
Finite Fields in practice 2018–03–15 1/24

Cryptology complementary
]

Finite fields — the practical side (1)

Pierre Karpman
pierre.karpman@univ-grenoble-alpes.fr

https://www-ljk.imag.fr/membres/Pierre.Karpman/tea.html

2018–03–15

pierre.karpman@univ-grenoble-alpes.fr
https://www-ljk.imag.fr/membres/Pierre.Karpman/tea.html


Finite Fields in practice 2018–03–15 2/24

Bits as field elements

▸ Digital processing of information ↝ dealing with bits

▸ Error-correcting codes, crypto ↝ need analysis ↝ maths

▸ ⇒ bits (no structure) ↦ field elements (math object)

▸ “Natural” match: {0,1} ≅ F2 ≡ Z/2Z ≡ “(natural) integers
modulo 2”

▸ F2: two elements (0, 1), two operations (+, ×)



Finite Fields in practice 2018–03–15 3/24

What’s F2 like?

▸ Addition ≡ exclusive or (XOR (⊕))

▸ Multiplication ≡ logical and (∧)

▸ ⇒ “Boolean” arithmetic

▸ Fact: any Boolean function f ∶ {0,1}n → {0,1} can be
computed using only ⊕ and ∧

▸ Fact 2: ditto, g ∶ {0,1}n → {0,1}m

▸ Fact 3: ditto, using NAND (¬ ○ ∧)



Finite Fields in practice 2018–03–15 4/24

One bit is nice, but...

▸ We rather need bit strings {0,1}n than single bits

▸ Now two “natural” matches:

▸ Fn
2 (vectors over F2)
▸ Can add two vectors
▸ Cannot multiply “internally” (but there’s a dot/scalar product)

▸ Z/2nZ (natural integers modulo 2n)
▸ Can add, multiply
▸ Not all elements are invertible (e.g. 2) ⇒ only a ring



Finite Fields in practice 2018–03–15 5/24

A third way

▸ Also possible: F2n : an extension field
▸ Addition “like in Fn

2”
▸ Plus an internal multiplication
▸ All elements (except zero) are invertible

▸ (Just in a moment)



Finite Fields in practice 2018–03–15 6/24

Why are these useful?

▸ Allows to perform operations on data
▸ E.g. adding two messages together

▸ Vector spaces ⇒ linear algebra (matrices)
▸ Powerful tools to solve “easy” problems
▸ (Intuition: crypto shouldn’t be linear)

▸ Fields ⇒ polynomials
▸ With one or more variable
▸ ⇒ Can compute differentials

▸ Can mix Fn
2, Z/2nZ to make things “hard”

▸ Popular “ARX” strategy in symmetric cryptography
(FEAL/MD5/SHA-1/Chacha/Speck/...)



Finite Fields in practice 2018–03–15 7/24

How to build finite fields? Easy case: prime fields

▸ Just take the integers and reduce modulo N
▸ Operations work “as usual”
▸ Over a finite set

▸ Problem: have to ensure invertibility of all elements
▸ Necessary condition N has to be prime
▸ (Otherwise, N = pq⇒ p×q = 0 mod N ⇒ neither is invertible)
▸ In fact also sufficient: Fp = Z/pZ is a field for p prime



Finite Fields in practice 2018–03–15 8/24

Fields ⇒ polynomials

▸ One can define the polynomials Fp[X ] over a finite field

▸ One can divide polynomials (e.g. (X 2 +X )/(X + 1) = X )

▸ ⇒ notion of remainder (e.g. (X 2 +X + 1)/(X + 1) = (X ,1)
▸ ⇒ can define multiplication in Fp[X ] modulo a polynomial Q

▸ If deg(Q) = n, operands are restricted to a finite set of poly. of
deg < n



Finite Fields in practice 2018–03–15 9/24

Finite fields with polynomials

▸ Fp[X ]/Q is a finite set of polynomials

▸ With addition, multiplication working as usual (again)
▸ To make it a field: have to ensure invertibility of all elements

▸ Necessary condition: Q is irreducible, i.e. has no non-constant
factors (Q is “prime”)

▸ In fact also sufficient: Fp[X ]/Q is a field for Q irreducible over
Fp

▸ Claim: irreducible polynomials of all degrees exist over any
given finite field



Finite Fields in practice 2018–03–15 10/24

Quick questions

▸ How many elements does have a field built as Fp[X ]/Q, when
deg(Q) = n?

▸ Describe the cardinality of finite fields that you know how to
build

▸ Let α ∈ Fq = Fp[X ]/Q. what is the result of α + α + . . . + α
(p − 1 additions)?



Finite Fields in practice 2018–03–15 11/24

Quick remarks

▸ Two finite fields of equal cardinality are unique up to
isomorphism

▸ But different choices for Q may be possible ⇒ different
representations

▸ One can build extension towers: extensions over fields that
were already extension fields, iterating the same process as for
a single extension



Finite Fields in practice 2018–03–15 12/24

How to implement finite field operations?

