Cryptology complementary RSA encryption & signatures

Pierre Karpman pierre.karpman@univ-grenoble-alpes.fr https://www-ljk.imag.fr/membres/Pierre.Karpman/tea.html

2018-04-12

An objective: asymmetric/public-key cryptography

Asymmetric/public-key encryption:

- One has encryption and decryption functions Enc, Dec
- One has key pairs (pk, sk) s.t. $\text{Dec}_{sk} \circ \text{Enc}_{pk}$ is the identity function
- The key pk can be announced "publicly", for everyone to encrypt
- The key sk must be kept secret
- It should be hard to
 - find sk from pk
 - decrypt w/o sk
 - learn information about encrypted messages
 - etc.

 \rightsquigarrow A good asymmetric encryption scheme meets IND-CCA security

IND-CCA for (Enc, Dec): An adversary cannot distinguish $Enc(pk_C, 0)$ from $Enc(pk_C, 1)$, when given (restricted) oracle access to $Dec(sk_C, \cdot)$ oracle:

- **1** The Challenger chooses a key pair (pk_C, sk_C) , a random bit b, sends $c = \text{Enc}(pk_C, b)$, pk_C to the Adversary
- The Adversary may repeatedly submit queries x_i ≠ c to the Challenger
- **3** The Challenger answers a query with $Dec(sk_C, x_i) \in \{0, 1, \bot\}$
 - \blacktriangleright This assumes w.l.o.g. that the domain of Enc is $\{0,1\},$ and that decryption may fail
- 4 The Adversary tries to guess b

Public-key signatures

- On has signing and verifying algorithms Sig, Ver : $x \mapsto \{\top, \bot\}$
- One has signing and verifying keys sk, pk, s.t. Ver_{pk} ∘ Sig_{sk} is the constant function ⊤
- The key pk can be announced "publicly", for everyone to verify signatures
- The key sk must be kept secret
- It should be hard to
 - find sk from pk
 - find valid signatures w/o sk
 - etc.

 \rightsquigarrow A good public-key signature scheme meets EUF-CMA security

EUF-CMA for (Sig, Ver): An adversary cannot forge a valid signature σ for a message *m* such that Ver(pk_C, σ, m) succeeds, when given (restricted) oracle access to Sig(sk_C, \cdot):

- **1** The Challenger chooses a pair (pk_C, sk_C) and sends pk_C to the Adversary
- 2 The Adversary may repeatedly submit queries m_i to the Challenger
- **3** The Challenger answers a query with $\sigma_i = \text{Sig}(sk_C, m_i)$
- 4 The Adversary tries to forge a signature σ_f for a message $m_f \neq_i m_i$, s.t. $Ver(pk_C, \sigma_f, m_f) = \top$

RSA (Rivest, Shamir, Adleman, 1977) in a nutshell: a family of "one-way permutations with trapdoor"

- Publicly define ${\mathcal P}$ that everyone can compute
- Knowing *P*, it is "hard" to compute *P*⁻¹ (even on a single point)
- There is a *trapdoor* associated w/ ${\cal P}$
- ${\scriptstyle \blacktriangleright}$ Knowing the trapdoor, it is easy to compute ${\cal P}^{-1}$ everywhere

- Let p, q be two (large) prime numbers
- Let N = pq
- Any 0 < x < N s.t. gcd(x, N) = 1 is invertible in $\mathbb{Z}/N\mathbb{Z}$
 - ▶ Note that knowing $x \notin (\mathbb{Z}/N\mathbb{Z})^{\times} \Leftrightarrow$ knowing *p* and *q*
 - Why?

