Cryptology complementary

Symmetric modes of operation

Pierre Karpman
pierre.karpman@univ-grenoble-alpes.fr
https://www-ljk.imag.fr/membres/Pierre.Karpman/tea.html

2018-05-03

From two weeks ago

- A good primitive $=$ a good cryptographic scheme
- Example: RSA (a good OWF w/ trapdoor) is not a good encryption scheme
- \sim need padding (e.g. OAEP)
- Ditto for signatures (use e.g. PSS-R)
- This is true for asymmetric crypto (above)
- But also symmetric (today's topic)

Block cipher recalls

- Recall that a (binary) block cipher is a mapping $\mathcal{E}:\{0,1\}^{\kappa} \times\{0,1\}^{n} \rightarrow\{0,1\}^{n}$ s.t. $\forall k \in\{0,1\}^{\kappa}, \mathcal{E}(k, \cdot)$ is a permutation
- A "good" block cipher is a family of permutations that "look random" and are independent of each other \leadsto PRP-security
- Some implications for good BCs:
- It is hard to find an unknown k given oracle access to $\mathcal{E}(k, \cdot)$
- It is hard to find m given $c=\mathcal{E}(k, m)$ for an unknown k
- It is hard to find $c=\mathcal{E}(k, m)$ for an unknown k given m
- Etc.

Block ciphers are not enough

What block ciphers do:

- One-to-one encryption of fixed-size messages

What do we want:

- One-to-many encryption of variable-size messages
- Why?
- Variable-size \rightarrow kind of obvious?
- One-to-many \rightarrow necessary for "semantic security" \rightarrow cannot tell if two ciphertexts are of the same message or not

Enter modes of operation

- A mode of operation transforms a block cipher into a symmetric encryption scheme
- $\approx \mathcal{E} \leadsto$ Enc: $\{0,1\}^{\kappa} \times\{0,1\}^{r} \times\{0,1\}^{*} \rightarrow\{0,1\}^{*}$
- For all $k \in\{0,1\}^{k}, r \in\{0,1\}^{r}, \operatorname{Enc}(k, r, \cdot)$ is invertible
- $\{0,1\}^{r}, r \geq 0$ is used to make encryption non-deterministic
- A mode is "good" if it gives "good encryption schemes" when used with "good BCs"
- So what's a good encryption scheme?

IND-CPA for Symmetric encryption

IND-CPA for Enc: An adversary cannot distinguish Enc $\left(k, m_{0}\right)$ from $\operatorname{Enc}\left(k, m_{1}\right)$ for an unknown key k and equal-length messages m_{0}, m_{1} when given oracle access to an $\operatorname{Enc}(k, \cdot)$ oracle:
1 The Challenger chooses a key $k \stackrel{\$}{\leftarrow}\{0,1\}^{\kappa}$
2 The Adversary may repeatedly submit queries x_{i} to the Challenger
13 The Challenger answers a query with $\operatorname{Enc}\left(k, r_{i}, x_{i}\right)$
4 The Adversary now submits m_{0}, m_{1} of equal length
5 The Challenger draws $b \stackrel{\$}{\leftarrow}\{0,1\}$, answers with $\operatorname{Enc}\left(k, r^{\prime}, m_{b}\right)$
6 The Adversary tries to guess b

- The choice of r_{i}, r^{\prime} is defined by the mode (made explicit here, may be omitted)

IND-CPA comments

- A random adversary succeeds $\mathrm{w} / \mathrm{prob} .1 / 2 \rightarrow$ the correct success measure is the advantage over this
- Advantage (one possible definbition): $\mid \operatorname{Pr}[$ Adversary answers $1: b=0]-\operatorname{Pr}[$ Adversary answers $1: b=$ 1]|
- An adversary may always succeed w/ advantage 1 given enough ressources
- Find the key spending time $t \leq 2^{\kappa}$ and a few oracle queries
- What matters is the "best possible" advantage in function of the attack complexity

First (non-) mode example: ECB

- ECB: just concatenate independent calls to \mathcal{E}

Electronic Code Book mode

 $m_{0}\left\|m_{1}\right\| \ldots \mapsto \mathcal{E}\left(k, m_{0}\right)\left\|\mathcal{E}\left(k, m_{1}\right)\right\| \ldots$- No security
- Exercise: give a simple attack on ECB for the IND-CPA security notion $\mathrm{w} /$ advantage 1 , low complexity

Second (actual) mode example: CBC

- Cipher Block Chaining: Chain blocks together (duh)

Cipher Block Chaining mode

$r \times m_{0}\left\|m_{1}\right\| \ldots \mapsto c_{0}:=\mathcal{E}\left(k, m_{0} \oplus r\right)\left\|c 1:=\mathcal{E}\left(k, m_{1} \oplus c_{0}\right)\right\| \ldots$

- Output block i (ciphtertext) added (XORed) w/ input block $i+1$ (plaintext)
- For first $\left(m_{0}\right)$ block: use random IV r
- Okay security in theory \leadsto okay security in practice if used properly

CBC IVs

CBC has bad IND-CPA security if the IVs are not random

- Consider an IND-CPA adversary who asks an oracle query $\mathrm{CBC}-\mathrm{ENC}(m)$, gets $r, c=\mathcal{E}(k, m \oplus r)$ (where \mathcal{E} is the cipher used in CBC - ENC)
- Assume the adversary knows that for the next IV r^{\prime}, $\operatorname{Pr}\left[r^{\prime}=x\right]=p$
- Sends two challenges $m_{0}=m \oplus r \oplus x, m_{1}=m_{0} \oplus 1$
- Gets $c_{b}=\operatorname{CBC}-\operatorname{ENC}\left(m_{b}\right), b \stackrel{\varsigma}{\leftarrow}\{0,1\}$
- If $c_{b}=c$, guess $b=0$, else $b=1$
- Exercise: what is the adversary's advantage? (If $q:=\operatorname{Pr}\left[r^{\prime}=x \oplus 1\right] \leq(1-p)$.)

