operations in F
than in F1.

2.2 Building extensions from polynomials

The basic idea used to build extensions of a prime field such as F2 is to observe that one
may easily define polynomials over any field; for instance polynomials in one indeterminate
X form the ring F2rXs.

Exercise 3. Let P “ X2`X ` 1, Q “ X4`X ` 1 P F2rXs, compute P `P , P `Q, PQ.

There are two obstacles that prevent F2rXs from being a finite field: it is infinite, and
not all of its non-zero elements are invertible. One may remark that these are also what
prevents Z from being a finite field and thus may try to adapt the strategy yielding the
finite fields Z{pZ to polynomials.

Fact 11. Let P P FqrXs be a polynomial of degree d ě 1, then FqrXs{xP y is a finite ring
of cardinality qd.

Exercise 4. Let P “ X2 ` X ` 1, Q “ X4 P F2rXs, compute the Euclidean division of
Q by P . Let R “ X,S “ X ` 1 P F2rXs, compute (the class of) RS in F2rXs{xP y, that
is, the unique polynomial of degree less than two equal to the remainder of the division
of RS by P . Same question where the product is computed in F2rXs{xX

2 ` Xy; is this
latter ring a field?

The last exercise shows that similarly to the fact that Z{nZ is a field iff. n is prime,
some constraint on P is also necessary for FqrXs{xP y to possibly be one. This constraint
is in fact the same as in the integral case, that is we require P not to have any non-trivial
factorisation over Fq.
∗This is because by definition of β2, tλ1β1u X tλ2β2u “ 0.

4

https://www-ljk.imag.fr/membres/Pierre.Karpman/cry_comp2020.pdf


https://www-ljk.imag.fr/membres/Pierre.Karpman/cry_comp2020.pdf

Definition 12 (Irreducible polynomial). Let P be a polynomial of degree d ě 1 with
coefficients in some field K, we say that P is irreducible over K1 Ě K iff. it cannot be
written as the product of two non-constant polynomials with coefficients in K1.

Exercise 5. Is X2 ` 1 irreducible over R? What about over C? And over F2?

We now state the “equivalent” of Theorem 2 for polynomials over finite fields.

Theorem 13. Let P P FqrXs be a monic polynomial of degree d ě 1, then FqrXs{xP y is
a finite field with qd elements iff. P is irreducible over Fq.

Proof. If P is not irreducible, then its factors divide zero in FqrXs{xP y and thus do not
admit any inverse in this ring. In the converse case, all of the qd´ 1 non-zero polynomials
P 1 of FqrXs of degree less than d are coprime with P and thus using Theorem 5 for
polynomials one may compute P 1´1 s.t. P 1P 1´1 `QP “ 1.

In the above, we say that a field Fqd :“ FqrXs{xP y is an extension of Fq of degree d.
One may remark that by construction Fqd has the structure of a d-dimensional Fq-vector
space and that its characteristic is also equal to the one of Fq. More generally given two
finite fields F and F1, we may write F1{F to denote the fact that F1 is an extension of F
— conversely this means that F is a subfield of F— and rF1 : Fs to denote the degree of
the extension.

We admit the following result.

Theorem 14. Let F be an arbitrary finite field, then for every d ě 1 there exists at least
one irreducible polynomial of degree d in FrXs.

To this we add that it is computationally “efficient” to test if a given polynomial is
irreducible, and that irreducible polynomials form a dense subset of all the polynomials. It
then follows that there exists an efficient randomised procedure that returns an irreducible
polynomial of arbitrary degree over any finite field.

We also have the immediate corollary.

Corollary 15. There is a finite field with q elements iff. q “ pk, where p is prime and k
is a non-zero positive integer.

Proof. One direction is given by Theorem 7, the other by Theorems 13 and 14.

Finally since it is efficient to find an irreducible polynomial of arbitrary degree, it is
similarly efficient to compute a representation of an arbitrary finite field. Since there are
also in general several irreducible polynomials of the same degree, one may define several
fields with the same number of elements as, say, FqrXs{xP y, FqrXs{xQy with distinct P
and Q both of degree d and irreducible over Fq. However by Theorem 9 those two fields
would in fact be isomorphic (written FqrXs{xP y – FqrXs{xQy).

We now give a few examples in the binary case.