Proposition: order of $(\mathbb{Z}/N\mathbb{Z})^{\times}$

Let N be as above, the order of the multiplicative group $(\mathbb{Z}/N\mathbb{Z})^{\times}$ is equal to (p-1)(q-1). (More generally, it is equal to $\varphi(N)$)

So for any
$$x \in (\mathbb{Z}/N\mathbb{Z})^{\times}$$
, $x^{k \varphi(N)+1} = x$

- ▶ Let *e* be s.t. $gcd(e, \varphi(N)) = 1$; consider $\mathcal{P} : x \mapsto x^e \mod N$
- ▶ \mathcal{P} is a permutation over $(\mathbb{Z}/N\mathbb{Z})^{\times}$ (in fact over the entire $\mathbb{Z}/N\mathbb{Z}$)
- Knowing e, N, it is easy to compute \mathcal{P}
- Knowing e, \varphi(N), it is easy to compute d s.t. ed = 1 mod \varphi(N)
- Knowing d, x^e , it is easy to compute $x = x^{ed}$
- \Rightarrow We have a permutation with trapdoor, but how good is the latter?

RSA: how secure?

Knowing $ed = k \varphi(N) + 1$, it is easy to find $\varphi(N)$ (admitted) Knowing N = pq, $\varphi(N) = (p-1)(q-1)$, it is easy to find p and q

- $\varphi(N) = pq (p+q) + 1; p+q = -(\varphi(N) N 1)$
- For any a, b, knowing ab and a + b allows to find a and b
 - Consider the polynomial $(X a)(X b) = X^2 (a + b)X + ab$

►
$$\Delta = (a+b)^2 - 4ab = (a-b)^2$$

► $a = ((a+b) + (a-b))/2$

- \Rightarrow Knowing, N, e, d, it is easy to factor N, plus:
 - e does (basically) not depend on N
- \Rightarrow If it is easy to compute d from N, e, it is easy to factor N, and
 - It is a hard problem to factor N = pq when p, q are large random primes

BUT it might not be necessary to know d to (efficiently) invert \mathcal{P} ?

- Let N = pq, with p, q prime numbers
- Let e be s.t. $gcd(e, \varphi(N) = (p-1)(q-1)) = 1$
 - In practice, e is often fixed to 3 or 65537
- The RSA permutation $\mathcal P$ over $\mathbb Z/N\mathbb Z$ is given by $m\mapsto m^e$
- The inverse \mathcal{P}^{-1} is given by $m \mapsto m^d$, where $ed \equiv 1 \mod \varphi(N)$
- *N*, *e* are the *public parameters* defining ${\mathcal{P}}$
- *N*, *e*, *d* are the *private parameters* defining \mathcal{P} , \mathcal{P}^{-1}

Assumption: Given only the public parameters, it is "hard" to invert $\ensuremath{\mathcal{P}}$

RSA for PKC

The objective: use RSA to build

- Public-key (asymmetric) encryption
 - Can then be used for asymmetric key exchange
- Public-key signatures

These schemes will need to satisfy the usual security notions

- ▶ For encryption: IND-CPA/CCA ("semantic security")
- For signatures: Existential unforgeability under chosen-message attacks (EUF-CMA)

Let $\mathcal{P}, \mathcal{P}^{-1}$ be RSA permutations with parameters *N*, *e*, *d*. Define:

• $\operatorname{Enc}(pk = (N, e), m) = \mathcal{P}(m) = (m^e \mod N)$

•
$$Dec(sk = (N, e, d), c) = \mathcal{P}^{-1}(c) = (c^d \mod N)$$

Not randomized \Rightarrow fails miserably, not IND-CCA

• When receiving $c = \mathcal{P}(b)$, the Adversary compares with $c_0 = \mathcal{P}(0), c_1 = \mathcal{P}(1)$

- ▶ If m, e are small, it may be that $m^e \mod N = m^e$ (over the integers) \Rightarrow trivial to invert
 - Example: N is of 2048 bits, e = 3, m is a one-bit challenge: adding 512 random bits of padding before encrypting does not provide IND-CCA security!
- Consider a *broadcast* setting where *m* is encrypted as $c_i = m^3 \mod N_i$, $i \in [1,3]$. Suppose that $\forall i, m < N_i < m^3$. Using the CRT, one can reconstruct $m^3 \mod N_1 N_2 N_3 = m^3$ and retrieve *m*.
 - Even random padding might not prevent this attack, if too structured (Hastad, Coppersmith)

More issues with (semi-)raw RSA

A very useful result for analysing the security of RSA is due to Coppersmith (1996):

Finding small modular roots of univariate polynomials

Let P be a polynomial of degree k defined modulo N, then there is an efficient algorithm that computes its roots that are less than $N^{1/k}$

- The complexity of the algorithm is polynomial in k (but w. a high degree)
- Example application: if c = (2^kB + x)³ mod N is an RSA image, B is known and of size 2/3 log(N), one can find x of size k < 1/3 log(N) by solving (2^kB + k)³ c = 0
- \blacktriangleright Other applications: in the previous slide; in slide #19, ...

