Cryptology complementary Symmetric modes of operation

Pierre Karpman pierre.karpman@univ-grenoble-alpes.fr https://www-ljk.imag.fr/membres/Pierre.Karpman/tea.html

2018-05-03

Symmetric modes

²⁰¹⁸⁻⁰⁵⁻⁰³ 1/20

- A good primitive ≠ a good cryptographic scheme
 - Example: RSA (a good OWF w/ trapdoor) is not a good encryption scheme
 - ▶ ~> need padding (e.g. OAEP)
 - Ditto for signatures (use e.g. PSS-R)
- This is true for asymmetric crypto (above)
- But also symmetric (today's topic)

- Recall that a (binary) block cipher is a mapping $\mathcal{E}: \{0,1\}^{\kappa} \times \{0,1\}^n \rightarrow \{0,1\}^n$ s.t. $\forall k \in \{0,1\}^{\kappa}$, $\mathcal{E}(k,\cdot)$ is a permutation
- A "good" block cipher is a family of permutations that "look random" and are independent of each other → PRP-security
- Some implications for good BCs:
 - It is hard to find an unknown k given oracle access to $\mathcal{E}(k,\cdot)$
 - It is hard to find m given $c = \mathcal{E}(k, m)$ for an unknown k
 - It is hard to find $c = \mathcal{E}(k, m)$ for an unknown k given m
 - Etc.

What block ciphers do:

One-to-one encryption of fixed-size messages

What do we want:

- One-to-many encryption of variable-size messages
- Why?
 - Variable-size → kind of obvious?
 - One-to-many → necessary for "semantic security" → cannot tell if two ciphertexts are of the same message or not

- A mode of operation transforms a block cipher into a symmetric encryption scheme
- ${}^{\scriptscriptstyle }\, \approx\, \mathcal{E} \rightsquigarrow \mathsf{Enc}: \{0,1\}^\kappa \times \{0,1\}^r \times \{0,1\}^* \rightarrow \{0,1\}^*$
- For all $k \in \{0,1\}^{\kappa}$, $r \in \{0,1\}^{r}$, $Enc(k,r,\cdot)$ is invertible
- $\{0,1\}^r$, $r \ge 0$ is used to make encryption non-deterministic
- A mode is "good" if it gives "good encryption schemes" when used with "good BCs"
- So what's a good encryption scheme?

IND-CPA for Enc: An adversary cannot distinguish $Enc(k, m_0)$ from $Enc(k, m_1)$ for an unknown key k and equal-length messages m_0 , m_1 when given oracle access to an $Enc(k, \cdot)$ oracle:

1 The Challenger chooses a key $k \stackrel{\$}{\leftarrow} \{0,1\}^{\kappa}$

- 2 The Adversary may repeatedly submit queries x_i to the Challenger
- **3** The Challenger answers a query with $Enc(k, r_i, x_i)$
- **4** The Adversary now submits m_0 , m_1 of equal length
- **5** The Challenger draws $b \stackrel{s}{\leftarrow} \{0,1\}$, answers with $Enc(k, r', m_b)$
- 6 The Adversary tries to guess b
 - The choice of r_i, r' is defined by the mode (made explicit here, may be omitted)

IND-CPA comments

- A random adversary succeeds w/ prob. 1/2 → the correct success measure is the *advantage* over this
 - Advantage (one possible definition):
 |Pr[Adversary answers 1 : b = 0] Pr[Adversary answers 1 : b = 1]|
- An adversary may always succeed w/ advantage 1 given enough ressources
 - Find the key spending time $t \leq 2^{\kappa}$ and a few oracle queries
- What matters is the "best possible" advantage in function of the attack complexity

 \blacktriangleright ECB: just concatenate independent calls to ${\cal E}$

Electronic Code Book mode $m_0 || m_1 || \ldots \mapsto \mathcal{E}(k, m_0) || \mathcal{E}(k, m_1) || \ldots$

- No security
 - Exercise: give a simple attack on ECB for the IND-CPA security notion w/ advantage 1, low complexity

Cipher Block Chaining: Chain blocks together (duh)

Cipher Block Chaining mode

 $r \times m_0 ||m_1|| \ldots \mapsto c_0 \coloneqq \mathcal{E}(k, m_0 \oplus r) ||c1 \coloneqq \mathcal{E}(k, m_1 \oplus c_0)|| \ldots$

- Output block *i* (ciphtertext) added (XORed) w/ input block
 i + 1 (plaintext)
- For first (m_0) block: use random IV r
- Okay security in theory → okay security in practice if used properly

CBC IVs

CBC has bad IND-CPA security if the IVs are not random

- Consider an IND-CPA adversary who asks an oracle query CBC – ENC(m), gets r, c = E(k, m⊕r) (where E is the cipher used in CBC – ENC)
- Assume the adversary knows that for the next IV r', Pr[r' = x] = p
- Sends two challenges $m_0 = m \oplus r \oplus x$, $m_1 = m_0 \oplus 1$
- Gets $c_b = CBC ENC(m_b), b \stackrel{\$}{\leftarrow} \{0, 1\}$
- If $c_b = c$, guess b = 0, else b = 1
 - Exercise: what is the adversary's advantage? (If $q := \Pr[r' = x \oplus 1] \le (1 p)$.)