Example 16. One may check that P :“ X2`X ` 1 is irreducible over F2. Consequently
F2rXs{xP y is a degree-2 extension over F2, i.e. a finite field with 4 elements. Those
elements may be represented as polynomials as 0, 1 (the elements of the subfield F2), X
and X ` 1. The addition between the elements is the addition for polynomials and the
multiplication is done modulo P , i.e. XˆX “ X`1, XpX`1q “ 1, pX`1qpX`1q “ X.

Example 17. One may check that P :“ X4 ` X ` 1 and Q :“ X4 ` X3 ` 1 are both
irreducible over F2, so one may represent the field F24 both as F2rXs{xP y or F2rXs{xQy.

5

https://www-ljk.imag.fr/membres/Pierre.Karpman/cry_comp2020.pdf


https://www-ljk.imag.fr/membres/Pierre.Karpman/cry_comp2020.pdf

Example 18. Let P be as in Example 16, in the ring pF2rXs{xP yqrY s, the polynomial
Y 2 ` Y ` 1 is not irreducible over F2rXs{xP y since it factors as pY `XqpY `X ` 1q “
Y 2 ` XY ` Y ` XY ` X2 ` X “ Y 2 ` Y ` X2 ` X “ Y 2 ` Y ` 1. One may however
check that Q :“ Y 2 ` XY ` 1 is irreducible over the same field, so one may build a
degree-2 field extension pF2rXs{xP yqrY s{xQy. Taken together, the extensions over F2 and
F2rXs{xP y form an extension tower of two extensions of degree 2, which yields an extension
of degree 4 “ 2 ˆ 2 over the base field F2, i.e. a representation of F24 ; in other words,
F24 – F2rX,Y s{xP,Qy.

Example 19. Let P , Q be as in Example 17; we wish to explicit an isomorphism ϕ between
F :“ F2rXs{xP y and F1 :“ F2rY s{xQy

† whose existence is guaranteed by Theorem 9. That
is we want to determine ϕ : F Ñ F1 s.t. @ a, b P F one has ϕpa ` bq “ ϕpaq ` ϕpbq and
ϕpabq “ ϕpaqϕpbq.

From the definition, it is clear that we need to have ϕp0q “ 0 and ϕp1q “ 1, where
the right-hand side of both equalities “live in F1”. To determine the image of ϕ for the
remaining elements we may try to use the fact that the mulitplicative group of a finite
field is cyclic. Observing that xXy “ Fˆ and xY y “ F1ˆ, we could try to extend ϕ by
taking α “ X, β “ Y , and ϕpαiq “ βi for all i. For any non-zero a, b one gets ϕpabq “
ϕpαiαjq “ ϕpαi`jq “ βi`j “ βiβj “ ϕpaqϕpbq for some i, j. Defined thusly ϕ would
indeed be a group homorphism Fˆ Ñ F1ˆ, however it would not be one for the additive
group; this is not surprising since here ϕ would essentially be the “identity” mapping, and
F and F1 do use a different representation: in particular one requires ϕpX4 ` X ` 1q “
ϕpX4q ` ϕpXq ` ϕp1q “ 0 and taking ϕpXq “ Y yields Y 4 ` Y ` 1 “ Y 3 ` Y ‰ 0. More
generally, if we define the minimal polynomial minK1paq over K1 of an element a P K to
be the monic polynomial

řd
i“0 πiZ

i P K1rZs of least degree that annihilates a (i.e. s.t.
řd
i“0 πia

i “ 0) we have here the necessary condition that @a,minF2pϕpaqq “ minF2paq.
To show that adding this condition is also sufficient we first remark that if degpminpaqq “

k‡ then k is also the rank of xaiyiPN as an F2-vector space. In our particular case the dimen-
sion of F over F2 is 4, so we have that if k “ 4 then every element of F can be written as an
F2-linear combination of 1 “ a0, a, a2 and a3. Suppose now that we have ϕpαq “ β with
primitive α, β and where minpαq “ minpβq a polynomial of degree 4, then xαiy0ďiă4 (resp.
xβiy0ďiă4) is a basis of F (resp. F1) over F2. Moreover writing

