Cryptology complementary Message Authentication Codes, Authenticated Encryption

Pierre Karpman pierre.karpman@univ-grenoble-alpes.fr https://www-ljk.imag.fr/membres/Pierre.Karpman/tea.html

2019-04

MACs, AE

^{2019–04} **1/25**

Crypto is not all about encrypting. One may also want to:

- Get access to a building/car/spaceship
- Electronically sign a contract/software/Git repository
- Detect tampering on a message
- Detect "identity theft"
- Etc.

 \Rightarrow domain of digital signatures and/or message authentication codes (MACs)

A major rule

In the case of a symmetric channel (e.g. on a network):

- It may be fine to only authenticate
- It is never okay to only encrypt
- \Rightarrow "Authenticated encryption" (This is hard to do properly.)

Message authentication code (MAC)

A MAC is a mapping $\mathcal{M} : \mathcal{K}(\times \mathcal{N}) \times \mathcal{X} \to \mathcal{T}$ that maps a key, message (and possibly a (random) nonce) to a *tag*.

- \mathcal{K} is for instance $\{0,1\}^{128}$ (key space, secret)
- \mathcal{X} is for instance $\bigcup_{\ell < 2^{64}} \{0,1\}^{\ell}$ (message space)
- \mathcal{T} is for instance $\{0,1\}^{256}$ ("tag" space)
- \Rightarrow The tag is a "link" between a message and a key
 - Note: MACs are not the *only* way to provide authentication

Given a MAC $\mathcal{M}(k,\cdot)$ with an unknown key, it should be hard to:

- Given *m*, find *t* s.t. $\mathcal{M}(k, m) = t$ (Universal forgery)
- Find m, t s.t. $\mathcal{M}(k, m) = t$ (Existential forgery)
- (Of course, retrieving k leads to those)

UF: ability to forge a tag for **any** message EF: ability to forge a tag for **some** messages UF \Rightarrow EF More generally, we want $\mathcal{M}(k, \cdot)$ to be like a "variable input-length (pseudo-) random function" \rightsquigarrow (VIL-) PRF security:

- An adversary has access to an oracle \mathbb{O}
- ▶ In one world, $\mathbb{O} \stackrel{\$}{\leftarrow} \mathsf{Func}(\mathcal{X}, \mathcal{T})$
- In another, $k \stackrel{\$}{\leftarrow} \mathcal{K}$, $\mathbb{O} = \mathcal{M}(k, \cdot)$
- The adversary cannot tell in which world he lives

Where $\mathsf{Func}(\mathcal{X},\mathcal{T})$ are the functions from the message to the tag space

 \sim Define Adv^{PRF} in the same way as Adv^{PRP}

- From scratch
- Using a block cipher in a "MAC mode"
- Ditto, with a hash function
- Using a "polynomial" hash function
- Etc.

Observation:

- The last block of CBC-ENC(m) "strongly depends" on the entire message
- \rightarrow Take MAC(m) = LastBlockOf(CBC-ENC(m))
- Not quite secure as is, but overall a sound idea

Advantage:

"Only" need a block cipher

Disadvantage:

- Not the fastest approach
- \Rightarrow Alternative: polynomial MACs

Polynomials

"Polynomials = vectors"

Let $m = \begin{pmatrix} m_1 & m_2 & \dots & m_n \end{pmatrix}$ be a vector of k^n , one can interpret it as $M = m_1 X + m_2 X^2 + \dots + m_n X^n$, a degree-*n* polynomial of k[X]

Polynomial evaluation

Let $M \in k[X]$ be a degree-*n* polynomial, the *evaluation* of *M* on an element of *k* is given by the map $eval(M, \cdot) : x \mapsto m_1x + \ldots + m_nx^n$

Polynomial hash function

Let $m \in k^n$ be a "message". The "hash" of $m \equiv M \in k[X]$ for the function \mathcal{H}_x is given by eval(M, x).

