
Cryptology complementary

TP

2018-03-29

The goal of this “TP” lab session is to implement the multiplication of two numbers
modulo the “MSIAM” prime p = 2111− 37, in a reasonably efficient way that exploits the
fact that p is close to a power of two.

Instructions & grading

All functions and programs must be written in C or C++
This TP is graded as contrôle continu. You must send a written report (in a portable

format) detailing your answers to the questions, and the corresponding source code with
compilation and execution instructions by April 16 (2018-04-06T23:59+0200) to:

pierre.karpman@univ-grenoble-alpes.fr.

Working in teams of two is allowed (but not mandatory), in which case only one report
needs to be sent, with the name of both students clearly mentioned.

By default, this mandatory contrôle continu grade will count for one third of the final
grade for this course, the other two thirds being the grade of a final exam.

Objective

As stated above, we wish to implement the multiplication in the field F2111−37. This will
be done through a function mul111_37 with the following signature:

void mul111_37(uint64_t f[4], uint64_t g[4], uint64_t h[4])

and the following semantics: f and g are 4-quadword arrays containing a representation of
numbers in F2111−37, and after executing mul111_37(f,g,h), h contains a representation
of their product. These representations are of the following form: if one writes 0 ≤ f <
2111 − 37 as 284f3 + 256f2 + 228f1 + f0, with fi < 228 for all i (and f3 < 227), then f is
represented as f with f[i] = fi for all i.

Question 1

By noticing that one has 2111 ≡ 37 mod p and 2112 ≡ 74 mod p, give a simple expression
of h = (284f3+256f2+228f1+f0)×(284g3+256g2+228g1+g0) = 284h3+256h2+228h1+h0
mod 2111−37. In particular, we take h0 to be equal to f0g0+74f1g3+74f2g2+74f3g1, and
we want to find a similar expression for h1...3. Note that we do not require this expression
to be already reduced mod 2111−37, that is we do not ask (yet) for 284h3+256h2+228h1+h0
to be smaller than this modulus. We do not require either all of the hi to be smaller than
228.

1

mailto:pierre.karpman@univ-grenoble-alpes.fr


https://www-ljk.imag.fr/membres/Pierre.Karpman/cry comp2017 tp1.pdf

Question 2

Let again h be of the form 284h3 + 256h2 + 228h1 + h0. Give a procedure to compute a
representation 284h′3 + 256h′2 + 228h′1 + h′0 for the same number where h′0, h

′
1, h
′
2 < 228.

Question 3

Given a number of the form 284h3 + 256h2 + 228h1 + h0, where h0, h1, h2 < 228, give a
simple procedure to reduce this number modulo 2111 − 37.

Question 4

By combining the procedures of the two previous questions, give an algorithm that reduces
284h3+256h2+228h1+h0 modulo 2111−37 and stores the result as 284h′3+256h′2+228h′1+h′0
where h′0, h

′
1, h
′
2 < 228, h′3 < 227.

Question 5

Implement mul111_37 by first using the expression of the (non-reduced) product of Ques-
tion 1, and then reducing it as in Question 4. It is advised to test your algorithm on
random inputs, and e.g. compare its results with Sage.

Question 6

Explain why all of the quantities used in your implementation are less than 264, and thus
why it may safely use arithmetic with variables of type uint64_t.

Remark

Implementations similar to this one may be used in certain cryptographic algorithms,
for instance polynomial MACs or schemes based on elliptic curves. They would however
probably use a slightly “more efficient” prime modulus, and exploit the fact that modern
CPUs have 64×64→ 128 bit multipliers, or vectorized multiplication. The basic approach
could however be the same.

2

https://www-ljk.imag.fr/membres/Pierre.Karpman/cry_comp2017_tp1.pdf