Generic CBC collision attack

Even with random IVs, CBC has some drawbacks
An observation:

- In CBC, inputs to \mathcal{E} are of the form $x \oplus y$ where x is a message block and y an IV or a ciphertext block
- If $x \oplus y=x^{\prime} \oplus y^{\prime}$, then $\mathcal{E}(k, x \oplus y)=\mathcal{E}\left(k, x^{\prime} \oplus y^{\prime}\right)$

A consequence:

- If $c_{i}=\mathcal{E}\left(k, m_{i} \oplus c_{i-1}\right)=c_{j}^{\prime}=\mathcal{E}\left(k, m_{j}^{\prime} \oplus c_{j-1}^{\prime}\right)$, then $c_{i-1} \oplus c_{j-1}^{\prime}=m_{i} \oplus m_{j}^{\prime}$
- \sim knowing identical ciphertext blocks reveals information about the message blocks
- \Rightarrow breaks IND-CPA security
- Regardless of the security of \mathcal{E} !

CBC collisions: how likely?

How soon does a collision happen?

- Proposition: the distribution of the $(x \oplus y)$ is \approx uniform
- If y is an IV it has to be (close to) uniformly random, otherwise we have an attack (two slides ago)
- If $y=\mathcal{E}(k, z)$ is a ciphertext block, ditto for y knowing z, otherwise we have an attack on \mathcal{E}
- \Rightarrow A collision occurs w.h.p. after $\sqrt{\#\{0,1\}^{n}}=2^{n / 2}$ blocks are observed (with identical key k) \leftarrow The birthday bound
- (Slightly more precisely, w/ prob. $\approx q^{2} / 2^{n}, q \leq 2^{n / 2}$ after q blocks)

Some CBC recap

A decent mode, but

- Must use random IVs
- Must change key much before encrypting $2^{n / 2}$ blocks when using an n-bit block cipher
- And this regardless of the key size κ
- This is a common restriction for modes of operation (cf. next slide)

Another classical mode: CTR

Counter mode
 $m_{0}\left\|m_{1}\right\| \ldots \mapsto \mathcal{E}\left(k, s^{++}\right) \oplus m_{0}\left\|\mathcal{E}\left(k, s^{++}\right) \oplus m_{1}\right\| \ldots$

- This uses a global state s for the counter, with C-like semantics for s++
- Encrypts a public counter \leadsto pseudo-random keystream \leadsto (perfect) one-time-pad approximation (i.e. a stream cipher)
- Like CBC, must change key much before encrypting $2^{n / 2}$ blocks when using an n-bit block cipher
- Question: why?

How to go further: the tweakable option

- A (binary) tweakable block cipher is a mapping $\tilde{\mathcal{E}}:\{0,1\}^{\kappa} \times\{0,1\}^{\theta} \times\{0,1\}^{n} \rightarrow\{0,1\}^{n}$ s.t. $\forall k \in\{0,1\}^{\kappa}, t \in\{0,1\}^{\theta}, \tilde{\mathcal{E}}(k, t, \cdot)$ is a permutation
- The tweak t is "like a key", but known \& may be chosen by the adversary
- A necessary condition for $\tilde{\mathcal{E}}$ to be a good TBC is for $\tilde{\mathcal{E}}(\cdot, t, \cdot)$ to be a good BC for all t.
- But an adversary may further try to exloit relations between $\tilde{\mathcal{E}}$ for $=$ tweaks

TBC constructions

How to build a TBC?

- From scratch, like any block cipher (see for instance Jean et al., 2014)
- From an existing block cipher treated as a black box (see for instance Liskov et al., 2002)
- Still a quite active research topic

A simple (not ideal) example:

- $\tilde{\mathcal{E}}(k, t, \cdot):=\mathcal{E}(k \oplus t, \cdot)$
- (Relies on the analysis of \mathcal{E} in a XOR-Related-key setting)

TBC: why?

- Many modes (like CBC) fail when encrypting too many blocks with the same permutation
- \leadsto Change permutation as often as possible
- Change key at every block?
- Not so clean to define, possible efficiency issues
- \sim Add a tweak, change tweak at every block
- Clean, possibly more efficient, but a more "complex" primitive

A simple mode for TBCs: TIE

- "Like ECB", but with distinct tweaks for every call to $\tilde{\mathcal{E}}$

> Tweak Incrementation Encryption $m_{0}\left\|m_{1}\right\| \ldots \mapsto c_{0}:=\tilde{\mathcal{E}}\left(k, s^{++}, m_{0}\right)\left\|c 1:=\tilde{\mathcal{E}}\left(k, s^{++}, m_{1}\right)\right\| \ldots$

- Again uses a global state s, this time for the tweak
- Security directly reduces to the one of $\tilde{\mathcal{E}}$ as long as tweaks don't repeat
- Intuitively if $\tilde{\mathcal{E}}(k, t, \cdot)$ and $\tilde{\mathcal{E}}\left(k, t^{\prime} \neq t, \cdot\right)$ are independent random permutations, $\tilde{\mathcal{E}}(k, t, x)$ and $\tilde{\mathcal{E}}\left(k, t^{\prime}, x^{\prime}\right)$ are independent random values for any x, x^{\prime}

To go even further

- TBCs are great to define authenticated encryption (AE) modes, like TAE
- Authentication: "Only someone knowing the key k knows how to create and verify 'valid' messages"
- (Beyond the scope of this course)

About the exam

- One hour out of the three
- Probably \approx two independent exercises
- Mostly on symmetric notions

