
Introduction 2020–02–13 1/26

Cryptology complementary
]

Introduction

Pierre Karpman
pierre.karpman@univ-grenoble-alpes.fr

https://www-ljk.imag.fr/membres/Pierre.Karpman/tea.html

2020–02–13

pierre.karpman@univ-grenoble-alpes.fr
https://www-ljk.imag.fr/membres/Pierre.Karpman/tea.html

Introduction 2020–02–13 2/26

First things first

Main goals of this course: complement the other half

I Cover symmetric-key cryptography

I Introduce some implementation aspects (how do you do finite
field arithmetic?...)

Introduction 2020–02–13 3/26

Organisation

I Course format: mix of lectures/TDs/TPs

I A contrôle continu evaluation (lab session)

I A final exam

Introduction 2020–02–13 4/26

What’s crypto?

Quick answer: it’s about protecting secret data from adversaries

I In a communication (encrypted email, text messages; on the
web; when paying by credit card)

I On a device (encrypted hard-drive)

I During a computation (online voting)

I Etc.

Introduction 2020–02–13 5/26

Where does crypto run?

Crypto needs on various platforms

I High-end CPUs (Server/Desktop/Laptop computers,...)

I Mobile processors (Phones,...)

I Microcontrollers (Smartcards,...)

I Dedicated hardware (accelerating coprocessors, cheap
chips,...)

Introduction 2020–02–13 6/26

Techno constraints

Varying contexts, varying requirements

I Speed (throughput)

I Speed (latency)

I Code/circuit size

I Energy/power consumption

I Protection v. physical attacks

⇒ Implementation plays a big part in crypto

Introduction 2020–02–13 7/26

Quick example

A protocol (e.g. TLS) uses among others

I A key exchange algorithm (e.g. Diffie-Hellman)
— “public-key” cryptography

I instantiated with a secure group (e.g. ANSSI FRP256V1)

I An authenticated-encryption mode of operation (e.g. GCM)
— “symmetric-key” cryptography

I instantiated with a secure block cipher (e.g. the AES)

I A digital signature algorithm (e.g. ECDSA)
— “public-key” + “symmetric-key” cryptography

I instantiated with a secure group and a secure hash function
(e.g. SHA-3)

Introduction 2020–02–13 8/26

Protocols can be complex

ClientHello

ServerHello(v, kx, rid)

(full handshake)
kx = PSK|RSA PSK|DHE PSK|SRP|SRP RSA

ServerCertificate

ServerKeyExchange

ServerHelloDone

ClientKeyExchange

ClientCCS

ClientFinished

ServerNewSessionTicket

ServerCCS

ServerFinished

ApplicationData∗

ntick = 1

kx = SRP RSA
∥ chint = 1

kx = RSA PSK|SRP RSA

(full handshake)
kx = DH|DH anon|ECDH|ECDH anon

ServerCertificate

ServerKeyExchange

(authenticate client?)

CertificateRequest

ServerHelloDone

ClientCertificate(coffer)

ClientKeyExchange

ClientCertificateVerify

ClientCCS

ClientFinished

ServerNewSessionTicket

ServerCCS

ServerFinished

ApplicationData∗

ntick = 1

cask = 1 &
coffer = 1

coffer = 1

cask = 1

cask = 1 &
kx = DH|ECDH

(full handshake)
kx = RSA|DHE|ECDHE|RSA EXPORT|DHE EXPORT

ServerCertificate

ServerKeyExchange

(authenticate client?)

CertificateRequest

ServerHelloDone

ClientCertificate(coffer)

ClientKeyExchange

ClientCertificateVerify

ClientCCS

ClientFinished

ServerNewSessionTicket

ServerCCS

ServerFinished

ApplicationData∗

ntick = 1

cask = 1 &
coffer = 1

cask = 1

cask = 1

kx = DHE|ECDHE|
RSA EXPORT|DHE EXPORT

(abbreviated handshake)