ř4
i“0 πiZ

i for minpαq one has
that α4 “

ř3
i“0 πiα

i and β4 “
ř3
i“0 πiβ

i; α5 “
ř3
i“0 πiα

i`1 “
ř2
i“0 πiα

i`1 ` π3
ř3
i“0 πiα

i

and β5 “
ř3
i“0 πiβ

i`1 “
ř2
i“0 πiβ

i`1`π3
ř3
i“0 πiβ

i; more generally if a “ αj “
ř3
i“0 aiα

i

then ϕpaq “ βj “
ř3
i“0 aiβ

i and so ϕ is a homomorphism for the addition.
To conclude the construction of ϕ, it is now sufficient to find a suitable primitive

element β P F1 whose minimal polynomial equals minpαq for some primitive α P F. In our
example one can check that minpY 7q “ Z4`Z`1 and since 7 ffl 15 its multiplicative order
is 15; we then finally define ϕ as X ÞÑ Y 7, and all the other points are obtained by using
the fact that ϕ is an isomorphism.

The above Example 19 goes a fair way to actually proving Theorem 9, as a full proof
would only need to show in the last step that a suitable primitive element with a prescribed
minimal polynomial always exists. We do not provide such a proof but sketch the main
steps and arguments.

Consider F{Fq, rF : Fqs “ d, then every element of F is a root of P :“ Xqd ´X, i.e.
P splits over F. On the other hand one may show that over Fq the decomposition of P
into irreducible factors contains all the monic irreducible polynomials of degree dividing d
and it follows that those all split over F. To build an isomorphism between F and another
field F1 of the same cardinality, it is sufficient to map a primitive element of F to one of

†We use two names for the indeterminate so as to make it simpler to determine in which representation
an element is living.
‡We drop the index F2 from “minF2” in the following for the sake of conciseness.

6

https://www-ljk.imag.fr/membres/Pierre.Karpman/cry_comp2020.pdf


https://www-ljk.imag.fr/membres/Pierre.Karpman/cry_comp2020.pdf

F1 with the same minimal polynomial Q, which is akin to finding a root of Q in F1. One
concludes by observing that the minimal polynomial is always monic and irreducible, and
always of degree d if the associated element is primitive. Furthermore, the primitivity of an
element is entirely determined by its minimal polynomial in the sense that all the primitive
elements are exactly the roots of certain primitive irreducible polynomials of maximum
degree d. Note however that not all irreducible polynomials are primitive, which means
that in general not all elements with minimal polynomial of degree d are primitive.

We now give an alternative description of the process used to build extension fields
in Theorem 13: one may build a degree-d extension Fqd of Fq by adding a root α of a
degree-d polynomial P that is irreducible in Fq. If we write Fqrαs for such a construction,
then α corresponds to (the class of) X in FqrXs{xP y; indeed in the latter case the minimal
polynomial of X is P , i.e. it is one of its roots.

In the case of finite fields the choice of the root used to build the extension Fqrαs does
not matter in the sense that adding one root of P to Fq is equivalent to adding all of
them; we say that Fqrαs is the splitting field of P .

Example 20. Let P :“ X2 ` 1 and denote one of its roots by i, then the field C of
complex numbers can be built as Rris, or equivalently RrXs{xP y.

In the above Example 20, the resulting field C is algebraically closed, or equivalently it
is the algebraic closure R of R: every polynomial of CrXs can be decomposed into linear
factors; in particular this means that one cannot build further extensions of C by adding
more roots of irreducible polynomials. In the case of finite fields, we know from Theorem 14
that the algebraic closure Fq of any finite field Fq is not finite. A more direct (albeit non
constructive) proof of this fact is that assuming that Fq is finite, then 1 `

ś

aPFq
pX ´ aq

would have no root in Fq, which is a contradiction.

3 Arithmetic in binary fields

Our goal is now to discuss some implementation aspects for extension fields, and binary
fields in particular. We will mostly focus on computing products, since additions are
trivial and inversion can be implemented with an exponentiation (which while sometimes
suboptimal will be considered sufficient in our case).

