Cryptology complementary ↔ Finite fields — the practical side (1)

Pierre Karpman pierre.karpman@univ-grenoble-alpes.fr https://www-ljk.imag.fr/membres/Pierre.Karpman/tea.html

2018-03-15

Finite Fields in practice

^{2018–03–15} 1/24

- Digital processing of information ~> dealing with bits
- ▶ Error-correcting codes, crypto → need analysis → maths
- ▶ \Rightarrow bits (no structure) \mapsto field elements (math object)
- ▶ "Natural" match: $\{0,1\} \cong \mathbb{F}_2 \equiv \mathbb{Z}/2\mathbb{Z} \equiv$ "(natural) integers modulo 2"
- \mathbb{F}_2 : two elements (0, 1), two operations (+, ×)

- Addition \equiv exclusive or (XOR (\oplus))
- Multiplication \equiv logical and (\land)
- $\bullet \Rightarrow$ "Boolean" arithmetic
- Fact: any Boolean function f: {0,1}ⁿ → {0,1} can be computed using only ⊕ and ∧
- Fact 2: ditto, $g : \{0,1\}^n \rightarrow \{0,1\}^m$
- Fact 3: ditto, using NAND $(\neg \circ \land)$

- We rather need bit strings $\{0,1\}^n$ than single bits
- Now two "natural" matches:
- \mathbb{F}_2^n (vectors over \mathbb{F}_2)
 - Can add two vectors
 - Cannot multiply "internally" (but there's a dot/scalar product)
- $\mathbb{Z}/2^n\mathbb{Z}$ (natural integers modulo 2^n)
 - Can add, multiply
 - ▶ Not all elements are invertible (e.g. 2) \Rightarrow only a ring

A third way

- Also possible: \mathbb{F}_{2^n} : an *extension* field
 - Addition "like in \mathbb{F}_2^n "
 - Plus an internal multiplication
 - All elements (except zero) are invertible
- (Just in a moment)

- Allows to perform operations on data
 - E.g. adding two messages together
- Vector spaces \Rightarrow linear algebra (matrices)
 - Powerful tools to solve "easy" problems
 - (Intuition: crypto shouldn't be linear)
- Fields ⇒ polynomials
 - With one or more variable
 - ightarrow \Rightarrow Can compute differentials
- Can mix \mathbb{F}_2^n , $\mathbb{Z}/2^n\mathbb{Z}$ to make things "hard"
 - Popular "ARX" strategy in symmetric cryptography (FEAL/MD5/SHA-1/Chacha/Speck/...)

- Just take the integers and reduce modulo N
 - Operations work "as usual"
 - Over a finite set
- Problem: have to ensure invertibility of all elements
 - Necessary condition N has to be prime
 - (Otherwise, $N = pq \Rightarrow p \times q = 0 \mod N \Rightarrow$ neither is invertible)
 - ▶ In fact also sufficient: $\mathbb{F}_p = \mathbb{Z}/p\mathbb{Z}$ is a field for p prime

- One can define the polynomials $\mathbb{F}_p[X]$ over a finite field
- One can divide polynomials (e.g. $(X^2 + X)/(X + 1) = X$)
- ▶ ⇒ notion of remainder (e.g. $(X^2 + X + 1)/(X + 1) = (X, 1)$
- ▶ ⇒ can define multiplication in $\mathbb{F}_p[X]$ modulo a polynomial Q
 - If deg(Q) = n, operands are restricted to a finite set of poly. of deg < n

- $\mathbb{F}_p[X]/Q$ is a finite set of polynomials
- With addition, multiplication working as usual (again)
- To make it a field: have to ensure invertibility of all elements
 - Necessary condition: Q is *irreducible*, i.e. has no non-constant factors (Q is "prime")
 - In fact also sufficient: $\mathbb{F}_p[X]/Q$ is a field for Q irreducible over \mathbb{F}_p
 - Claim: irreducible polynomials of all degrees exist over any given finite field

- How many elements does have a field built as 𝔽_p[X]/Q, when deg(Q) = n?
- Describe the cardinality of finite fields that you know how to build
- Let $\alpha \in \mathbb{F}_q = \mathbb{F}_p[X]/Q$. what is the result of $\alpha + \alpha + \ldots + \alpha$ (*p* - 1 additions)?

- Two finite fields of equal cardinality are unique up to isomorphism
- But different choices for Q may be possible \Rightarrow different *representations*
- One can build extension towers: extensions over fields that were already extension fields, iterating the same process as for a single extension

How to implement finite field operations?

► **F**_p:

- Addition: add modulo
- Multiplication: multiply modulo
- Inverse: use the extended Euclid algorithm or Little Fermat Theorem
- ► **F**_{p^d}:
 - Addition: add modulo, coefficient-wise
 - Multiplication: multiply polynomials modulo (w.r.t. polynomial division) ⇒ Use LFSRs
 - Inverse: use the extended Euclid algorithm or Lagrange Theorem

So what are LFSRs?