ServerNewSessionTicket

ServerCCS

ServerFinished

ClientCCS

ClientFinished

ApplicationData∗

ntick = 1

rid = 1∥rtick = 1

rid = 0 & rtick = 0

rid = 0 & rtick = 0

ntick = 0

kx = RSA

cask = 0

cask = 0

cask = 0 ∥
coffer = 0

ntick = 0

kx = DH anon|
ECDH anon

kx = DH|
ECDH

coffer = 2

cask = 0 ∥
kx = DH anon|

ECDH anon

cask = 0

cask = 0 ∥
coffer = 0

ntick = 0

kx= SRP|DHE PSK
∥(kx = PSK &

chint = 1)
kx = PSK
& chint = 0kx = RSA PSK

& chint = 0

ntick = 0

Fig.9.
M

essage
sequences

for
the

ciphersuites
com

m
only

enabled
in

O
penSSL

5
5
2

5
5
2

Figure: Part of the TLS state machine, Beurdouche et al., 2015

Introduction 2020–02–13 9/26

“Doing crypto”

I Designing new primitives/constructions(/protocols)

I Analysing existing primitives/...

I Deploying crypto in products

I Different goals, different techniques
I Ad-hoc analysis, discrete mathematics, algorithmics
I Computational number theory/algebraic geometry
I Low-level implementation (assembly, hardware)
I Formal methods
I Following “good practice”

Introduction 2020–02–13 10/26

Scope of an analysis

Many types of adversary

I Passive (“eavesdropper = Eve”)

I Not passive, i.e. active
I With or w/o physical access
I Side channels
I Fault attacks

I With varying scenarios (“one-time” or long-term secret?)

I With varying objectives

Introduction 2020–02–13 11/26

Security objectives?

Introduction 2020–02–13 11/26

Security objectives?

I Hard to find the “keys”

I Hard to find the message (confidentiality)

I Hard to change/forge a message (integrity/authenticity)

I Etc.

Remark

Most of the time, one aims for computational security: it is always
possible to break everything by spending “enough” time just
make sure that “enough” is “too much”.

Introduction 2020–02–13 12/26

Small informal focus

Example: indistiguishability (IND-CPA)

1 Submit messages to an oracle O to be encrypted, & get the
result

2 Choose, m0, m1 of equal length; send both to O
3 Receive O(mb) for a random b ∈ {0, 1}
4 Goal: determine the value of b (better than by guessing)

I O has to be randomized

Introduction 2020–02–13 13/26

A code that’s not IND-CPA

Figure: Calvin & Hobbes’ code (Watterson)

Introduction 2020–02–13 14/26

Randomness is key in crypto

Random numbers always needed

I To generate keys

I To generate initialization vectors (IVs) or nonces

I To generate random masks (to protect against some attacks)

I Etc.

Introduction 2020–02–13 15/26

Random number generation is not easy

Lead to severe vulnerabilities, several times. For instance:

I Debian’s OpenSSL key generation (2006–2008)

I WWW RSA private keys with shared factors (Lenstra et al.,
2012)

I Smartcard RSA w/ biased private keys (Bernstein et al., 2013)

I Smartcard RSA w/ biased private keys (Nemec et al., 2017)

Introduction 2020–02–13 16/26

How not to generate random numbers

Figure: XKCD’s PRNG (Munroe)

Introduction 2020–02–13 16/26

How not to generate random numbers

Figure: Dilbert’s PRNG (Adams)

Very small Kolmogorov complexity!

Introduction 2020–02–13 17/26

How to generate them, then?

A basic idea (e.g. /dev/urandom)

I Set up a “random” state (from e.g. physical sources)

I Refresh it continuously as randomness comes by

I Extract and filter when outputs are needed

Introduction 2020–02–13 18/26

Random numbers are all you need?

A “perfect” encryption scheme, the one-time pad

1 Let the message m be in {0, 1}n, n maybe large (say, 240)

2 Let the key k be
$←− {0, 1}n

3 The ciphertext c = m ⊕ k

I Knowing c does not give information about m (see TD)

Problems:

I Integrity not guaranteed. So actually NOT perfect in presence
of active adversaries (i.e. all the time)

I Needs very large keys

I Needs “perfect” randomness too!

Introduction 2020–02–13 19/26

A concrete alternative: stream ciphers

1 Let the message m be in {0, 1}n, n maybe large (say, 240)

2 Let the key (secret) k be
$←− {0, 1}κ, κ small (say 128)

3 Let the IV (public) i be
$←− {0, 1}ν , ν small (say 128)

4 Let E : {0, 1}κ × {0, 1}ν → {0, 1}∗ be a stream cipher

5 The ciphertext c = m ⊕ bE(k , i)cn
Advantages

I Small key, IV (Q: Why is an IV needed??)