3.1 Data representation and basic operations

Before describing algorithms and their implementation, we need to decide on a suitable
way to represent our field elements. Since we know that a binary field F2n has the structure
of a vector space Fn2 and that elements of F2 can be represented by 0 and 1, a natural
choice is to represent x P F2n as a vector of Fn2 , itself represented by a binary string of
length n. In a programming language, a binary string is often conveniently manipulated
as the (unsigned) integer that it represents; that is, one uses the canonical embedding
t0, 1u˚ ãÑ N, bk ¨ ¨ ¨ b1b0 ÞÑ

řk
i“0 bi2

i. We will use a similar convention in our case and
often denote elements of F2n by an integer J0, 2n ´ 1K; one must be cautious however not
to interpret this as the (wrong) fact that F2n – Z{2nZ. More generally, this convention
will be used for any element of an F2-vector space, not necessarily a finite field.

Example 21. Let F24 – F2rXs{xX
4`X`1y, then the element X3`X`1 is represented

by the binary string 1011, written 0xB. The irreducible polynomial X4 `X ` 1 used in
this representation of F24 is represented by the binary string 10011, written 0x13; since
this defining polynomial is monic, if its degree is known from the context, a compressed
representation as 0011, written 0x3 may be used instead.

7

https://www-ljk.imag.fr/membres/Pierre.Karpman/cry_comp2020.pdf


https://www-ljk.imag.fr/membres/Pierre.Karpman/cry_comp2020.pdf

The representation of vectors of Fn2 as unsigned integers goes further than being a
compact encoding; basic operations in this representation are also readily available in
many instruction sets, and accessible through any decent programming language. We
illustrate this in C in the case of elements represented in a single 64-bit machine word, but
extension to larger or smaller inputs are straightforward.

— The addition of two vectors coincides with the bitwise XOR: u ^ v;.

— The pointwise product coincides with the bitwise AND: u & v;.

— The Hamming weight of a vector (i.e. the number of coordinates where it is non-zero)
coincides with the population count. On x86 processors with the POPCNT instruction
set extension, this can be computed using the popcnt instruction, accessible for
instance through the intrinsic _mm_popcnt_u64.

— In the more specific case of polynomials of F2rXs{xX
64 ` 1y, multiplication by Xi

coincides with the left circular shift (or rotation) on 64-bit words.

— In the more specific case of polynomials of F2rXs, the product coincides with the car-
ryless multiplication. On x86 processors with the PCLMULQDQ instruction set exten-
sion, this can be computed using the pclmulqdq instruction, accessible for instance
through the intrinsic _mm_clmulepi64_si128. Also, the quotient (resp. remainder)
in the division by Xi coincides with the right logical shift: p >> i; (resp. bitwise
AND with the string whose i lowest bits are 1: p & ((1 << i) - 1)).

3.2 Product in modular polynomial rings: an xtime approach

For a field F2n represented as F2rXs{xP y with P some irreducible polynomial of degree n,
the product of two field elements may be implemented by exactly using this representation,
i.e. from the product of two polynomials modulo P . Note also that the same would be
true even if P were not irreducible, in the same way that arithmetic in Z{pZ is in large
part a special case of the one in Z{nZ. In this section we describe how to implement the
product by using an “xtime” primitive operation; we will describe an alternative approach
in Section 3.4 that uses a different primitive operation.

We start with the useful subcase where one of the operands in the product is the
monomial X, resulting in an elementary operation customarily called xtime. We take
Q P F2rXs of degree at most n ´ 1 and wish to compute QˆX mod P , i.e. the unique
polynomial U s.t. degpUq ă n, QˆX “ V ˆP `U . This can be done easily by observing
that: 1) if degpQ ˆXq ă n then U “ Q ˆX; 2) if degpQ ˆXq ě n then it is exactly n
so degpV q “ 0; but V is also non-zero and since we are working in F2rXs it must be 1, so
then U “ QˆX ´ P .

If polynomials are represented as in Section 3.1, the above operation can be imple-
mented efficiently as in Fig. 2.

If the underlying architecture uses two’s complement representation for signed integers,
the branchless alternative of Fig. 3 may be preferred.

Remark 22. The above xtime operation is sometimes described to correspond to the
clocking of a Linear-Feedback Shift Register (LFSR) in Galois configuration. This is fol-
lowing the view that in xtime, one shifts bits in a register and linearly updates the state
of the register with the leftmost, thrown-out bit. We will not explore this alternative
description in more details, but only mention that LFSR are frequently-used components
in hardware systems due to their efficient implementation as circuits.