Let $\mathcal{P}, \mathcal{P}^{-1}$ be RSA permutations with parameters N, e, d. Let Pad, Pad⁻¹ be a padding function and its inverse. Define:

- $\operatorname{Enc}(pk = (N, e), m) = \mathcal{P}(\operatorname{Pad}(m)) = (\operatorname{Pad}(m)^e \mod N)$
- $\vdash \mathsf{Dec}(\mathsf{sk} = (\mathsf{N}, \mathsf{e}, \mathsf{d}), \mathsf{c}) = \mathsf{Pad}^{-1}(\mathcal{P}^{-1}(\mathsf{c})) = \mathsf{Pad}^{-1}(\mathsf{c}^{\mathsf{d}} \mod \mathsf{N})$

Necessary conditions on Pad:

- It must be invertible
- It must be randomized (with a large-enough number of bits)
- For all m, N, e, $Pad(m)^e$ must be larger than N

OAEP: Optimal Asymmetric Encryption Padding (Bellare & Rogaway, 1994):

- Let $k = \lfloor \log(N) \rfloor$, κ be a security parameter
- Let $\mathcal{G}: \{0,1\}^{\kappa} \to \{0,1\}^n$, $\mathcal{H}: \{0,1\}^n \to \{0,1\}^{\kappa}$ be two hash functions
- ▶ Define Pad(x) as $(y_L || y_R) = x \oplus \mathcal{G}(r) || r \oplus \mathcal{H}(x \oplus \mathcal{G}(r))$, where $r \stackrel{\$}{\leftarrow} \{0,1\}^{\kappa}$
- One has $x = \operatorname{Pad}^{-1}(y_L || y_R) = y_L \oplus \mathcal{G}(y_R \oplus \mathcal{H}(y_L))$

- OAEP essentially uses a two-round Feistel structure
- To be instantiated, it requires two hash functions \mathcal{H} and \mathcal{G} with variable output size
- ▶ A possibility is to use a single XOF $\mathcal{X}: \{0,1\}^* \to \{0,1\}^*$, such as SHAKE-128

Intuitively, full knowledge of $(y_L || y_R)$ is necessary to invert:

- If part of y_L is unknown, $\mathcal{H}(y_L)$, then $\mathcal{G}(y_R \oplus \mathcal{H}(y_L)$ are uniformly random
- If part of y_R is unknown, $\mathcal{G}(y_R \oplus \mathcal{H}(y_L))$ is uniformly random
- In both cases $\Rightarrow x$ is hidden by a "one-time-pad"

More formally, we would like a reduction of the form:

Breaking RSA-OAEP w. Adv. $\epsilon \Rightarrow$ Inverting RSA w. Adv. $\approx \epsilon$

OAEP woes

- The original proof that OWP-OAEP is IND-CCA (for any good OWP) (Bellare & Rogaway, 1994) was incorrect
- Shoup showed that there can be no such proof (2001)
- But when OWP is RSA, then there is a proof (Shoup, 2001; Fujisaki & al., 2000)!
 - Exploits Coppersmith's algorithm!
- ▶ Not all the proofs are *tight* (e.g. Adv. $\epsilon \Rightarrow$ Adv. ϵ^2)
 - Need large parameters to give a meaningful guarantee

Let $\mathcal{P}, \mathcal{P}^{-1}$ be RSA permutations with parameters *N*, *e*, *d*. Define:

- Sig(sk = (N, e, d), m) = $\mathcal{P}^{-1}(m)$
- ▶ $Ver(pk = (N, e), \sigma, m) = \mathcal{P}(\sigma) == m ? \top : \bot$