LFSR = Linear Feedback Shift Register

LFSR (type 1)

An LFSR of length *n* over a field \mathbb{K} is a map $\mathcal{L}: [s_{n-1}, s_{n-2}, \ldots, s_0] \mapsto [s_{n-2} - s_{n-1}r_{n-1}, s_{n-3} - s_{n-1}r_{n-2}, \ldots, s_0 - s_{n-1}r_1, -s_{n-1}r_0]$ where the $s_i, r_i \in \mathbb{K}$

LFSR (type 2)

An LFSR of length *n* over a field \mathbb{K} is a map $\mathcal{L}: [s_{n-1}, s_{n-2}, \dots, s_0] \mapsto [s_{n-2}, s_{n-3}, \dots, s_0, s_{n-1}r_{n-1} + s_{n-2}r_{n-2} + \dots + s_0r_0]$ where the $s_i, r_i \in \mathbb{K}$

Theorem: The two above definitions are "equivalent"

Finite Fields in practice

Characterization

An LFSR is fully determined by:

- Its base field ${\mathbb K}$
- Its state/register size n
- Its feedback function $(r_{n-1}, r_{n-2}, \ldots, r_0)$

An LFSR may be used to generate an infinite sequence (U_m) (valued in \mathbb{K}):

1 Choose an initial state $S = [s_{n-1}, \ldots, s_0]$

2
$$U_0 = S[n-1] = s_{n-1}$$

$$U_1 = \mathcal{L}(S)[n-1]$$

4
$$U_2 = \mathcal{L}^2(S)[n-1]$$
, etc.

- The sequence generated by an LFSR is periodic (Q: Why?)
- Some LFSRs map non-zero initial states to the zero one (Q: Give an example?)
- Some LFSRs generate a sequence of maximal period (Q: What is it?)
- It is very easy to recover the feedback function of an LFSR from (enough outputs of) its generated sequence (Q: How?)

We will in fact mostly care about:

- LFSRs of type 1
- Over \mathbb{F}_2
- $\ensuremath{\mathcal{L}}$ becomes:
 - 1 Shift bits to the left
 - If the (previous) msb was 1
 - Add (XOR) 1 to some state positions (given by the feedback function)

The feedback function of an LFSR can be written as a polynomial:

- $(r_{n-1}, r_{n-2}, \dots, r_0) \equiv X^n + r_{n-1}X^{n-1} + \dots + r_1X + r_0$
- \mathcal{L} corresponds to the multiplication by $X \mod the$ feedback polynomial

Example:

• Take \mathcal{L} of length 4 over \mathbb{F}_2 and feedback polynomial $X^4 + X + 1$

$$\rightarrow \mathcal{L}: (s_3, s_2, s_1, s_0) \mapsto (s_2, s_1, s_0 \oplus s_3, s_3)$$

- $\alpha \in \mathbb{F}_{2^n}$ is "a polynomial of deg < *n*"
- So $\alpha = \alpha_{n-1}X^{n-1} + \ldots + \alpha_1X + \alpha_0$
- So we can multiply α by $X \Rightarrow \alpha_{n-1}X^n + \ldots + \alpha_1X^2 + \alpha_0X$
- But this may be of deg = n, so not in \mathbb{F}_{2^n}
- So we reduce the result mod $Q = q_n X^n + q_{n-1} X^{n-1} + \ldots + q_1 X + q_0$, the defining polynomial of $\mathbb{F}_{2^n} = \mathbb{F}_2[X]/Q$
- This can be implemented with an LFSR!

Case 1: deg(αX) < n

- There's nothing to do
- Case 2: $deg(\alpha X) = n$
 - Then $deg(\alpha X Q) < n$
 - And $\alpha X Q$ is precisely the remainder of $\alpha X \div Q$
 - (Think how $2N > a > N \mod N = a N$)

- An element of $\mathbb{F}_{2^n} = \mathbb{F}_2[X]/Q$ is a polynomial
- ... is a state of an LFSR with feedback polynomial Q
- Multiplication by X is done mod Q
- …is the result of clocking the LFSR once
- Multiplication by X^2 is done by clocking the LFSR twice, etc.
- ▶ Multiplication by $\beta_{n-1}X^{n-1} + \ldots + \beta_1X + \beta_0$ is done "the obvious way"

It is convenient to write $\alpha = \alpha_{n-1}X^{n-1} + \ldots + \alpha_1X + \alpha_0$ as the integer $a = \alpha_{n-1}2^{n-1} + \ldots + \alpha_12 + \alpha_0$

• Example: $X^4 + X^3 + X + 1$ "=" 27 = 0x1B

Example 1:

Example 2: • $\alpha = X^5 + X^3 + X$, $\gamma = X^4 + X$ (0x12) • $\alpha \gamma = X^4 \alpha + X \alpha$ • $X^4 \alpha = X(X(X^7 + X^5 + X^3))$ • $X(X^7 + X^5 + X^3) = (X^8 + X^6 + X^4) + (X^8 + X^4 + X^3 + X + 1) = X^6 + X^3 + X + 1$ • $X(X^6 + X^3 + X + 1) = X^7 + X^4 + X^2 + X$ • $= X^7 + X^4 + X^2 + X$ (0x96) $+ X^6 + X^4 + X^2$ (0x54) $= X^7 + X^6 + X$ (0xC2)

- Implement (in C) the multiplication by X in $\mathbb{F}_{2^8} \equiv \mathbb{F}_2[X]/X^8 + X^4 + X^3 + X + 1$, using a byte (type uint8_t) to represent field elements
- Using the previous function, implement the multiplication of two arbitrary elements