Cryptology complementary

RSA encryption \& signatures

Pierre Karpman
pierre.karpman@univ-grenoble-alpes.fr
https://www-ljk.imag.fr/membres/Pierre.Karpman/tea.html

2018-04-12

An objective: asymmetric/public-key cryptography

Asymmetric/public-key encryption:

- One has encryption and decryption functions Enc, Dec
- One has key pairs ($p k, s k$) s.t. $\mathrm{Dec}_{s k} \circ \mathrm{Enc}_{p k}$ is the identity function
- The key pk can be announced "publicly", for everyone to encrypt
- The key sk must be kept secret
- It should be hard to
- find sk from pk
- decrypt w/o sk
- learn information about encrypted messages
- etc.
\leadsto A good asymmetric encryption scheme meets IND-CCA security

IND-CCA for Public-Key encryption

IND-CCA for (Enc, Dec): An adversary cannot distinguish $\operatorname{Enc}\left(p k_{C}, 0\right)$ from $\operatorname{Enc}\left(p k_{C}, 1\right)$, when given (restricted) oracle access to $\operatorname{Dec}\left(s k_{C}, \cdot\right)$ oracle:

1 The Challenger chooses a key pair $\left(p k_{C}, s k_{C}\right)$, a random bit b, sends $c=\operatorname{Enc}\left(p k_{C}, b\right), p k_{c}$ to the Adversary
2 The Adversary may repeatedly submit queries $x_{i} \neq c$ to the Challenger
3 The Challenger answers a query with $\operatorname{Dec}\left(s_{C}, x_{i}\right) \in\{0,1, \perp\}$

- This assumes w.l.o.g. that the domain of Enc is $\{0,1\}$, and that decryption may fail
4 The Adversary tries to guess b

Public-key signatures

Public-key signatures

- On has signing and verifying algorithms Sig, Ver: $x \mapsto\{T, \perp\}$
- One has signing and verifying keys sk, pk, s.t. Ver $_{p k} \circ \operatorname{Sig}_{s k}$ is the constant function T
- The key pk can be announced "publicly", for everyone to verify signatures
- The key sk must be kept secret
- It should be hard to
- find sk from pk
- find valid signatures w/o sk
- etc.
\leadsto A good public-key signature scheme meets EUF-CMA security

EUF-CMA for Public-Key signatures

EUF-CMA for (Sig, Ver): An adversary cannot forge a valid signature σ for a message m such that $\operatorname{Ver}\left(p k_{C}, \sigma, m\right)$ succeeds, when given (restricted) oracle access to $\operatorname{Sig}\left(s k_{C}, \cdot\right)$:

1 The Challenger chooses a pair $\left(p k_{C}, s k_{C}\right)$ and sends $p k_{C}$ to the Adversary
2 The Adversary may repeatedly submit queries m_{i} to the Challenger
3 The Challenger answers a query with $\sigma_{i}=\operatorname{Sig}\left(s k_{C}, m_{i}\right)$
4 The Adversary tries to forge a signature σ_{f} for a message $m_{f} \neq i m_{i}$, s.t. $\operatorname{Ver}\left(p k_{C}, \sigma_{f}, m_{f}\right)=\top$

The RSA permutation

RSA (Rivest, Shamir, Adleman, 1977) in a nutshell: a family of "one-way permutations with trapdoor"

- Publicly define \mathcal{P} that everyone can compute
- Knowing \mathcal{P}, it is "hard" to compute \mathcal{P}^{-1} (even on a single point)
- There is a trapdoor associated w / \mathcal{P}
- Knowing the trapdoor, it is easy to compute \mathcal{P}^{-1} everywhere

RSA: how?

- Let p, q be two (large) prime numbers
- Let $N=p q$
- Any $0<x<N$ s.t. $\operatorname{gcd}(x, N)=1$ is invertible in $\mathbb{Z} / N \mathbb{Z}$
- Note that knowing $x \notin(\mathbb{Z} / N \mathbb{Z})^{\times} \Leftrightarrow$ knowing p and q
- Why?