We are now ready to address the general case, using xtime as a subroutine. This
essentially follows from distributivity, and using a process similar to the one of Fig. 1.

8

https://www-ljk.imag.fr/membres/Pierre.Karpman/cry_comp2020.pdf


https://www-ljk.imag.fr/membres/Pierre.Karpman/cry_comp2020.pdf

1 /* Input:

2 - Q, a binary polynomial of degree < 4

3 Output:

4 - Q*X mod X**4+X+1

5 */

6 uint8_t xtime(uint8_t Q)

7 {

8 if (Q < 8) // the polynomial represented by Q has deg < 3

9 return Q << 1;

10 else

11 return (Q << 1) ^ 0x13;

12 }

Figure 2: Multiplication of Q by X modulo X4 `X ` 1.

1 /* Input:

2 - Q, a binary polynomial of degree < 4

3 Output:

4 - Q*X mod X**4+X+1

5 */

6 uint8_t xtime_bl(uint8_t Q)

7 {

8 uint8_t m = -(Q >> 3); // ~0 if Q >> 3 == 1, 0 otherwise

9 return (Q << 1) ^ (m & 0x3);

10 }

Figure 3: Multiplication of Q by X modulo X4 `X ` 1, branchless.

The idea is to remark that one can write the product Q ˆ R mod P as Q
řn´1
i“0 RiX

i

mod P , where R “
řn´1
i“0 RiX

i. Then since the Ri’s belong to t0, 1u one only needs to
compute QˆXi up to i “ degpRq using repeated calls to xtime and sum those terms for
which Ri “ 1. This is detailed in Fig. 4.

3.3 Multiplication by a constant

One may sometimes be interested solely in the multiplication by a fixed (but arbitrary)
constant α P F2n – F2rXs{xP y rather than by an arbitrary element. Although it is of
course possible to still use a general multiplication algorithm to do so, this specialisation
opens the way to a more dedicated approach. The idea is to observe that multiplication
by a constant is a linear operation, and since F2n has the structure of an F2-vector space,
for every α there must exist a matrix Mα P Fnˆn2 implementing x ÞÑ xα as x ÞÑ xMα,
writing x for x to emphasise its structure as a vector and using the right product for Mα

(making x a row vector).
We first describe MX before generalising to arbitrary constants. In this case, MX in

fact implements xtime; taking the (somewhat arbitrary) convention that the polynomial
řn´1
i“0 QiX

i be represented as the vector
`

Q0 ¨ ¨ ¨ Qn´1
˘

, then one has:

MX “

ˆ

0n´1 In´1
p

˙

,

with 0n´1 P Fpn´1qˆ12 the all-zero column vector in dimension n ´ 1, In´1 P Fpn´1qˆpn´1q2

the identity matrix, and p “
`

P0 ¨ ¨ ¨ Pn´1
˘

an encoding of the defining polynomial

9

https://www-ljk.imag.fr/membres/Pierre.Karpman/cry_comp2020.pdf


https://www-ljk.imag.fr/membres/Pierre.Karpman/cry_comp2020.pdf

1 /* Input:

2 - Q, R binary polynomials of degree < 4

3 Output:

4 - Q*R mod X**4+X+1

5 */

6 uint8_t gf16mul(uint8_t Q, uint8_t R)

7 {

8 uint8_t res = 0;

9 uint8_t acc = Q;

10 while (R > 0)

11 {

12 if (R & 1)

13 res ^= acc;

14 acc = xtime(acc);

15 R >>= 1;

16 }

17 return res;

18 }

Figure 4: Multiplication of Q by R modulo X4 `X ` 1.

P minus its degree-n coefficient. This matrix is in fact the companion matrix of P ,§ a
canonical representative of all matrices with minimal polynomial equal to P .

Example 23. In the field F24 – F2rXs{xX
4 `X ` 1y, one has:

MX “

¨

˚

˚

˝

0 1 0 0
0 0 1 0
0 0 0 1
1 1 0 0

˛

‹

‹

‚

.

Now to define Mα for an arbitrary element α one uses that the minimal polynomial
of X is of degree n, which means that Mα P xMXi “ M i

Xy0ďiăn. Concretely, writing
α “

řn´1
i“0 αiX

i, one simply has Mα “
řn´1
i“0 αiMXi .