“Problems”

I Still no integrity

I Not “perfect”

Introduction 2020–02–13 20/26

Some stream ciphers

I RC4 (simple, quite broken)

I E0 (original Bluetooth cipher, broken)

I Snow 3G, ZUC (in mobile phones)

I Trivium (small and beautiful)

I Chacha (trendy)

I AES in counter mode (easy)

I Examples of symmetric (-key) cryptography

I Examples of (cryptographically secure) pseudo-random
number generators (PRNG)

Not stream ciphers

I random (3)

I MersenneTwister

Introduction 2020–02–13 21/26

Other symmetric primitives

I Block ciphers (encrypt “blocks”), e.g. AES

I Message authentication codes (MACs, check authenticity),
e.g. {A,B,C,D,E,F,G,H,I,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,Z}MAC
(For more on the topic, cf. https://www-ljk.imag.fr/

membres/Pierre.Karpman/JMAC.pdf)

I Hash functions (securely compress long messages to short
digests), e.g. SHA-3

Also need, say, mode of operations (to get e.g. IND-CPA)

https://www-ljk.imag.fr/membres/Pierre.Karpman/JMAC.pdf
https://www-ljk.imag.fr/membres/Pierre.Karpman/JMAC.pdf

Introduction 2020–02–13 22/26

Complementary primitives: public-key cryptography

Not all primitives need a single secret key. One can also have

I Trapdoor permutations (easy to encrypt, hard to decrypt w/o
the trapdoor), e.g. RSA

I Public key exchange, e.g. Diffie-Hellman

I Signatures, e.g. DSA

Introduction 2020–02–13 23/26

Assumptions

Public-key schemes usually depend on “cryptographic
assumptions” (= hardness of some problems), e.g:

I Factorization of large numbers (¬PQ)

I Computing discrete logarithms in F∗
q, E (Fq), ... (¬PQ)

I Decoding a noisy codeword of a random error-correcting code
(PQ)

I Finding a short vector in a lattice (PQ)

I Solving a quadratic system of equations (PQ)

I “Inverting” hash functions (PQ)

I Etc.

Note: Assumptions can be attacked!

Introduction 2020–02–13 24/26

Keys: secret, private, public...

What are crypto keys like?

I Stream/Block cipher: a binary string

I Hash functions: ∅
I RSA: a prime number (secret), an integer (public)

I Diffie-Hellman: an integer (secret), a group element (public)

I Code-based: a (generating) matrix (of a code) (one secret,
one public)

I Etc.

Introduction 2020–02–13 25/26

Secrets large and small

What should the secret/public key size be (in bits)?

I Stream ciphers?

I Block ciphers?

I RSA?

I Diffie-Hellman (well-chosen F×
q)?

I Diffie-Hellman (well-chosen E (Fq))?

I Code-based (McEliece, Binary Goppa codes)?

Introduction 2020–02–13 25/26

Secrets large and small

What should the secret/public key size be (in bits)?

I Stream ciphers: e.g. 128 bits (+ a large (e.g. 128 bits) IV
necessary)

I Block ciphers: e.g. 128 bits

I RSA: e.g. 3072 bits

I Diffie-Hellman (well-chosen F×
q): e.g. 3072 bits

I Diffie-Hellman (well-chosen E (Fq)): e.g. 256 bits

I Code-based (McEliece, Binary Goppa codes)? e.g. 200 000
bytes

Introduction 2020–02–13 25/26

Secrets large and small

What should the secret/public key size be (in bits)?

⇒ Quite a complex matter! (Follow recommendations, e.g. from
ANSSI!)

Introduction 2020–02–13 26/26

What’s 128 bits anyway?

Objective: run a function 2128 times within 34 years (≈ 230

seconds), assuming:

I Hardware at 250 iterations/s (that’s pretty good)

I Trivially parallelizable (that’s not always the case in practice)

I 1000 W per device, no overhead e.g. for cooling (that’s pretty
good)

⇒
I 2128−50−30 ≈ 248 machines needed
I ≈ 280 000 000 GW ’round the clock
I ≈ 170 000 000 EPR nuclear power plants

(Of course, technology may improve, but there is quite a safe
margin)