Proposition: order of $(\mathbb{Z} / N \mathbb{Z})^{\times}$

Let N be as above, the order of the multiplicative group $(\mathbb{Z} / N \mathbb{Z})^{\times}$ is equal to $(p-1)(q-1)$. (More generally, it is equal to $\varphi(N)$)

- So for any $x \in(\mathbb{Z} / N \mathbb{Z})^{\times}, x^{k \varphi(N)+1}=x$

RSA: more on how

- Let e be s.t. $\operatorname{gcd}(e, \varphi(N))=1$; consider $\mathcal{P}: x \mapsto x^{e} \bmod N$
- \mathcal{P} is a permutation over $(\mathbb{Z} / N \mathbb{Z})^{\times}$(in fact over the entire $\mathbb{Z} / N \mathbb{Z})$
- Knowing e, N, it is easy to compute \mathcal{P}
- Knowing e, $\varphi(N)$, it is easy to compute d s.t. ed $=1$ $\bmod \varphi(N)$
- Knowing d, x^{e}, it is easy to compute $x=x^{e d}$
\Rightarrow We have a permutation with trapdoor, but how good is the latter?

RSA: how secure?

Knowing ed $=k \varphi(N)+1$, it is easy to find $\varphi(N)$ (admitted)
Knowing $N=p q, \varphi(N)=(p-1)(q-1)$, it is easy to find p and q

- $\varphi(N)=p q-(p+q)+1 ; p+q=-(\varphi(N)-N-1)$
- For any a, b, knowing $a b$ and $a+b$ allows to find a and b
- Consider the polynomial $(X-a)(X-b)=X^{2}-(a+b) X+a b$
- $\Delta=(a+b)^{2}-4 a b=(a-b)^{2}$
- $a=((a+b)+(a-b)) / 2$
\Rightarrow Knowing, N, e, d, it is easy to factor N, plus:
- e does (basically) not depend on N
\Rightarrow If it is easy to compute d from N, e, it is easy to factor N, and
- It is a hard problem to factor $N=p q$ when p, q are large random primes
BUT it might not be necessary to know d to (efficiently) invert \mathcal{P} ?

To sum up: the RSA permutation family

- Let $N=p q$, with p, q prime numbers
- Let e be s.t. $\operatorname{gcd}(e, \varphi(N)=(p-1)(q-1))=1$
- In practice, e is often fixed to 3 or 65537
- The RSA permutation \mathcal{P} over $\mathbb{Z} / N \mathbb{Z}$ is given by $m \mapsto m^{e}$
- The inverse \mathcal{P}^{-1} is given by $m \mapsto m^{d}$, where ed $\equiv 1$ $\bmod \varphi(N)$
- N, e are the public parameters defining \mathcal{P}
- N, e, d are the private parameters defining $\mathcal{P}, \mathcal{P}^{-1}$

Assumption: Given only the public parameters, it is "hard" to invert \mathcal{P}

RSA for PKC

The objective: use RSA to build

- Public-key (asymmetric) encryption
- Can then be used for asymmetric key exchange
- Public-key signatures

These schemes will need to satisfy the usual security notions

- For encryption: IND-CPA/CCA ("semantic security")
- For signatures: Existential unforgeability under chosen-message attacks (EUF-CMA)

RSA Encryption: first attempt

Let $\mathcal{P}, \mathcal{P}^{-1}$ be RSA permutations with parameters N, e, d. Define:

- $\operatorname{Enc}(p k=(N, e), m)=\mathcal{P}(m)=\left(m^{e} \bmod N\right)$
- $\operatorname{Dec}(s k=(N, e, d), c)=\mathcal{P}^{-1}(c)=\left(c^{d} \bmod N\right)$

Not randomized \Rightarrow fails miserably, not IND-CCA

- When receiving $c=\mathcal{P}(b)$, the Adversary compares with $c_{0}=\mathcal{P}(0), c_{1}=\mathcal{P}(1)$

More issues with raw RSA

- If m, e are small, it may be that $m^{e} \bmod N=m^{e}$ (over the integers) \Rightarrow trivial to invert
- Example: N is of 2048 bits, $e=3, m$ is a one-bit challenge: adding 512 random bits of padding before encrypting does not provide IND-CCA security!
- Consider a broadcast setting where m is encrypted as $c_{i}=m^{3}$ $\bmod N_{i}, i \in[1,3]$. Suppose that $\forall i, m<N_{i}<m^{3}$. Using the CRT, one can reconstruct $m^{3} \bmod N_{1} N_{2} N_{3}=m^{3}$ and retrieve m.
- Even random padding might not prevent this attack, if too structured (Hastad, Coppersmith)

More issues with (semi-)raw RSA

A very useful result for analysing the security of RSA is due to Coppersmith (1996):

Finding small modular roots of univariate polynomials

Let P be a polynomial of degree k defined modulo N, then there is an efficient algorithm that computes its roots that are less than $N^{1 / k}$

- The complexity of the algorithm is polynomial in k (but w. a high degree)
- Example application: if $c=\left(2^{k} B+x\right)^{3} \bmod N$ is an RSA image, B is known and of size $2 / 3 \log (N)$, one can find x of size $k<1 / 3 \log (N)$ by solving $\left(2^{k} B+k\right)^{3}-c=0$
- Other applications: in the previous slide; in slide \#19, ...