Example 24. Continuing Example 23, take α “ X3 `X ` 1, then:

M1 “

¨

˚

˚

˝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

˛

‹

‹

‚

, MX3 “

¨

˚

˚

˝

0 0 0 1
1 1 0 0
0 1 1 0
0 0 1 1

˛

‹

‹

‚

, Mα “

¨

˚

˚

˝

1 1 0 1
1 0 1 0
0 1 0 1
1 1 1 0

˛

‹

‹

‚

.

From an implementation perspective, the vector-matrix product xMα can be efficiently
implemented in the binary case by using a broadcast approach. The idea is to remark that
the result is the sum of the rows of Mα for which the corresponding coordinate in x is
non-zero, and this can be computed efficiently if Mα is stored in row-major format. We
illustrate this in Fig. 5, in dimension 64.

We conclude with the remark that the matrix Mα of the multiplication by α may also
be used to reduce the computation of inverses in F2n to linear algebra in Fnˆn2 . Indeed
it is clear that M´1

α “Mα´1 , and the only potential difficulty in using this approach as
a general inversion algorithm would be to recover α´1 from M´1

α (or in fact α from Mα

§Or rather, one of the four possible definitions for the companion matrix, since this particular one
reflects our ordering for the coefficients of polynomials and the fact that we multiply on the right.

10

https://www-ljk.imag.fr/membres/Pierre.Karpman/cry_comp2020.pdf


https://www-ljk.imag.fr/membres/Pierre.Karpman/cry_comp2020.pdf

1 /* Input:

2 - x, a binary vector of dimension 64

3 - M, a binary 64*64 matrix in row-major format

4 Output:

5 - x*M

6 */

7 uint64_t mmul64(uint64_t x, uint64_t M[64])

8 {

9 uint64_t res = 0;

10 for (int i = 0; i < 64; i++)

11 {

12 uint64_t m = -(x & 1);

13 res ^= m & M[i];

14 x >>= 1;

15 }

16

17 return res;

18 }

Figure 5: Vector-matrix multiplication in F64ˆ64
2 .

in general). However this latter task is made rather easy by observing that due to the
special structure of MX , the only non-zero coefficient in the first row of MXi is in the
ith coordinate (with indices starting from zero); it is thus straightforward to recover an
expression of α in the basis xXiy0ďiăn. In fact this observation tells us that if what we
wish to compute is α´1 rather than its full multiplication matrix, it is in fact enough to
compute only the first row of M´1

α .

Example 25. Continuing Example 24, we compute

Mα´1 “M´1
α “

¨

˚

˚

˝

1 0 1 0
0 1 0 1
1 1 1 0
0 1 1 1

˛

‹

‹

‚

,

whose first row reveals that α´1 “ X2 ` 1.

3.4 Product in modular polynomial rings: a carryless approach

It is clear that to compute a product in a modular ring, one may compose the computation
of the product in the corresponding “full” (i.e. not modular) ring with a reduction step.
The goal of this section is to describe such a reduction algorithm for polynomials (i.e.
which on input P,Q computes the unique polynomial R s.t. degpRq ă degpP q and R ”
Q mod P ) that uses full (i.e. not modular) polynomial multiplication and addition as
primitive operations; one also needs to compute quotients and remainders of divisions
by monomials Xd, but those are easy since they only consist in keeping the monomials
of degree more and less than d respectively, as already remarked in Section 3.1. This
reduction algorithm is then especially useful if one is able to compute products efficently,
which is for instance the case in F2rXs if an instruction such as PCLMULQDQ is available; in
that case both the full product and the reduction will essentially rely on this instruction.
We will also see that, justifying Remark 10, the cost of this reduction algorithm will
depend on the “shape” of the reduction polynomial P : this means that for a fixed field

11

https://www-ljk.imag.fr/membres/Pierre.Karpman/cry_comp2020.pdf


https://www-ljk.imag.fr/membres/Pierre.Karpman/cry_comp2020.pdf

(up to isomorphism), the implementation of arithmetic using this approach will be more
efficient in some representations than in others.