Even with random IVs, CBC has some drawbacks An observation:

- In CBC, inputs to *E* are of the form x ⊕ y where x is a message block and y an IV or a ciphertext block
- If $x \oplus y = x' \oplus y'$, then $\mathcal{E}(k, x \oplus y) = \mathcal{E}(k, x' \oplus y')$

A consequence:

- If $c_i = \mathcal{E}(k, m_i \oplus c_{i-1}) = c'_j = \mathcal{E}(k, m'_j \oplus c'_{j-1})$, then $c_{i-1} \oplus c'_{j-1} = m_i \oplus m'_j$
- ~ knowing identical ciphertext blocks reveals information about the message blocks
- \rightarrow breaks IND-CPA security
- Regardless of the security of \mathcal{E} !

How soon does a collision happen?

- ▶ Proposition: the distribution of the $(x \oplus y)$ is \approx uniform
 - If y is an IV it has to be (close to) uniformly random, otherwise we have an attack (two slides ago)
 - If $y = \mathcal{E}(k, z)$ is a ciphertext block, ditto for y knowing z, otherwise we have an attack on \mathcal{E}
- ▶ ⇒ A collision occurs w.h.p. after $\sqrt{\#\{0,1\}^n} = 2^{n/2}$ blocks are observed (with identical key k) ← The birthday bound
- (Slightly more precisely, w/ prob. $\approx q^2/2^n, q \leq 2^{n/2}$ after q blocks)

Some CBC recap

A decent mode, but

- Must use random IVs
- Must change key much before encrypting 2^{n/2} blocks when using an n-bit block cipher
- And this regardless of the key size κ
- This is a common restriction for modes of operation (cf. next slide)

Counter mode

 $m_0 \| m_1 \| \ldots \mapsto \mathcal{E}(k, s^{++}) \oplus m_0 \| \mathcal{E}(k, s^{++}) \oplus m_1 \| \ldots$

- This uses a global state s for the *counter*, with C-like semantics for s++
- Encrypts a public counter ~ pseudo-random keystream ~
 (perfect) one-time-pad approximation (i.e. a stream cipher)
- Like CBC, must change key much before encrypting 2^{n/2} blocks when using an n-bit block cipher
 - Question: why?

- A (binary) *tweakable* block cipher is a mapping $\tilde{\mathcal{E}}: \{0,1\}^{\kappa} \times \{0,1\}^{\theta} \times \{0,1\}^{n} \rightarrow \{0,1\}^{n}$ s.t. $\forall k \in \{0,1\}^{\kappa}, t \in \{0,1\}^{\theta}, \tilde{\mathcal{E}}(k,t,\cdot)$ is a permutation
- The tweak t is "like a key", but known & may be chosen by the adversary
- A necessary condition for $\tilde{\mathcal{E}}$ to be a good TBC is for $\tilde{\mathcal{E}}(\cdot, t, \cdot)$ to be a good BC for all t.
 - \blacktriangleright But an adversary may further try to exloit relations between $\tilde{\mathcal{E}}$ for \neq tweaks

How to build a TBC?

- From scratch, like any block cipher (see for instance Jean et al., 2014)
- From an existing block cipher treated as a black box (see for instance Liskov et al., 2002)
- Still a quite active research topic
- A simple (not ideal) example:
 - $\tilde{\mathcal{E}}(k,t,\cdot) \coloneqq \mathcal{E}(k \oplus t,\cdot)$
 - (Relies on the analysis of \mathcal{E} in a XOR-Related-key setting)

- Many modes (like CBC) fail when encrypting too many blocks with the same permutation
- ▹ ~> Change permutation as often as possible
- Change key at every block?
 - Not so clean to define, possible efficiency issues
- ▶ → Add a tweak, change tweak at every block
 - Clean, possibly more efficient, but a more "complex" primitive

Tweak Incrementation Encryption $m_0 || m_1 || \ldots \mapsto c_0 \coloneqq \tilde{\mathcal{E}}(k, s^{++}, m_0) || c_1 \coloneqq \tilde{\mathcal{E}}(k, s^{++}, m_1) || \ldots$

- Again uses a global state s, this time for the tweak
- \blacktriangleright Security directly reduces to the one of $\tilde{\mathcal{E}}$ as long as tweaks don't repeat
 - Intuitively if $\tilde{\mathcal{E}}(k, t, \cdot)$ and $\tilde{\mathcal{E}}(k, t' \neq t, \cdot)$ are independent random permutations, $\tilde{\mathcal{E}}(k, t, x)$ and $\tilde{\mathcal{E}}(k, t', x')$ are independent random values for any x, x'

- TBCs are great to define *authenticated encryption* (AE) modes, like TAE
- Authentication: "Only someone knowing the key k knows how to create and verify 'valid' messages"
- (Beyond the scope of this course)

About the exam

- One hour out of the three
- Probably ≈ two independent exercises
- Mostly on symmetric notions