
MACs, AE 2019–04 1/25

Cryptology complementary
]

Message Authentication Codes, Authenticated
Encryption

Pierre Karpman
pierre.karpman@univ-grenoble-alpes.fr

https://www-ljk.imag.fr/membres/Pierre.Karpman/tea.html

2019–04

pierre.karpman@univ-grenoble-alpes.fr
https://www-ljk.imag.fr/membres/Pierre.Karpman/tea.html


MACs, AE 2019–04 2/25

Authentication (in crypto)

Crypto is not all about encrypting. One may also want to:

▸ Get access to a building/car/spaceship

▸ Electronically sign a contract/software/Git repository

▸ Detect tampering on a message

▸ Detect “identity theft”

▸ Etc.

⇒ domain of digital signatures and/or message authentication
codes (MACs)



MACs, AE 2019–04 3/25

A major rule

In the case of a symmetric channel (e.g. on a network):

▸ It may be fine to only authenticate

▸ It is never okay to only encrypt

⇒ “Authenticated encryption” (This is hard to do properly.)



MACs, AE 2019–04 4/25

Today: MACs (symmetric authentication)

Message authentication code (MAC)

A MAC is a mapping M ∶ K(×N) × X → T that maps a key,
message (and possibly a (random) nonce) to a tag.

▸ K is for instance {0,1}128 (key space, secret)

▸ N is for instance {0,1}64 (“nonce” space, public, either
“random” or not)

▸ X is for instance ⋃`<264{0,1}` (message space)

▸ T is for instance {0,1}256 (“tag” space)

⇒ The tag is a “link” between a message and a key

▸ Note: MACs are not the only way to provide authentication



MACs, AE 2019–04 5/25

MACs: what do we want?

Given a MAC M(k, ⋅) with an unknown key, it should be hard to:

▸ Given m, find t s.t. M(k ,m) = t (Universal forgery)

▸ Find m, t s.t. M(k ,m) = t (Existential forgery)

▸ (Of course, retrieving k leads to those)

UF: ability to forge a tag for any message

EF: ability to forge a tag for some messages

UF ⇒ EF



MACs, AE 2019–04 6/25

MACs: really, what do we want?

More generally, we want M(k , ⋅) to be like a “variable input-length
(pseudo-) random function”
↝ (VIL-) PRF security:

▸ An adversary has access to an oracle O
▸ In one world, O $

←Ð Func(X ,T )

▸ In another, k
$
←Ð K, O =M(k, ⋅)

▸ The adversary cannot tell in which world he lives

Where Func(X ,T ) are the functions from the message to the tag
space
↝ Define AdvPRF in the same way as AdvPRP



MACs, AE 2019–04 7/25

So, how to build a MAC?

▸ From scratch

▸ Using a block cipher in a “MAC mode”

▸ Ditto, with a hash function

▸ Using a “polynomial” hash function

▸ Etc.



MACs, AE 2019–04 8/25

MACs from block ciphers: CBC-MAC example

Observation:

▸ The last block of CBC-ENC(m) “strongly depends” on the
entire message

▸ ⇒ Take MAC(m) = LastBlockOf(CBC-ENC(m))

▸ Not quite secure as is, but overall a sound idea

Advantage:

▸ “Only” need a block cipher

Disadvantage:

▸ Not the fastest approach

⇒ Alternative: polynomial MACs



MACs, AE 2019–04 9/25

Polynomials

“Polynomials = vectors”

Let m = (m1 m2 . . . mn) be a vector of kn, one can interpret it

as M = m1X +m2X
2
+ . . . +mnX

n, a degree-n polynomial of k[X ]

Polynomial evaluation

Let M ∈ k[X ] be a degree-n polynomial, the evaluation of M on an
element of k is given by the map eval(M, ⋅) ∶ x ↦ m1x + . . . +mnx

n



MACs, AE 2019–04 10/25

Polynomial hash functions

Polynomial hash function

Let m ∈ kn be a “message”. The “hash” of m ≡M ∈ k[X ] for the
function Hx is given by eval(M, x).