Why this might work:

- Correctness: $(m^d)^e \equiv m \mod N \ (\mathcal{P}^{-1} \circ \mathcal{P} = \mathcal{P} \circ \mathcal{P}^{-1} = \mathsf{Id})$
- Security: Comes from the hardness of inverting *P* w/o knowing *d* → forging a signature for *m* ⇐ compute *P*⁻¹(*m*)

- If $m \equiv m' \mod N$, then $\mathcal{P}^{-1}(m) = \mathcal{P}^{-1}(m) \Rightarrow$ trivial forgeries
- ► $\mathcal{P}^{-1}(m) \mathcal{P}^{-1}(m') = (m^d)(m'^d) \mod N = (mm')^d$ mod $N = \mathcal{P}^{-1}(mm') \Rightarrow$ trivial forgeries over [0, N-1]

Again, some padding is necessary!

Let $\mathcal{P}, \mathcal{P}^{-1}$ be RSA permutations with parameters N, e, d. Let Pad be a padding function. Define:

• Sig(
$$sk = (N, e, d), m$$
) = $\mathcal{P}^{-1}(\operatorname{Pad}(m))$

▶
$$Ver(pk = (N, e), \sigma, m) = \mathcal{P}(\sigma) == Pad(m) ? \top : \bot$$

- Pad does not need to be invertible
- It does not need to be randomized (tho this can help)

What padding functions for RSA-SIG?

Let $k = \lfloor \log(N) \rfloor$

Full-Domain Hash (FDH) (Bellare & Rogaway; 1993):

• Let $\mathcal{H}: \{0,1\}^* \to \{0,1\}^k$ be a hash function, $Pad(m) = \mathcal{H}(m)$ PFDH (Coron, 2002):

- ▶ Let $\mathcal{H}: \{0,1\}^* \to \{0,1\}^k$ be a hash function, $r \xleftarrow{\$} \{0,1\}^n$, $Pad(m) = \mathcal{H}(m||r)$
 - r is not included in the padding per se, but must be transmitted along
- Both are pretty simple, both provable in the random oracle model (ROM)
- The proof is *tighter* for PFDH ("good" security is obtained for smaller N)
- $\mathcal H$ can instantiated by a XOF

PSS-R (Bellare & Rogaway, 1996):

- ▶ Let $\lfloor \log(N) \rfloor = k = k_0 + k_1 + k_2$, $\mathcal{H} : \{0,1\}^{k-k_1} \to \{0,1\}^{k_1}$, $\mathcal{G} : \{0,1\}^{k_1} \to \{0,1\}^{k-k_1}$ be two hash functions, $r \xleftarrow{\$} \{0,1\}^{k_0}$
- ▶ Pad : $\{0,1\}^{k_2} \rightarrow \{0,1\}^k$ is defined by Pad $(x) = \mathcal{H}(x||r)||(x||r \oplus \mathcal{G}(\mathcal{H}(x||r)))$
- If |x| < k₂, PSS-R is invertible (then, the message m does not need to be transmitted with the signature)
- Otherwise, e.g. compute Pad(x') where $x' = \mathcal{I}(x)$, $\mathcal{I}: \{0,1\}^* \rightarrow \{0,1\}^{k_2}$ a hash function (then, k_2 must be "large enough")

More on PSS-R

- In fact, PSS-R may also be used as padding for RSA-ENC (Coron & al., 2002)!
 - Notice the relative similarity between PSS-R and OAEP
- Both SIG and ENC cases are provably secure in the ROM
 - In the specific case of RSA, same as OAEP

RSA-SIG: Quick implementation comments

- The signer knows N, e, d, and also the factorization $p \times q$ of N
- Thanks to the CRT, any computation mod N (in particular $m \mapsto m^d$ may be done mod p and mod q
- A CRT implementation is more efficient, as multiplying two numbers does not have a linear cost
- In fact, such CRT decomposition is a useful approach for general big number arithmetic
- \rightarrow "RSA-CRT" implementations
 - More efficient, but beware of fault attacks! (That's a general warning, tho)