The algorithm is defined in Fig. 6. To prove its cost and its correctness, we will use an
invariant on A`B and a variant on B. Namely, we have that A`B is always congruent to Q
modulo P , and that the degree of B decreases by at least d´du ě 1 at every iteration (where
du “ degpUq) until its degree becomes less than d, at which point the algorithm terminates
in the next iteration at the latest. It follows that the algorithm returns the correct result
after at most pdegpQq ´ dq{pd´ duq iterations, and it will then be more efficient when du
is small. Now to prove the invariant A ` B ” Q mod P we observe that this is initially
true; also degpAq ă d since A is initially zero and one only adds to it polynomials of degree
less than d. Then the previous equivalence can be written as A ` Blo ` Bhi ” Q mod P ,
where Blo (resp. Bhi) denotes the terms of B of degree at most d´ 1 (resp. degree at least
d), i.e. Blo “ B % X**d, Bhi “ X**d(B / X**d), and the conclusion follows from the fact
that U ” X**d mod P . Finally the variant on B comes from the fact that the degree of
B / X**d is at least d less than the one of B when degpBq ě d and zero otherwise, and
that the one of U is du by definition.

1 /* Input:

2 - P, Q; deg(Q) = d

3 Output:

4 - R ~ Q mod P, deg(R) < d

5 */

6 REDBL(P, Q)

7 {

8 A = 0;

9 B = Q;

10 U = X**d % P;

11 while (B > 0)

12 {

13 A += B % X**d;

14 B = (B / X**d)*U;

15 }

16 return A;

17 }

Figure 6: Reduction of Q modulo P , using a Barrett-like approach.

We now give in Fig. 7 an example of an implementation of the above algorithm in C,
using PCLMULQDQ accessed from the _mm_clmulepi64_si128 intrinsic. More precisely, this
is a full implementation of the multiplication in F264 – F2rXs{xX

64 `X4 `X3 `X ` 1y
that uses the above for the reduction step. In some more details, lines 8 and 9 set the
low 64 bits of two 128-bit registers to the binary representation of the operands Q and
R respectively, while line 10 does it for the representation of X64 modulo the chosen
irreducible polynomial, i.e. X4 ` X3 ` X ` 1. Line 12 assigns to b the result of the
carryless (i.e. “binary polynomial”) multiplication of q and r. This is a polynomial of
degree at most 126, which then fits into 128 bits. The last operand 0x00 means here that
the two inputs of degree at most 63 are to be found in the 64 low bits of the first two
operands. Line 15 performs a similar computation between b and u, but this time with
last operand 0x01, meaning that the first polynomial is defined by the 64 high bits of b,
i.e. the terms of degree above 64 then divided by X64; that is, this line corresponds to
the computation of line 14 in Fig. 6. Note that at this point, the polynomial represented
by b has degree at most 66 “ 126´p64´ 4q. Line 16 adds the full result to a that already

12

https://www-ljk.imag.fr/membres/Pierre.Karpman/cry_comp2020.pdf


https://www-ljk.imag.fr/membres/Pierre.Karpman/cry_comp2020.pdf

contains the previous value of b (however only the 64 low bits of this register, corresponding
to the terms of degree less than 64, will eventually be used). Line 17 proceeds as line 15;
at this point the polynomial represented by b has degree at most 6, so we know that
another iteration would result in the zero polynomial and there would be nothing more to
add to a. This means that the fully-reduced result is to be found in the 64 low bits of a
after line 18, which are then returned in line 20. We conclude with two remarks: first the
implementation in Fig. 7 runs in “constant time”, in the sense that the amount of work
does not depend on the input (in particular it always does the maximum work needed to
fully reduce the product, which may be more than what is sometimes needed); this may
be useful in contexts when one does not want the computation time to leak information
about the operands. Second, we again emphasize that this running time was kept low by
using an irreducible polynomial s.t. dU is particularly small.

1 /* Input:

2 - Q, R binary polynomials of degree < 64

3 Output:

4 - Q*R mod X**64 + X**4 + X**3 + X + 1

5 */

6 uint64_t gf2_64mul(uint64_t Q, uint64_t R)

7 {

8 __m128i q = _mm_set_epi64x(0, Q);

9 __m128i r = _mm_set_epi64x(0, R);

10 __m128i u = _mm_set_epi64x(0, 0x1B);

11 __m128i a;

12 __m128i b = _mm_clmulepi64_si128(q, r, 0x00);

13

14 a = b;

15 b = _mm_clmulepi64_si128(b, u, 0x01);

16 a = _mm_xor_si128(a, b);

17 b = _mm_clmulepi64_si128(b, u, 0x01);

18 a = _mm_xor_si128(a, b);

19

20 return _mm_extract_epi64(a, 0);

21 }

Figure 7: Multiplication of Q by R modulo X64 `X4 `X3 `X ` 1.