Some properties:

Hx is linear (over k)

▸ Hx(a + b) = Hx(a) +Hx(b)

∀n ∈ N∗, ∀x ∈ k, ∀a ∈ kn,

▸ Pr[Hx(b) = Hx(a) ∶ b
$
←Ð kn]

▸ = Pr[Hx(b − a) = 0 ∶ b
$
←Ð kn]

▸ = Pr[eval(B −A, x) = 0 ∶ B
$
←Ð k[X ],deg(B) ≤ n] ≤ n/#k



MACs, AE 2019–04 11/25

How’s that useful?

W.h.p., ≠ m⇒≠ Hx(m)

▸ E.g. take #k ≈ 2128, n = 232, the “collision probability”
between two messages is ≤ 2−96=32−128

▸ This is “optimum”

Problem: for a MAC, linearity is a weakness! (cf. TD)

▸ One way to solve this: encrypt the result of the hash with a
block cipher!



MACs, AE 2019–04 12/25

Polynomial MACs

Toy polynomial MAC

Let H ∶ K ×X → Y be a polynomial hash function family,
E ∶ K

′
× Y → Y be a block cipher. The MAC M ∶ K ×K

′
× X → Y

is defined as M(k , k ′,m) = E(k ′,Hk(m)).

(Remark: not randomized)

Advantage of polynomial MACs:

▸ Fast
▸ Good and “simple” security

▸ But still rely on block ciphers and friends!

Examples: UMAC; VMAC; Poly1305-AES; NaT (more
sophisticated variant of the above), NaK, HaT, HaK



MACs, AE 2019–04 13/25

MACs from hash functions 1

If H ∶ {0,1}∗ → {0,1}n is a hash function, one may define:

▸ PrefixMACH ∶ {0,1}κ × {0,1}∗ → {0,1}n as
PrefixMACH(k,m) = H(k ∣∣m)

▸ SuffixMACH ∶ {0,1}κ × {0,1}∗ → {0,1}n as
SuffixMACH(k,m) = H(m∣∣k)

▸ (Note that PrefixMACH ≈ SuffixMACH◁ , where H◁ is H
“reversed”)

These constructions are fine generically but may be weak for some
specific hash functions



MACs, AE 2019–04 14/25

Length-extension attack for PrefixMAC

Let H be a (narrow-pipe) Merkle-Damg̊ard hash function

▸ Let h = H(m) for some m

▸ Then H(m∣∣pad(m)∣∣m′
) = Hh(m

′
)

What consequence for the security of PrefixMACH?

▸ Assume an adversary knows m, t = PrefixMACH(k,m) and
κ = ∣k ∣

▸ Then t ′ = H′
t(m

′
) is a valid tag under k for m∣∣pad(m)∣∣m′

▸ (H′ is H with an appropriately modified padding)

⇒ Existential forgeries are trivial!
(NB: Problems also exist for SuffixMACH)
(NB: Similar attacks apply to raw CBC-MAC from two slides ago)



MACs, AE 2019–04 15/25

MACs from hash functions 2

How to defend against the previous attack?

▸ Use a better H framework, e.g. a wide-pipe Merkle-Damg̊ard
hash function (e.g. SHA-512/256) or a sponge (e.g. SHA-3)

▸ Use a Sandwich MAC construction (e.g. HMAC,
SandwichMAC, ...)

HMAC (Bellare et al., 1996):

▸ Let H be a hash function with b-bit blocks, pad a function
that pads to b bits with zeroes, opad = 0x36b/8,
ipad = 0x5Cb/8

▸ Then
HMACH(k ,m) = H(pad(k) ⊕ opad∣∣H(pad(k) ⊕ ipad∣∣m))



MACs, AE 2019–04 16/25

HMAC facts

▸ HMAC is secure up to the birthday bound (of its hash function)

▸ It only needs black-box calls to a hash function ⇒ simple to
implement

▸ It is popular (widespread use in e.g. TLS)

▸ It is overkill if H is e.g. wide-pipe

▸ Some variants exist, some being more efficient



MACs, AE 2019–04 17/25

Block cipher v. Hash-based MACs

Block cipher and Hash-based MACs both use a black box to build
a MAC, but

▸ Block cipher block sizes are usually “small” (e.g. 64/128 bits)
↝ somewhat limited generic security

▸ Hash functions are more efficient at processing large amounts
of data

⇒ Hash-based MACs tend to be used more than block
cipher-based

▸ But both loose in speed against polynomial MACs (e.g.
VMAC) or dedicated constructions (e.g. PelicanMAC)



MACs, AE 2019–04 18/25

Introducing Authenticated-Encryption

The “modern” view:
If you must never encrypt w/o authentication, why separating the
two? ⇒ Authenticated-Encryption

▸ Maybe more efficient (less redundancy)?

