Cryptology complementary Hash functions, collisions

Pierre Karpman pierre.karpman@univ-grenoble-alpes.fr https://www-ljk.imag.fr/membres/Pierre.Karpman/tea.html

2018-04-05

Hash functions, collisions

^{2018–04–05} 1/20

Cryptographic hash functions

Hash function

A hash function is a mapping $\mathcal{H}:\mathcal{M}\to\mathcal{D}$

So it really is just a function...

Usually:

- $\mathcal{M} = \bigcup_{\ell < N} \{0, 1\}^{\ell}, \ \mathcal{D} = \{0, 1\}^n, \ N \gg n$
- ▶ *N* is typically $\geq 2^{64}$, $n \in \{1/2\%, 1/6\%, 224, 256, 384, 512\}$

Also popular now: extendable-output functions (XOFs): $\mathcal{D} = \bigcup_{\ell < N'} \{0, 1\}^{\ell}$

- Hash functions are keyless
- So, how do you tell if one's good?

Three classical security properties

- **1** First preimage: given t, find m s.t. $\mathcal{H}(m) = t$
- **2** Second preimage: given *m*, find $m' \neq m$ s.t. $\mathcal{H}(m) = \mathcal{H}(m')$
- **3** Collision: find $(m, m' \neq m)$ s.t. $\mathcal{H}(m) = \mathcal{H}(m')$

Generic complexity: 1), 2): $\Theta(2^n)$; 3): $\Theta(2^{n/2}) \iff$ "Birthday paradox" (There's actually more...)

Birthday paradox

If all outputs of ${\cal H}$ are independent and uniformly random, one may expect to find one collisions among $\sqrt{2^n}$ inputs

▶ *N* elements define $\approx N^2$ pairs, which have independent probability 2^{-n} of forming a collision

Hash functions are useful for:

- Hash-and-sign (RSA signatures, (EC)DSA, ...)
- building MACs (HMAC, ...)
- Password hashing (with a grain of salt)
- Hash-based signatures (inefficient but PQ)
- In padding schemes (OAEP, ...)
- Etc.
- \Rightarrow A versatile building block, but only a building block

So, how do you build hash functions?

- Objective #1: be secure
- ▹ Objective #2: be efficient
 - Even more than block ciphers!
 - \Rightarrow work with limited amount of memory

So...

- (#2) Build \mathcal{H} from a small component
- (#1) Prove that this is okay

Compression function

A compression function is a mapping $f: \{0,1\}^n \times \{0,1\}^b \to \{0,1\}^n$

- A family of functions from *n* to *n* bits
- Not unlike a block cipher, only not invertible

Permutation

A permutation is an invertible mapping $\mathfrak{p}: \{0,1\}^n \to \{0,1\}^n$

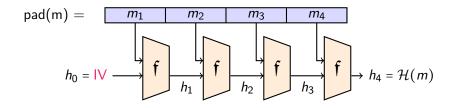
Yes, very simple

• Like a block cipher with a fixed key, e.g. $\mathfrak{p} = \mathcal{E}(0, \cdot)$

Assume a good ${\mathfrak f}$

- Main problem: fixed-size domain $\{0,1\}^n \times \{0,1\}^b$
- Objective: domain extension to $\bigcup_{\ell < N} \{0, 1\}^{\ell}$

The classical answer: the Merkle-Damgård construction (1989)



That is: $\mathcal{H}(m_1||m_2||m_3||...) = f(\dots f(f(f(IV, m_1), m_2), m_3), \dots)$ pad $(m) \approx m||1000\dots 00\langle \text{length of } m\rangle$

MD: does it work?

Efficiency?

- Only sequential calls to f
- \Rightarrow fine

Security?

- Still to be shown
- Objective: reduce security of H to that of f
 - "If f is good, then \mathcal{H} is good"
- True for collision and first preimage, **false** for second preimage
- Won't see the details, though (in the end, everything is quite fine)

- 1 Start like a block cipher
- 2 Add *feedforward* to prevent invertibility

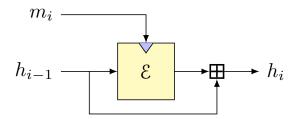
Examples:

"Davies-Meyer": $f(h, m) = \mathcal{E}_m(h) \boxplus h$ "Matyas-Meyer-Oseas": $f(h, m) = \mathcal{E}_h(m) \boxplus m$

- Systematic analysis by Preneel, Govaerts and Vandewalle (1993). "PGV" constructions
- Then rigorous proofs (in the ideal cipher model) (Black et al., 2002), (Black et al., 2010)

Re: Davies-Meyer

Picture:



Used in MD4/5 SHA-0/1/2, etc.

Hash functions, collisions

Why is the "message" the "key"?

- Disconnect chaining value and message length!
- \blacktriangleright ${\cal E}$'s block length: fixed by security level
- \blacktriangleright \mathcal{E} 's key length: fixed by "message" length
- ► Large "key" ⇒ more efficient
- Example: MD5's "block cipher": 128-bit blocks, 512-bit keys

DM incentive: use very simple *message expansion* ("key schedules")

- To be efficient!
- Warning: can be a source of weakness

Let's collide now!

