Cryptology complementary Exercices\#1

2019-02-14

Exercise 1: Binary vectors

Q. 1: Write a small "naïve" C function that computes the scalar product of two vectors of \mathbb{F}_{2}^{32}. This function must have the following prototype:

```
uint32_t scalar32_naive(uint32_t x, uint32_t y).
```

Q. 2: Write another implementation of the same function, of prototype
uint32_t scalar32_popcnt(uint32_t x, uint32_t y),
that uses a bitwise and instruction " $\&$ " and the population count function for 32 -bit words "__builtin_popcount()".
Q. 3: Write a function that computes a matrix-vector product $\boldsymbol{x} M$ for $M \in \mathcal{M}_{32}\left(\mathbb{F}_{2}\right)$, using a scalar product as a sub-routine. This function must have the following prototype:

```
uint32_t mul32_scalar(uint32_t m[32], uint32_t x).
```

Q. 4: Write another such function using a table implementation. You may assume that all of the linear combinations of eight consecutive rows of the matrix have been precomputed and stored in a table uint32_t m [4] [256]. That is, $m[0][x]$ is equal to $\sum_{i \in \mathrm{nz}(\mathrm{x})} M_{i}, \mathrm{~m}[1][\mathrm{x}]$ is equal to $\sum_{i \in \mathrm{nz}(\mathrm{x})} M_{i+8}$, etc., where $\mathrm{nz}(\mathrm{x})$ is the set of the indices of the non-zero bits of x. This function must have the following prototype:

```
uint32_t mul32_table(uint32_t m[4] [256], uint32_t x).
```

Q. 5: Write a test function that computes a large number (e.g. 2^{24}) of matrix-vector multiplications. Time the execution of the resulting program, in function of the chosen implementation (including different implementations for the scalar product used in mul32_scalar).
Q. 6: If possible, redo the previous question with another compiler.

Exercise 2: PRPs

Q.1: Let $E:\{0,1\}^{\kappa} \times\{0,1\}^{n} \rightarrow\{0,1\}^{n}$ be a block cipher for which there is a subset $\mathcal{K}^{\prime} \subset\{0,1\}^{\kappa}$ of weak keys of size 2^{w} such that if $k \in \mathcal{K}^{\prime}, E(k, \cdot): x \mapsto x$.

Give a lower-bound for $\mathbf{A d v}_{E}^{P R P}(1,1)$.
Q.2: Some mode of operation of block ciphers rely on the fact that $E(k, 0)$ is an unpredictable value when k is random and secret (with 0 denoting the all-zero binary string).

Show that this is a reasonable assumption. More precisely, give a lower-bound on $\operatorname{Adv}_{E}^{\mathrm{PRP}}(1,1)$ assuming that one can predict this value with unit time and success probability p.
Q.3: Assume that E is a "good" block cipher. Define a related cipher E^{\prime} for which $E(k, 0)$ is trivially predictable for any key (several constructions are possible).

