
Hash functions, collisions 2018–04–05 1/20

Cryptology complementary
]

Hash functions, collisions

Pierre Karpman
pierre.karpman@univ-grenoble-alpes.fr

https://www-ljk.imag.fr/membres/Pierre.Karpman/tea.html

2018–04–05

pierre.karpman@univ-grenoble-alpes.fr
https://www-ljk.imag.fr/membres/Pierre.Karpman/tea.html


Hash functions, collisions 2018–04–05 2/20

Cryptographic hash functions

Hash function

A hash function is a mapping H ∶M→ D
So it really is just a function...

Usually:

▸ M = ⋃`<N{0,1}`, D = {0,1}n, N ≫ n

▸ N is typically ≥ 264, n ∈ {////128, ////160, 224, 256, 384, 512}
Also popular now: extendable-output functions (XOFs): D = ⋃`<N′{0,1}`

▸ Hash functions are keyless

▸ So, how do you tell if one’s good?



Hash functions, collisions 2018–04–05 3/20

Three classical security properties

1 First preimage: given t, find m s.t. H(m) = t

2 Second preimage: given m, find m′ ≠ m s.t. H(m) =H(m′)
3 Collision: find (m,m′ ≠ m) s.t. H(m) =H(m′)

Generic complexity:
1), 2): Θ(2n);
3): Θ(2n/2) ¢ “Birthday paradox”
(There’s actually more...)

Birthday paradox

If all outputs of H are independent and uniformly random, one
may expect to find one collisions among

√
2n inputs

▸ N elements define ≈ N2 pairs, which have independent
probability 2−n of forming a collision



Hash functions, collisions 2018–04–05 4/20

Why do we care? Applications!

Hash functions are useful for:

▸ Hash-and-sign (RSA signatures, (EC)DSA, ...)

▸ building MACs (HMAC, ...)

▸ Password hashing (with a grain of salt)

▸ Hash-based signatures (inefficient but PQ)

▸ In padding schemes (OAEP, ...)

▸ Etc.

⇒ A versatile building block, but only a building block



Hash functions, collisions 2018–04–05 5/20

So, how do you build hash functions?

▸ Objective #1: be secure
▸ Objective #2: be efficient

▸ Even more than block ciphers!
▸ ⇒ work with limited amount of memory

So...

▸ (#2) Build H from a small component

▸ (#1) Prove that this is okay



Hash functions, collisions 2018–04–05 6/20

What kind of small component?

Compression function

A compression function is a mapping f ∶ {0,1}n × {0,1}b → {0,1}n

▸ A family of functions from n to n bits

▸ Not unlike a block cipher, only not invertible

Permutation

A permutation is an invertible mapping p ∶ {0,1}n → {0,1}n

Yes, very simple

▸ Like a block cipher with a fixed key, e.g. p = E(0, ⋅)



Hash functions, collisions 2018–04–05 7/20

From small to big (compression function case)

Assume a good f

▸ Main problem: fixed-size domain {0,1}n × {0,1}b
▸ Objective: domain extension to ⋃`<N{0,1}`

The classical answer: the Merkle-Damg̊ard construction (1989)



Hash functions, collisions 2018–04–05 8/20

MD: with a picture

pad(m) = m1 m2 m3 m4

fh0 = IV f
h1

f
h2

f
h3

h4 =H(m)

That is: H(m1∣∣m2∣∣m3∣∣ . . .) = f(. . . f(f(f(IV,m1),m2),m3), . . .)
pad(m) ≈ m∣∣1000 . . .00⟨length of m⟩



Hash functions, collisions 2018–04–05 9/20

MD: does it work?

Efficiency?

▸ Only sequential calls to f

▸ ⇒ fine

Security?

▸ Still to be shown
▸ Objective: reduce security of H to that of f

▸ “If f is good, then H is good”

▸ True for collision and first preimage, false for second preimage

▸ Won’t see the details, though (in the end, everything is quite
fine)



Hash functions, collisions 2018–04–05 10/20

So how to do f?

1 Start like a block cipher

2 Add feedforward to prevent invertibility

Examples:
“Davies-Meyer”: f(h,m) = Em(h) ⊞ h
“Matyas-Meyer-Oseas”: f(h,m) = Eh(m) ⊞m

▸ Systematic analysis by Preneel, Govaerts and Vandewalle
(1993). “PGV” constructions

▸ Then rigorous proofs (in the ideal cipher model) (Black et al.,
2002), (Black et al., 2010)



Hash functions, collisions 2018–04–05 11/20

Re: Davies-Meyer

Picture:

Ehi−1 hi

mi

Used in MD4/5 SHA-0/1/2, etc.



Hash functions, collisions 2018–04–05 12/20

Re: Re: Davies-Meyer

Why is the “message” the “key”?

▸ Disconnect chaining value and message length!

▸ E ’s block length: fixed by security level

▸ E ’s key length: fixed by “message” length

▸ Large “key” ⇒ more efficient

▸ Example: MD5’s “block cipher”: 128-bit blocks, 512-bit keys

DM incentive: use very simple message expansion (“key
schedules”)

▸ To be efficient!

