Cryptology complementary Exercices#1

2019-03-12

Exercise 1: Binary vectors

Q. 1: Write a small "naïve" C function that computes the scalar product of two vectors of \mathbb{F}_2^{32} . This function must have the following prototype:

```
uint32_t scalar32_naive(uint32_t x, uint32_t y).
```

Q. 2: Write another implementation of the same function, of prototype

```
uint32_t scalar32_popcnt(uint32_t x, uint32_t y),
```

that uses a bitwise and instruction "&" and the population count function for 32-bit words "__builtin_popcount()".

Q. 3: Write a function that computes a matrix-vector product xM for $M \in \mathcal{M}_{32}(\mathbb{F}_2)$, using a scalar product as a sub-routine. This function must have the following prototype:

```
uint32_t mul32_scalar(uint32_t m[32], uint32_t x),
```

and M is stored columnwise (i.e. $m[0] = M_{.0}$).

Q. 4: Write another such function using a *table* implementation. You may assume that all of the linear combinations of eight consecutive rows of the matrix have been precomputed and stored in a table uint32_t m[4][256]. That is, m[0][x] is equal to $\sum_{i \in nz(x)} M_i$, m[1][x] is equal to $\sum_{i \in nz(x)} M_{i+8}$, etc., where nz(x) is the set of the indices of the non-zero bits of x. This function must have the following prototype:

```
uint32_t mul32_table(uint32_t m[4][256], uint32_t x).
```

- **Q. 5:** Write a test function that computes a large number (e.g. 2^{24}) of matrix-vector multiplications. Time the execution of the resulting program, in function of the chosen implementation (including different implementations for the scalar product used in mul32_scalar).
- **Q. 6:** If possible, redo the previous question with another compiler.

Exercise 2: PRPs

Q.1: Let $E: \{0,1\}^{\kappa} \times \{0,1\}^n \to \{0,1\}^n$ be a block cipher for which there is a subset $\mathcal{K}' \subset \{0,1\}^{\kappa}$ of weak keys of size 2^w such that if $k \in \mathcal{K}'$, $E(k,\cdot): x \mapsto x$.

Give a lower-bound for $\mathbf{Adv}_E^{\mathrm{PRP}}(1,1)$.

Q.2: Let $E: \{0,1\}^{\kappa} \times \{0,1\}^n \to \{0,1\}^n$ be an arbitrary block cipher.

Some mode of operation of block ciphers rely on the fact that E(k,0) is an unpredictable value when k is random and secret (with 0 denoting the all-zero binary string).

Show that this is a reasonable assumption. More precisely, give a lower-bound on $\mathbf{Adv}_{E}^{\mathrm{PRP}}(1,1)$ assuming that one can predict this value with unit time and success probability p.

Q.3: Assume that E is a "good" block cipher. Define a related cipher E' s.t. E'(k,0) is trivially predictable for any key (several constructions are possible).

Exercise 3: Birthday attack for the CTR mode

In the following, $E: \{0,1\}^{\kappa} \times \{0,1\}^n \to \{0,1\}^n$ is a block cipher.

Q. 1: Give the definitions of the CTR mode.

We make the simplifying hypothesis that if $F \star \to \{0,1\}^n$ is a "random function" with arbitrary domain (that is, all the outputs of F are uniformly and independently drawn at random from $\{0,1\}^n$), then the expected number of colliding pairs in the finite sequence $F(x_0), F(x_1), \ldots, F(x_{N-1})$ when all x_i s are distinct is $\approx N^2/2^n$.

- **Q. 2:** How long should the above sequence be for one to hope to have at least one collision among its elements with "high" probability?
- **Q. 3:** Suppose one wishes to distinguish between the above sequence and the keystream produced by E in counter mode. Using the fact that $E(k,\cdot)$ is invertible for any k, what can you say about collisions in this keystream? How long should the sequence be for one to distinguish the two cases with high probability?
- **Q. 4:** Show how to use the previous distinguisher to attack the IND-CPA security of the CTR mode, independently of the "security" of E. What is the complexity of this attack to get an advantage ≈ 1 ?
- **Q. 5:** Based on your answers to the above questions, give a recommendation for the maximal number of blocks that should be encrypted with CTR with a single key. Explain why changing the key may indeed prevent the attacks.