Hash functions, collisions

Computing collisions for a (generic) function $\mathcal{F}: \mathcal{I} \to \mathcal{O}$ has many applications in crypto, e.g.:

- Generic attacks on hash functions
- Generic discrete logartihm computations
- Factorization
- Generic attacks on mode of operations
- Intermediate step in some dedictated attacks

Finding a collision in $\{\mathcal{F}(i), i \in [0, M]\}$ for some M (e.g. $\approx \sqrt{\#O}$) The easy way:

- **1** Incrementally store the $\mathcal{F}(i)$ in a data structure w/ efficient insertion & comparison
 - Sorted list, hash table, etc.
- 2 Look for a duplicate at every insertion

Quite simple; easily parallelizable; huge memory complexity

Objective: decreasing the memory complexity of collision search

- One idea: if $\mathcal{O} \subseteq \mathcal{I}$, look at iterates of \mathcal{F} : compute $\mathcal{F}(x)$, $\mathcal{F}(\mathcal{F}(x))$, etc. for some x
- If $\mathcal{F}^{i}(x) = \mathcal{F}^{j}(x)$, then $\mathcal{F}^{i-1}(x)$ and $\mathcal{F}^{j-1}(x)$ form a collision for \mathcal{F}
- Question 1: how soon does such an event happen?
- Question 2: how is this useful?

Rho (ρ) structure of $\mathcal{F}^r(x)$, $r \in \mathbb{N}$:

If *Fⁱ(x)* = *F^j(x)*, *i < j* the smallest values where this happens, then *Fⁱ(x)* = *F^{i+k(j-i)}(x)*

$$\Rightarrow \mathcal{F}^{r}(x)$$
 has a *cycle* of length $j - i$

$$\Rightarrow \mathcal{F}^{r}(x)$$
 has a *tail* of length *i*

Proposition

For a random function \mathcal{F} , for a random starting point x, the expected cycle and tail length of $\mathcal{F}^{r}(x)$ are both $\approx \sqrt{\#\mathcal{O}}$

 \Rightarrow One can look for collisions in $\mathcal{F}^{r}(x)$ instead of $\mathcal{F}(\cdot)$ directly

Collision finding: Pollard ρ (A. 2)

To find a collision in \mathcal{F} , find the tail (λ) and cycle (μ) length of $\mathcal{F}^{r}(x)$ for some x

- Can be done with constant (in *F*'s parameter sizes) memory, using Floyd's cycle-finding algorithm:
- **1** Compute $\mathcal{F}^{i}(x)$, $\mathcal{F}^{2i}(x)$ in parallel, i = 1, ...

2 Find k s.t.
$$\mathcal{F}^k(x) = \mathcal{F}^{2k}(x)$$

- Most likely, $\mathcal{F}^{k-1}(x) = \mathcal{F}^{2k-1}(x)$, so the collision is "trivial"
- (But one has $k \lambda \equiv 2k \lambda \equiv \lambda + 2(k \lambda) \mod \mu$, so $k \equiv 0 \mod \mu$)
- **B** Find k' s.t. $\mathcal{F}^{k'}(x) = \mathcal{F}^k(x)$; set $\mu = k' k$
- 4 Compute $\alpha = \mathcal{F}^{\mu}(x)$; find k'' s.t. $\mathcal{F}^{\mu+k''}(x) = \alpha$; set $\lambda = \alpha \mu$

5 $\mathcal{F}^{\lambda-1}(x)$ and $\mathcal{F}^{\lambda+\mu-1}(x)$ form a non-trivial collision

 \Rightarrow Constant memory complexity, time complexity = $\Theta(\sqrt{\#O})$, with small constant

Let $\mathcal{F}^{r}(0)$ be such that $\lambda = 193$, $\mu = 171$ $* -193 \equiv 149 \mod 171$ $* \operatorname{At} i = 342 = 193 + 149$, $i - 193 = 149 \equiv 149 \mod 171$ $* \operatorname{And} 2i - 193 = 193 + 2 \times 149 \equiv -149 + 2 \times 149 \mod 171 \equiv 149 \mod 171$ $* \mathcal{F}^{342}(0) = \mathcal{F}^{684}(0) = \mathcal{F}^{513}(0)$ $* \mu = 513 - 342 = 171$ $* \mathcal{F}^{193}(0) = \mathcal{F}^{364}(0) \Rightarrow \lambda = 193$ $* \mathcal{F}^{192}(0)$ and $\mathcal{F}^{363}(0)$ form a collision

Parallel collision search

- Limitation of the ρ approach: it is sequential
- In the real world, one wants parallel approaches to hard problems (if possible)
- Still with memory << time
- \Rightarrow Parallel collision search (van Oorschot & Wiener, 1999)
 - Define a *distinguished property* for the outputs of *F* (e.g. *F*(*x*) starts with *z* zeroes for some *z*)
 - For as many threads t, compute "chains" of $\alpha_t^i = \mathcal{F}^i(s_t)$ for a random s_t until α_t^i is distinguished, then store (s_t, α_t^i, i) e.g. in a hash table, then start again

• If
$$(s_t, \alpha_t^i, i)$$
, $(s_{t'}, \alpha_{t'}^j, j)$ are s.t. $\alpha_t^i = \alpha_{t'}^j$, $i < j$, compute $s'_{t'} = \mathcal{F}^{j-i}(s_{t'})$; find k s.t. $\mathcal{F}^k(s_t) = \mathcal{F}^k(s'_{t'})$

PCS comments

- One must choose the distinguished property s.t.
 - Not so many points are distinguished (to limit memory complexity)
 - Recomputing a chain from the start is not too long (to limit time complexity)
- If (s_t, α_t^i, i) , $(s_{t'}, \alpha_{t'}^j, j)$ are s.t. $\mathcal{F}^k(s_{t'}) = s_t$ for some k, the collision is trivial
- If a chain enters a cycle w/o distinguished points, it never terminates
- For a "well-chosen" distinguishing property, ≈ optimal speed-up: T threads decrease running-time by a factor T