Some properties:

$$\begin{aligned} \mathcal{H}_{x} \text{ is linear (over } k) \\ & \mathcal{H}_{x}(a+b) = \mathcal{H}_{x}(a) + \mathcal{H}_{x}(b) \\ \forall n \in \mathbb{N}^{*}, \ \forall x \in k, \ \forall a \in k^{n}, \\ & \mathsf{Pr}[\mathcal{H}_{x}(b) = \mathcal{H}_{x}(a) : b \stackrel{\$}{\leftarrow} k^{n}] \\ & = \mathsf{Pr}[\mathcal{H}_{x}(b-a) = 0 : b \stackrel{\$}{\leftarrow} k^{n}] \\ & = \mathsf{Pr}[\mathsf{eval}(B-A, x) = 0 : B \stackrel{\$}{\leftarrow} k[X], \mathsf{deg}(B) \leq n] \leq n/\#k \end{aligned}$$

W.h.p., $\neq m \Rightarrow \neq \mathcal{H}_{x}(m)$

- E.g. take $\#k \approx 2^{128}$, $n = 2^{32}$, the "collision probability" between two messages is $\leq 2^{-96=32-128}$
- This is "optimum"

Problem: for a MAC, linearity is a weakness! (cf. TD)

One way to solve this: encrypt the result of the hash with a block cipher!

Polynomial MACs

Toy polynomial MAC

Let $\mathcal{H}: \mathcal{K} \times \mathcal{X} \to \mathcal{Y}$ be a polynomial hash function family, $\mathcal{E}: \mathcal{K}' \times \mathcal{Y} \to \mathcal{Y}$ be a block cipher. The MAC $\mathcal{M}: \mathcal{K} \times \mathcal{K}' \times \mathcal{X} \to \mathcal{Y}$ is defined as $\mathcal{M}(k, k', m) = \mathcal{E}(k', \mathcal{H}_k(m))$.

(Remark: not randomized)

Advantage of polynomial MACs:

- Fast
- Good and "simple" security
 - But still rely on block ciphers and friends!

Examples: UMAC; VMAC; Poly1305-AES; NaT (more sophisticated variant of the above), NaK, HaT, HaK

If $\mathcal{H}: \{0,1\}^* \to \{0,1\}^n$ is a hash function, one may define:

- ▶ PrefixMAC_{*H*} : $\{0,1\}^{\kappa} \times \{0,1\}^{*} \rightarrow \{0,1\}^{n}$ as PrefixMAC_{*H*}(*k*, *m*) = *H*(*k*||*m*)
- ▶ SuffixMAC_{*H*} : $\{0,1\}^{\kappa} \times \{0,1\}^{*} \rightarrow \{0,1\}^{n}$ as SuffixMAC_{*H*}(*k*, *m*) = *H*(*m*||*k*)
- (Note that $\operatorname{PrefixMAC}_{\mathcal{H}} \approx \operatorname{SuffixMAC}_{\mathcal{H}^{\triangleleft}}$, where $\mathcal{H}^{\triangleleft}$ is \mathcal{H} "reversed")

These constructions are fine *generically* but may be weak for some specific hash functions

Let \mathcal{H} be a (narrow-pipe) Merkle-Damgård hash function

- Let $h = \mathcal{H}(m)$ for some m
- Then $\mathcal{H}(m||\operatorname{pad}(m)||m') = \mathcal{H}_h(m')$

What consequence for the security of $PrefixMAC_{\mathcal{H}}$?

- Assume an adversary knows m, $t = PrefixMAC_{\mathcal{H}}(k, m)$ and $\kappa = |k|$
- For the t' = $\mathcal{H}'_t(m')$ is a valid tag under k for $m || \operatorname{pad}(m) || m'$

• $(\mathcal{H}' \text{ is } \mathcal{H} \text{ with an appropriately modified padding})$

 \Rightarrow Existential forgeries are trivial!

(NB: Problems also exist for $\texttt{SuffixMAC}_{\mathcal{H}}$)

(NB: Similar attacks apply to raw CBC-MAC from two slides ago)

How to defend against the previous attack?

- Use a better H framework, e.g. a wide-pipe Merkle-Damgård hash function (e.g. SHA-512/256) or a sponge (e.g. SHA-3)
- Use a Sandwich MAC construction (e.g. HMAC, SandwichMAC, ...)

HMAC (Bellare et al., 1996):

- Let \mathcal{H} be a hash function with *b*-bit blocks, pad a function that pads to *b* bits with zeroes, opad = $0x36^{b/8}$, ipad = $0x5C^{b/8}$
- Then

 $\texttt{HMAC}_{\mathcal{H}}(k,m) = \mathcal{H}(\texttt{pad}(k) \oplus \texttt{opad} || \mathcal{H}(\texttt{pad}(k) \oplus \texttt{ipad} || m))$

HMAC facts

- HMAC is secure up to the birthday bound (of its hash function)
- It only needs black-box calls to a hash function ⇒ simple to implement
- It is popular (widespread use in e.g. TLS)
- It is overkill if \mathcal{H} is e.g. wide-pipe
- Some variants exist, some being more efficient