Proper RSA-ENC

Let $\mathcal{P}, \mathcal{P}^{-1}$ be RSA permutations with parameters N, e, d. Let $\mathrm{Pad}, \mathrm{Pad}^{-1}$ be a padding function and its inverse. Define:

- $\operatorname{Enc}(p k=(N, e), m)=\mathcal{P}(\operatorname{Pad}(m))=\left(\operatorname{Pad}(m)^{e} \bmod N\right)$
- $\operatorname{Dec}(s k=(N, e, d), c)=\operatorname{Pad}^{-1}\left(\mathcal{P}^{-1}(c)\right)=\operatorname{Pad}^{-1}\left(c^{d} \bmod N\right)$

Necessary conditions on Pad:

- It must be invertible
- It must be randomized (with a large-enough number of bits)
- For all $m, N, e, \operatorname{Pad}(m)^{e}$ must be larger than N

OAEP: A good padding function for RSA-ENC

OAEP: Optimal Asymmetric Encryption Padding (Bellare \& Rogaway, 1994):

- Let $k=\lfloor\log (N)\rfloor, \kappa$ be a security parameter
- Let $\mathcal{G}:\{0,1\}^{\kappa} \rightarrow\{0,1\}^{n}, \mathcal{H}:\{0,1\}^{n} \rightarrow\{0,1\}^{\kappa}$ be two hash functions
- Define $\operatorname{Pad}(x)$ as $\left(y_{L} \| y_{R}\right)=x \oplus \mathcal{G}(r) \| r \oplus \mathcal{H}(x \oplus \mathcal{G}(r))$, where $r \stackrel{\S}{\leftarrow}\{0,1\}^{\kappa}$
- One has $x=\operatorname{Pad}^{-1}\left(y_{L} \|_{y_{R}}\right)=y_{L} \oplus \mathcal{G}\left(y_{R} \oplus \mathcal{H}\left(y_{L}\right)\right)$

More on OAEP

- OAEP essentially uses a two-round Feistel structure
- To be instantiated, it requires two hash functions \mathcal{H} and \mathcal{G} with variable output size
- A possibility is to use a single XOF $\mathcal{X}:\{0,1\}^{*} \rightarrow\{0,1\}^{*}$, such as SHAKE-128

OAEP: Why does it work (kind of)?

Intuitively, full knowledge of $\left(y_{L} \| y_{R}\right)$ is necessary to invert:

- If part of y_{L} is unknown, $\mathcal{H}\left(y_{L}\right)$, then $\mathcal{G}\left(y_{R} \oplus \mathcal{H}\left(y_{L}\right)\right.$ are uniformly random
- If part of y_{R} is unknown, $\mathcal{G}\left(y_{R} \oplus \mathcal{H}\left(y_{L}\right)\right)$ is uniformly random
- In both cases $\Rightarrow x$ is hidden by a "one-time-pad"

More formally, we would like a reduction of the form:
Breaking RSA-OAEP w. Adv. $\epsilon \Rightarrow$ Inverting RSA w. Adv. $\approx \epsilon$

OAEP woes

- The original proof that OWP-OAEP is IND-CCA (for any good OWP) (Bellare \& Rogaway, 1994) was incorrect
- Shoup showed that there can be no such proof (2001)
- But when OWP is RSA, then there is a proof (Shoup, 2001; Fujisaki \& al., 2000)!
- Exploits Coppersmith's algorithm!
- Not all the proofs are tight (e.g. Adv. $\epsilon \Rightarrow$ Adv. ϵ^{2})
- Need large parameters to give a meaningful guarantee

What about RSA-SIG now?

Let $\mathcal{P}, \mathcal{P}^{-1}$ be RSA permutations with parameters N, e, d. Define:

- $\operatorname{Sig}(s k=(N, e, d), m)=\mathcal{P}^{-1}(m)$
- $\operatorname{Ver}(p k=(N, e), \sigma, m)=\mathcal{P}(\sigma)==m$? T : \perp

Why this might work:

- Correctness: $\left(m^{d}\right)^{e} \equiv m \bmod N\left(\mathcal{P}^{-1} \circ \mathcal{P}=\mathcal{P} \circ \mathcal{P}^{-1}=\mathrm{Id}\right)$
- Security: Comes from the hardness of inverting \mathcal{P} w/o knowing $d \leadsto$ forging a signature for $m \Leftarrow$ compute $\mathcal{P}^{-1}(m)$

Raw RSA-SIG: That's no good!