▸ Maybe more secure (no careless combinations)?

▸ Maybe more complex

↝ AEAD (Authenticated-Encryption with Associated Data)



MACs, AE 2019–04 19/25

AEAD

AEAD

An AEAD scheme is a pair of mappings (E ,D) with:
E ∶ K ×N ×A×X → C

D ∶ K × C → X ∪ {�}

▸ E encrypts a message from X with a key and a nonce, and
authenticates it together with associated data from A

▸ D decrypts a ciphertext and returns the message if
authentication is successful, or � (“bottom”) otherwise

▸ Security is typically analysed w.r.t. IND-CPA (for
confidentiality) and IND-CTXT (for integrity)



MACs, AE 2019–04 20/25

AEAD designs

An AEAD scheme can be built in many ways:

▸ By combining a BC mode w/ a MAC (e.g. GCM: CTR mode
+ a polynomial MAC)

▸ As a single BC mode (e.g. OCB)

▸ From a permutation/sponge consruction (e.g. Keyak)

▸ From a hash function (e.g. OMD)

▸ From a variable input-length wide-block block cipher (e.g.
AEZ)

▸ Etc.



MACs, AE 2019–04 21/25

AEAD: A quick hash function example

Figure: The p-OMD mode (excerpt; source: p-OMD specifications)

pure Offset Merkle-Damg̊ard (Reyhanitabar et al., 2015), based on
a keyed hash function (e.g. SHA-256 w/ semi-secret message)



MACs, AE 2019–04 22/25

AEAD: A quick VIL-WBC idea

If E ∶ K × {0,1}n → {0,1}n is a block cipher, one can encrypt and
authenticate any message m of fixed length b < n by:

▸ Computing c = E(k,m∣∣0n−b ∣∣r)
▸ Decrypting c to m iff. E−1(k, c) = m∣∣0n−b ∣∣∗

If E is “good”, it is “hard” for an adversary to forge ĉ s.t. E−1(ĉ)
has n − b zeroes at specific positions (roughly: success prob. ≈
2b−n)
↝ Good paradigm, but very limited if E has typical block size
n ≤ 256



MACs, AE 2019–04 23/25

VIL-WBC

(VIL)-[W]BC

A Variable input-length wide block cipher is a family W = {E
`
} of

mappings E` ∶ K ×X` → X` s.t. for all `, E` is a block cipher, where
` ∈ S ⊆ N

▸ One can for instance take X` = {0,1}`, ` ∈ [27,264]

▸ The PRP security of W is defined as the min` PRP security of
E
`

▸ ‽The notion of VIL-WBC is stronger than IND-CPA/CCA
symmetric encryption
▸ Exercise: Why isn’t encryption with CBC mode a VIL-WBC?



MACs, AE 2019–04 24/25

VIL-WBC constructions

Some various strategies have been proposed to build VIL-WBC

▸ Sequential two-pass (e.g. CBC-MAC feeding CTR, Bellare
and Rogaway, 1999; CBC forward and backward, Houley;
Matyas, 1999)

▸ Wide Feistel (e.g. Naor and Reingold, 1997 ↝ Mr Monster
Burrito, Bertoni et al., 2014, and several others)

▸ Parallel Feistel (e.g. AEZ, Hoang et al., 2014)

Maybe not the easiest/fastest way, but conceptually beautiful



MACs, AE 2019–04 25/25

Conclusion

▸ Authentication is essential

▸ Most of the time, both encryption and authentication are
needed

▸ The “modern” way: do both at the same time

▸ Still an active research topic (cf. the perpetual CAESAR
competition ↝
https://competitions.cr.yp.to/caesar.html)

https://competitions.cr.yp.to/caesar.html

