Cryptology complementary Hash functions, collisions

Pierre Karpman
pierre.karpman@univ-grenoble-alpes.fr
https://www-ljk.imag.fr/membres/Pierre.Karpman/tea.html

2018-04-05

Cryptographic hash functions

Hash function

A hash function is a mapping $\mathcal{H}: \mathcal{M} \rightarrow \mathcal{D}$
So it really is just a function...
Usually:

- $\mathcal{M}=\bigcup_{\ell<N}\{0,1\}^{\ell}, \mathcal{D}=\{0,1\}^{n}, N \gg n$
- N is typically $\geq 2^{64}, n \in\{1 / 4 \%, 1 / \phi \emptyset, 224,256,384,512\}$

Also popular now: extendable-output functions (XOFs): $\mathcal{D}=\bigcup_{\ell<N^{\prime}}\{0,1\}^{\ell}$

- Hash functions are keyless
- So, how do you tell if one's good?

Three classical security properties

1 First preimage: given t, find m s.t. $\mathcal{H}(m)=t$
2 Second preimage: given m, find $m^{\prime} \neq m$ s.t. $\mathcal{H}(m)=\mathcal{H}\left(m^{\prime}\right)$
13 Collision: find $\left(m, m^{\prime} \neq m\right)$ s.t. $\mathcal{H}(m)=\mathcal{H}\left(m^{\prime}\right)$
Generic complexity:
1), 2): $\Theta\left(2^{n}\right)$;
3): $\Theta\left(2^{n / 2}\right) \sim$ "Birthday paradox"
(There's actually more...)

Birthday paradox

If all outputs of \mathcal{H} are independent and uniformly random, one may expect to find one collisions among $\sqrt{2^{n}}$ inputs

- N elements define $\approx N^{2}$ pairs, which have independent probability 2^{-n} of forming a collision

Why do we care? Applications!

Hash functions are useful for:

- Hash-and-sign (RSA signatures, (EC)DSA, ...)
- building MACs (HMAC, ...)
- Password hashing (with a grain of salt)
- Hash-based signatures (inefficient but PQ)
- In padding schemes (OAEP, ...)
- Etc.
\Rightarrow A versatile building block, but only a building block

So, how do you build hash functions?

- Objective \#1: be secure
- Objective \#2: be efficient
- Even more than block ciphers!
- \Rightarrow work with limited amount of memory

So...

- (\#2) Build \mathcal{H} from a small component
- (\#1) Prove that this is okay

What kind of small component?

Compression function

A compression function is a mapping $f:\{0,1\}^{n} \times\{0,1\}^{b} \rightarrow\{0,1\}^{n}$

- A family of functions from n to n bits
- Not unlike a block cipher, only not invertible

Permutation

A permutation is an invertible mapping $\mathfrak{p}:\{0,1\}^{n} \rightarrow\{0,1\}^{n}$
Yes, very simple

- Like a block cipher with a fixed key, e.g. $\mathfrak{p}=\mathcal{E}(0, \cdot)$

From small to big (compression function case)

Assume a good \mathfrak{f}

- Main problem: fixed-size domain $\{0,1\}^{n} \times\{0,1\}^{b}$
- Objective: domain extension to $\bigcup_{\ell<N}\{0,1\}^{\ell}$

The classical answer: the Merkle-Damgård construction (1989)

MD: with a picture

That is: $\mathcal{H}\left(m_{1}\left\|m_{2}\right\| m_{3} \| \ldots\right)=\mathfrak{f}\left(\ldots \mathfrak{f}\left(f\left(f\left(\mathrm{IV}, m_{1}\right), m_{2}\right), m_{3}\right), \ldots\right)$ $\operatorname{pad}(m) \approx m \| 1000 \ldots 00$ 〈length of $m\rangle$

MD: does it work?

Efficiency?

- Only sequential calls to f
- \Rightarrow fine

Security?