- If $m \equiv m^{\prime} \bmod N$, then $\mathcal{P}^{-1}(m)=\mathcal{P}^{-1}(m) \Rightarrow$ trivial forgeries
- $\mathcal{P}^{-1}(m) \mathcal{P}^{-1}\left(m^{\prime}\right)=\left(m^{d}\right)\left(m^{\prime d}\right) \bmod N=\left(m m^{\prime}\right)^{d}$ $\bmod N=\mathcal{P}^{-1}\left(m m^{\prime}\right) \Rightarrow$ trivial forgeries over $[0, N-1]$

Again, some padding is necessary!

Proper RSA-SIG

Let $\mathcal{P}, \mathcal{P}^{-1}$ be RSA permutations with parameters N, e, d. Let Pad be a padding function. Define:

- $\operatorname{Sig}(s k=(N, e, d), m)=\mathcal{P}^{-1}(\operatorname{Pad}(m))$
- $\operatorname{Ver}(p k=(N, e), \sigma, m)=\mathcal{P}(\sigma)==\operatorname{Pad}(m)$? T : \perp
- Pad does not need to be invertible
- It does not need to be randomized (tho this can help)

What padding functions for RSA-SIG?

Let $k=\lfloor\log (N)\rfloor$
Full-Domain Hash (FDH) (Bellare \& Rogaway; 1993):

- Let $\mathcal{H}:\{0,1\}^{*} \rightarrow\{0,1\}^{k}$ be a hash function, $\operatorname{Pad}(m)=\mathcal{H}(m)$ PFDH (Coron, 2002):
- Let $\mathcal{H}:\{0,1\}^{*} \rightarrow\{0,1\}^{k}$ be a hash function, $r \stackrel{\S}{\leftarrow}\{0,1\}^{n}$, $\operatorname{Pad}(m)=\mathcal{H}(m \| r)$
- r is not included in the padding per se, but must be transmitted along
- Both are pretty simple, both provable in the random oracle model (ROM)
- The proof is tighter for PFDH ("good" security is obtained for smaller N)
- \mathcal{H} can instantiated by a XOF

Another nice padding: PSS-R

PSS-R (Bellare \& Rogaway, 1996):

- Let $\lfloor\log (N)\rfloor=k=k_{0}+k_{1}+k_{2}, \mathcal{H}:\{0,1\}^{k-k_{1}} \rightarrow\{0,1\}^{k_{1}}$, $\mathcal{G}:\{0,1\}^{k_{1}} \rightarrow\{0,1\}^{k-k_{1}}$ be two hash functions, $r \stackrel{\S}{\leftarrow}\{0,1\}^{k_{0}}$
- Pad : $\{0,1\}^{k_{2}} \rightarrow\{0,1\}^{k}$ is defined by $\operatorname{Pad}(x)=\mathcal{H}(x \| r) \|(x \| r \oplus \mathcal{G}(\mathcal{H}(x \| r)))$
- If $|x|<k_{2}$, PSS-R is invertible (then, the message m does not need to be transmitted with the signature)
- Otherwise, e.g. compute $\operatorname{Pad}\left(x^{\prime}\right)$ where $x^{\prime}=\mathcal{I}(x)$, $\mathcal{I}:\{0,1\}^{*} \rightarrow\{0,1\}^{k_{2}}$ a hash function (then, k_{2} must be "large enough")

More on PSS-R

- In fact, PSS-R may also be used as padding for RSA-ENC (Coron \& al., 2002)!
- Notice the relative similarity between PSS-R and OAEP
- Both SIG and ENC cases are provably secure in the ROM
- In the specific case of RSA, same as OAEP

RSA-SIG: Quick implementation comments

- The signer knows N, e, d, and also the factorization $p \times q$ of N
- Thanks to the CRT, any computation $\bmod N$ (in particular $m \mapsto m^{d}$ may be done $\bmod p$ and $\bmod q$
- A CRT implementation is more efficient, as multiplying two numbers does not have a linear cost
- In fact, such CRT decomposition is a useful approach for general big number arithmetic
- \Rightarrow "RSA-CRT" implementations
- More efficient, but beware of fault attacks! (That's a general warning, tho)