3.5 Arithmetic in a recursive representation

In this section we wish to design a multiplication (and addition) algorithm for elements of
F22n built from a recursive Artin-Schreier extension tower as:

F22n – F2rX1, . . . , Xns{xX
2
i `Xi `

ź

jăi

Xjy1ďiďn

The algorithm will itself be recursive, which means that we will reduce the multiplication
in F22n to multiplication in F

22n´1 , etc..
It can be shown that for all n ě 1 the Artin-Schreier polynomial X2

n`Xn`
ś

jănXj is

irreducible in F2rX1, . . . , Xns{xX
2
i `Xi`

ś

jăiXjy1ďiďn´1 (where we take the convention
that for n “ 1 the empty product equals 1), so one can build an extension of degree 2 of
F
22

n´1 – F2rX1, . . . , Xn´1s{xX
2
i `Xi`

ś

jăiXjy1ďiďn´1 by adding one indeterminate Xn

13

https://www-ljk.imag.fr/membres/Pierre.Karpman/cry_comp2020.pdf


https://www-ljk.imag.fr/membres/Pierre.Karpman/cry_comp2020.pdf

and the corresponding polynomial X2
n`Xn`

ś

jănXj to the generators of the quotienting
ideal.

Exercise 6. Design an addition and multiplication algorithm for the above extension
tower, and analyse their cost. More precisely, answer to the following:

1. How can you concisely represent elements of F2rX1, . . . , Xns as vectors of F2n
2 ?

2. Give the vector corresponding to X1 ` X2 ` X1X3 ` X2X3 when n “ 3. Same
question for n “ 4.

3. How can you add together two elements of F22n using this embedding? Is this easy
to implement on a typical CPU, when vectors are mapped to binary strings?

4. Show how to compute the multiplication of two elements P,Q P F22n from four¶

multiplications and one Nim transform in F
22n´1 by writing them as P “ P0`XnP1,

Q “ Q0 ` XnQ1, P0, P1, Q0, Q1 P F
22n´1 , where the Nim transform in F22n is the

linear mapping NT : F22n – F2rX1, . . . , Xns{xX
2
i ` Xi `

ś

jăiXjy1ďiďn Ñ F22n ,
P ÞÑ P ¨X1 ¨ ¨ ¨Xn.

5. Show how to recursively compute the Nim transform in F22n from Nim transforms
in F

22
n´1 .

6. Using the same embedding into F2n
2 as above, what is the (recursive) expression

of the Nim transform as a matrix? (That is, express the matrix An of the Nim
transform in F22n as a block matrix in function of An´1, where A0 :“

“

0
‰

.)

7. What is the cost of this multiplication algorithm in F22n (using either the school-
book or the Karatsuba algorithm in the above)? How does this compare with
the addition? Hint: Use the “Master theorem” to analyse the recursivity (https:
//en.wikipedia.org/wiki/Master_theorem_(analysis_of_algorithms)).

Remark 26. Artin-Schreier extension towers play an important role (among others) in
additive Fast Fourier Transform algorithms (Cantor, 1989, etc.), especially useful in char-
acteristic two. Conway also used the above tower to define “Nim arithmetic” over the
integers (and beyond); notably this allows to endow N with a field structure.

¶Or three when using Karatsuba’s algorithm.

14

https://www-ljk.imag.fr/membres/Pierre.Karpman/cry_comp2020.pdf
https://en.wikipedia.org/wiki/Master_theorem_(analysis_of_algorithms)
https://en.wikipedia.org/wiki/Master_theorem_(analysis_of_algorithms)

	Prime fields
	Fermat-based approach
	Euclide-based approach

	Extensions
	Cardinality, uniqueness
	Building extensions from polynomials

	Arithmetic in binary fields
	Data representation and basic operations
	Product in modular polynomial rings: an xtime approach
	Multiplication by a constant
	Product in modular polynomial rings: a carryless approach
	Arithmetic in a recursive representation