- Still to be shown
- Objective: reduce security of \mathcal{H} to that of \mathfrak{f}
" "If \mathfrak{f} is good, then \mathcal{H} is good"
- True for collision and first preimage, false for second preimage
- Won't see the details, though (in the end, everything is quite fine)

So how to do f ?

1 Start like a block cipher
2 Add feedforward to prevent invertibility
Examples:
"Davies-Meyer": $\mathfrak{f}(h, m)=\mathcal{E}_{m}(h) \boxplus h$
"Matyas-Meyer-Oseas": $\mathfrak{f}(h, m)=\mathcal{E}_{h}(m) \boxplus m$

- Systematic analysis by Preneel, Govaerts and Vandewalle (1993). "PGV" constructions
- Then rigorous proofs (in the ideal cipher model) (Black et al., 2002), (Black et al., 2010)

Re: Davies-Meyer

Picture:

Used in MD4/5 SHA-0/1/2, etc.

Why is the "message" the "key"?

- Disconnect chaining value and message length!
- \mathcal{E} 's block length: fixed by security level
- \mathcal{E} 's key length: fixed by "message" length
- Large "key" \Rightarrow more efficient
- Example: MD5's "block cipher": 128-bit blocks, 512-bit keys

DM incentive: use very simple message expansion ("key schedules")

- To be efficient!
- Warning: can be a source of weakness

Let's collide now!

Hash functions, collisions

Let's collide now!

Computing collisions for a (generic) function $\mathcal{F}: \mathcal{I} \rightarrow \mathcal{O}$ has many applications in crypto, e.g.:

- Generic attacks on hash functions
- Generic discrete logartihm computations
- Factorization
- Generic attacks on mode of operations
- Intermediate step in some dedictated attacks

Collision finding: how?

Finding a collision in $\{\mathcal{F}(i), i \in[0, M]\}$ for some $M($ e.g. $\approx \sqrt{\# \mathcal{O}})$ The easy way:

1 Incrementally store the $\mathcal{F}(i)$ in a data structure $w /$ efficient insertion \& comparison

- Sorted list, hash table, etc.

2 Look for a duplicate at every insertion
Quite simple; easily parallelizable; huge memory complexity

Collision finding: memoryless, sequential

Objective: decreasing the memory complexity of collision search

- One idea: if $\mathcal{O} \subseteq \mathcal{I}$, look at iterates of \mathcal{F} : compute $\mathcal{F}(x)$, $\mathcal{F}(\mathcal{F}(x))$, etc. for some x
- If $\mathcal{F}^{i}(x)=\mathcal{F}^{j}(x)$, then $\mathcal{F}^{i-1}(x)$ and $\mathcal{F}^{j-1}(x)$ form a collision for \mathcal{F}
- Question 1: how soon does such an event happen?
- Question 2: how is this useful?

Collision finding: Pollard ρ (A. 1)

Rho (ρ) structure of $\mathcal{F}^{r}(x), r \in \mathbb{N}$:

- If $\mathcal{F}^{i}(x)=\mathcal{F}^{j}(x), i<j$ the smallest values where this
happens, then $\mathcal{F}^{i}(x)=\mathcal{F}^{i+k(j-i)}(x)$
- $\Rightarrow \mathcal{F}^{r}(x)$ has a cycle of length $j-i$
- $\Rightarrow \mathcal{F}^{r}(x)$ has a tail of length i

Proposition

For a random function \mathcal{F}, for a random starting point x, the expected cycle and tail length of $\mathcal{F}^{r}(x)$ are both $\approx \sqrt{\# \mathcal{O}}$
\Rightarrow One can look for collisions in $\mathcal{F}^{r}(x)$ instead of $\mathcal{F}(\cdot)$ directly

Collision finding: Pollard ρ (A. 2)

To find a collision in \mathcal{F}, find the tail (λ) and cycle (μ) length of $\mathcal{F}^{r}(x)$ for some x