▸ Warning: can be a source of weakness



Hash functions, collisions 2018–04–05 13/20

Let’s collide now!



Hash functions, collisions 2018–04–05 13/20

Let’s collide now!

Computing collisions for a (generic) function F ∶ I → O has many
applications in crypto, e.g.:

▸ Generic attacks on hash functions

▸ Generic discrete logartihm computations

▸ Factorization

▸ Generic attacks on mode of operations

▸ Intermediate step in some dedictated attacks



Hash functions, collisions 2018–04–05 14/20

Collision finding: how?

Finding a collision in {F(i), i ∈ [0,M]} for some M (e.g. ≈ √
#O)

The easy way:

1 Incrementally store the F(i) in a data structure w/ efficient
insertion & comparison

▸ Sorted list, hash table, etc.

2 Look for a duplicate at every insertion

Quite simple; easily parallelizable; huge memory complexity



Hash functions, collisions 2018–04–05 15/20

Collision finding: memoryless, sequential

Objective: decreasing the memory complexity of collision search

▸ One idea: if O ⊆ I, look at iterates of F : compute F(x),
F(F(x)), etc. for some x

▸ If F i(x) = F j(x), then F i−1(x) and F j−1(x) form a collision
for F

▸ Question 1: how soon does such an event happen?

▸ Question 2: how is this useful?



Hash functions, collisions 2018–04–05 16/20

Collision finding: Pollard ρ (A. 1)

Rho (ρ) structure of F r(x), r ∈ N:

▸ If F i(x) = F j(x), i < j the smallest values where this
happens, then F i(x) = F i+k(j−i)(x)

▸ ⇒ F r(x) has a cycle of length j − i

▸ ⇒ F r(x) has a tail of length i

Proposition

For a random function F , for a random starting point x , the
expected cycle and tail length of F r(x) are both ≈ √

#O
⇒ One can look for collisions in F r(x) instead of F(⋅) directly



Hash functions, collisions 2018–04–05 17/20

Collision finding: Pollard ρ (A. 2)

To find a collision in F , find the tail (λ) and cycle (µ) length of
F r(x) for some x

▸ Can be done with constant (in F ’s parameter sizes) memory,
using Floyd’s cycle-finding algorithm:

1 Compute F i(x), F2i(x) in parallel, i = 1, . . .

2 Find k s.t. Fk(x) = F2k(x)
▸ Most likely, Fk−1(x) = F2k−1(x), so the collision is “trivial”
▸ (But one has k − λ ≡ 2k − λ ≡ λ + 2(k − λ) mod µ, so k ≡ 0

mod µ)

3 Find k ′ s.t. Fk ′(x) = Fk(x); set µ = k ′ − k

4 Compute α = Fµ(x); find k ′′ s.t. Fµ+k ′′(x) = α; set λ = α − µ
5 Fλ−1(x) and Fλ+µ−1(x) form a non-trivial collision

⇒ Constant memory complexity, time complexity = Θ(√#O),
with small constant



Hash functions, collisions 2018–04–05 18/20

Collision finding: Pollard ρ example

Let F r(0) be such that λ = 193, µ = 171
▸ −193 ≡ 149 mod 171

▸ At i = 342 = 193 + 149, i − 193 = 149 ≡ 149 mod 171
▸ And 2i − 193 = 193 + 2 × 149 ≡ −149 + 2 × 149 mod 171 ≡ 149

mod 171

▸ F342(0) = F684(0) = F513(0)
▸ µ = 513 − 342 = 171

▸ F193(0) = F364(0)⇒ λ = 193

▸ F192(0) and F363(0) form a collision



Hash functions, collisions 2018–04–05 19/20

Parallel collision search

▸ Limitation of the ρ approach: it is sequential

▸ In the real world, one wants parallel approaches to hard
problems (if possible)

▸ Still with memory ≪ time

⇒ Parallel collision search (van Oorschot & Wiener, 1999)

▸ Define a distinguished property for the outputs of F (e.g.
F(x) starts with z zeroes for some z)

▸ For as many threads t, compute “chains” of αi
t = F i(st) for a

random st until αi
t is distinguished, then store (st , αi

t , i) e.g.
in a hash table, then start again

▸ If (st , αi
t , i), (st′ , αj

t′ , j) are s.t. αi
t = αj

t′ , i < j , compute

s ′t′ = F j−i(st′); find k s.t. Fk(st) = Fk(s ′t′)



Hash functions, collisions 2018–04–05 20/20

PCS comments

▸ One must choose the distinguished property s.t.
▸ Not so many points are distinguished (to limit memory

complexity)
▸ Recomputing a chain from the start is not too long (to limit

time complexity)

▸ If (st , αi
t , i), (st′ , αj

t′ , j) are s.t. Fk(st′) = st for some k, the
collision is trivial

▸ If a chain enters a cycle w/o distinguished points, it never
terminates

▸ For a “well-chosen” distinguishing property, ≈ optimal
speed-up: T threads decrease running-time by a factor T