Block cipher and Hash-based MACs both use a black box to build a MAC, but

- Block cipher block sizes are usually "small" (e.g. 64/128 bits)
 → somewhat limited generic security
- Hash functions are more efficient at processing large amounts of data
- \Rightarrow Hash-based MACs tend to be used more than block cipher-based
 - But both loose in speed against polynomial MACs (e.g. VMAC) or dedicated constructions (e.g. PelicanMAC)

The "modern" view:

If you must never encrypt w/o authentication, why separating the two? \Rightarrow Authenticated-Encryption

- Maybe more efficient (less redundancy)?
- Maybe more secure (no careless combinations)?
- Maybe more complex
- ~ AEAD (Authenticated-Encryption with Associated Data)

AEAD

AEAD

An AEAD scheme is a pair of mappings $(\mathcal{E}, \mathcal{D})$ with: $\mathcal{E}: \mathcal{K} \times \mathcal{N} \times \mathcal{A} \times \mathcal{X} \rightarrow \mathcal{C}$ $\mathcal{D}: \mathcal{K} \times \mathcal{C} \rightarrow \mathcal{X} \cup \{ \bot \}$

- *E* encrypts a message from *X* with a key and a nonce, and authenticates it together with associated data from *A*
- D decrypts a ciphertext and returns the message if authentication is successful, or ⊥ ("bottom") otherwise
- Security is typically analysed w.r.t. IND-CPA (for confidentiality) and IND-CTXT (for integrity)

AEAD designs

An AEAD scheme can be built in many ways:

- By combining a BC mode w/ a MAC (e.g. GCM: CTR mode + a polynomial MAC)
- As a single BC mode (e.g. OCB)
- From a permutation/sponge consruction (e.g. Keyak)
- From a hash function (e.g. OMD)
- From a variable input-length wide-block block cipher (e.g. AEZ)
- Etc.

AEAD: A quick hash function example

Figure: The p-OMD mode (excerpt; source: p-OMD specifications)

pure Offset Merkle-Damgård (Reyhanitabar et al., 2015), based on a keyed hash function (e.g. SHA-256 w/ semi-secret message)

If $\mathcal{E} : \mathcal{K} \times \{0,1\}^n \to \{0,1\}^n$ is a block cipher, one can encrypt *and* authenticate any message *m* of fixed length *b* < *n* by:

- Computing $c = \mathcal{E}(k, m || 0^{n-b} || r)$
- Decrypting c to m iff. $\mathcal{E}^{-1}(k,c) = m ||0^{n-b}|| *$

If \mathcal{E} is "good", it is "hard" for an adversary to forge \hat{c} s.t. $\mathcal{E}^{-1}(\hat{c})$ has n - b zeroes at specific positions (roughly: success prob. $\approx 2^{b-n}$)

 \rightsquigarrow Good paradigm, but very limited if ${\mathcal E}$ has typical block size $n \leq 256$

VIL-WBC

(VIL)-[W]BC

A Variable input-length wide block cipher is a family $\mathcal{W} = \{\mathcal{E}^{\ell}\}$ of mappings $\mathcal{E}^{\ell} : \mathcal{K} \times \mathcal{X}_{\ell} \to \mathcal{X}_{\ell}$ s.t. for all ℓ, \mathcal{E}^{ℓ} is a block cipher, where $\ell \in \mathcal{S} \subseteq \mathbb{N}$

- \blacktriangleright One can for instance take $\mathcal{X}_\ell = \{0,1\}^\ell, \ \ell \in [2^7,2^{64}]$
- The PRP security of $\mathcal W$ is defined as the \min_ℓ PRP security of $\mathcal E^\ell$
- Provide the symmetric encryption
 Provide the symmetric encryption
 - Exercise: Why isn't encryption with CBC mode a VIL-WBC?

Some various strategies have been proposed to build VIL-WBC

- Sequential two-pass (e.g. CBC-MAC feeding CTR, Bellare and Rogaway, 1999; CBC forward and backward, Houley; Matyas, 1999)
- ▶ Wide Feistel (e.g. Naor and Reingold, 1997 ~ Mr Monster Burrito, Bertoni et al., 2014, and several others)
- Parallel Feistel (e.g. AEZ, Hoang et al., 2014)

Maybe not the easiest/fastest way, but conceptually beautiful

Conclusion

- Authentication is essential
- Most of the time, both encryption and authentication are needed
- The "modern" way: do both at the same time
- Still an active research topic (cf. the perpetual CAESAR competition →

https://competitions.cr.yp.to/caesar.html)