- Can be done with constant (in \mathcal{F} 's parameter sizes) memory, using Floyd's cycle-finding algorithm:
1 Compute $\mathcal{F}^{i}(x), \mathcal{F}^{2 i}(x)$ in parallel, $i=1, \ldots$
2 Find k s.t. $\mathcal{F}^{k}(x)=\mathcal{F}^{2 k}(x)$
- Most likely, $\mathcal{F}^{k-1}(x)=\mathcal{F}^{2 k-1}(x)$, so the collision is "trivial"
- (But one has $k-\lambda \equiv 2 k-\lambda \equiv \lambda+2(k-\lambda) \bmod \mu$, so $k \equiv 0$ $\bmod \mu$)
3 Find k^{\prime} s.t. $\mathcal{F}^{k^{\prime}}(x)=\mathcal{F}^{k}(x)$; set $\mu=k^{\prime}-k$
4 Compute $\alpha=\mathcal{F}^{\mu}(x)$; find $k^{\prime \prime}$ s.t. $\mathcal{F}^{\mu+k^{\prime \prime}}(x)=\alpha$; set $\lambda=\alpha-\mu$
$5 \mathcal{F}^{\lambda-1}(x)$ and $\mathcal{F}^{\lambda+\mu-1}(x)$ form a non-trivial collision \Rightarrow Constant memory complexity, time complexity $=\Theta(\sqrt{\# \mathcal{O}})$, with small constant

Collision finding: Pollard ρ example

Let $\mathcal{F}^{r}(0)$ be such that $\lambda=193, \mu=171$

- $-193 \equiv 149 \bmod 171$
- At $i=342=193+149, i-193=149 \equiv 149 \bmod 171$
- And $2 i-193=193+2 \times 149 \equiv-149+2 \times 149 \bmod 171 \equiv 149$ $\bmod 171$
- $\mathcal{F}^{342}(0)=\mathcal{F}^{684}(0)=\mathcal{F}^{513}(0)$
- $\mu=513-342=171$
- $\mathcal{F}^{193}(0)=\mathcal{F}^{364}(0) \Rightarrow \lambda=193$
- $\mathcal{F}^{192}(0)$ and $\mathcal{F}^{363}(0)$ form a collision

Parallel collision search

- Limitation of the ρ approach: it is sequential
- In the real world, one wants parallel approaches to hard problems (if possible)
- Still with memory << time
\Rightarrow Parallel collision search (van Oorschot \& Wiener, 1999)
- Define a distinguished property for the outputs of \mathcal{F} (e.g. $\mathcal{F}(x)$ starts with z zeroes for some z)
- For as many threads t, compute "chains" of $\alpha_{t}^{i}=\mathcal{F}^{i}\left(s_{t}\right)$ for a random s_{t} until α_{t}^{i} is distinguished, then store $\left(s_{t}, \alpha_{t}^{i}, i\right)$ e.g. in a hash table, then start again
- If $\left(s_{t}, \alpha_{t}^{i}, i\right),\left(s_{t^{\prime}}, \alpha_{t^{\prime}}^{j}, j\right)$ are s.t. $\alpha_{t}^{i}=\alpha_{t^{\prime}}^{j}, i<j$, compute $s_{t^{\prime}}^{\prime}=\mathcal{F}^{j-i}\left(s_{t^{\prime}}\right)$; find k s.t. $\mathcal{F}^{k}\left(s_{t}\right)=\mathcal{F}^{k}\left(s_{t^{\prime}}^{\prime}\right)$
- One must choose the distinguished property s.t.
- Not so many points are distinguished (to limit memory complexity)
- Recomputing a chain from the start is not too long (to limit time complexity)
- If $\left(s_{t}, \alpha_{t}^{i}, i\right),\left(s_{t^{\prime}}, \alpha_{t^{\prime}}^{j}, j\right)$ are s.t. $\mathcal{F}^{k}\left(s_{t^{\prime}}\right)=s_{t}$ for some k, the collision is trivial
- If a chain enters a cycle w/o distinguished points, it never terminates
- For a "well-chosen" distinguishing property, \approx optimal speed-up: T threads decrease running-time by a factor T