▸ Fp:
▸ Addition: add modulo
▸ Multiplication: multiply modulo
▸ Inverse: use the extended Euclid algorithm or Little Fermat

Theorem

▸ Fpd :
▸ Addition: add modulo, coefficient-wise
▸ Multiplication: multiply polynomials modulo (w.r.t. polynomial

division) ⇒ Use LFSRs
▸ Inverse: use the extended Euclid algorithm or Lagrange

Theorem



Finite Fields in practice 2018–03–15 13/24

So what are LFSRs?

LFSR = Linear Feedback Shift Register

LFSR (type 1)

An LFSR of length n over a field K is a map
L ∶ [sn−1, sn−2, . . . , s0] ↦
[sn−2 − sn−1rn−1, sn−3 − sn−1rn−2, . . . , s0 − sn−1r1,−sn−1r0] where the
si , ri ∈ K

LFSR (type 2)

An LFSR of length n over a field K is a map
L ∶ [sn−1, sn−2, . . . , s0] ↦
[sn−2, sn−3, . . . , s0, sn−1rn−1 + sn−2rn−2 + . . . + s0r0] where the si , ri
∈ K

Theorem: The two above definitions are “equivalent”



Finite Fields in practice 2018–03–15 14/24

Characterization

An LFSR is fully determined by:

▸ Its base field K
▸ Its state/register size n

▸ Its feedback function (rn−1, rn−2, . . . , r0)
An LFSR may be used to generate an infinite sequence (Um)
(valued in K):

1 Choose an initial state S = [sn−1, . . . , s0]
2 U0 = S[n − 1] = sn−1

3 U1 = L(S)[n − 1]
4 U2 = L2(S)[n − 1], etc.



Finite Fields in practice 2018–03–15 15/24

Some properties

▸ The sequence generated by an LFSR is periodic (Q: Why?)

▸ Some LFSRs map non-zero initial states to the zero one (Q:
Give an example?)

▸ Some LFSRs generate a sequence of maximal period (Q:
What is it?)

▸ It is very easy to recover the feedback function of an LFSR
from (enough outputs of) its generated sequence (Q: How?)



Finite Fields in practice 2018–03–15 16/24

A simple case: binary LFSRs

We will in fact mostly care about:

▸ LFSRs of type 1

▸ Over F2

L becomes:

1 Shift bits to the left

2 If the (previous) msb was 1

1 Add (XOR) 1 to some state positions (given by the feedback
function)



Finite Fields in practice 2018–03–15 17/24

Some formalism

The feedback function of an LFSR can be written as a polynomial:

▸ (rn−1, rn−2, . . . , r0) ≡ X n + rn−1X
n−1 + . . . + r1X + r0

▸ L corresponds to the multiplication by X mod the feedback
polynomial

Example:

▸ Take L of length 4 over F2 and feedback polynomial
X 4 +X + 1

▸ ⇒ L ∶ (s3, s2, s1, s0) ↦ (s2, s1, s0 ⊕ s3, s3)



Finite Fields in practice 2018–03–15 18/24

Back to multiplication: the F2n case

▸ α ∈ F2n is “a polynomial of deg < n”

▸ So α = αn−1X
n−1 + . . . + α1X + α0

▸ So we can multiply α by X ⇒ αn−1X
n + . . . + α1X

2 + α0X

▸ But this may be of deg = n, so not in F2n

▸ So we reduce the result
mod Q = qnX

n + qn−1X
n−1 + . . . + q1X + q0, the defining

polynomial of F2n = F2[X ]/Q
▸ This can be implemented with an LFSR!



Finite Fields in practice 2018–03–15 19/24

Reduction illustrated: two cases

Case 1: deg(αX ) < n

▸ There’s nothing to do

Case 2: deg(αX ) = n

▸ Then deg(αX −Q) < n

▸ And αX −Q is precisely the remainder of αX ÷Q

▸ (Think how 2N > a > N mod N = a −N)



Finite Fields in practice 2018–03–15 20/24

Summary

▸ An element of F2n = F2[X ]/Q is a polynomial

▸ ...is a state of an LFSR with feedback polynomial Q

▸ Multiplication by X is done mod Q

▸ ...is the result of clocking the LFSR once

▸ Multiplication by X 2 is done by clocking the LFSR twice, etc.

▸ Multiplication by βn−1X
n−1 + . . . + β1X + β0 is done “the

obvious way”



Finite Fields in practice 2018–03–15 21/24

A note on representation

It is convenient to write α = αn−1X
n−1 + . . . + α1X + α0 as the

integer a = αn−12n−1 + . . . + α12 + α0

▸ Example: X 4 +X 3 +X + 1 ”=” 27 = 0x1B



Finite Fields in practice 2018–03–15 22/24

Examples in F28 ≡ F2[X ]/X 8
+X 4

+X 3
+X + 1

Example 1:

▸ α = X 5 +X 3 +X (0x2A), β = X 2 + 1 (0x05)

▸ α + β = X 5 +X 3 +X 2 +X + 1 (0x2F)

▸ αβ = X 2α + α = X 7 +X 5 +X 3 (0xA8) + X 5 +X 3 +X =
X 7 +X (0x82)



Finite Fields in practice 2018–03–15 23/24

Examples in F28 ≡ F2[X ]/X 8
+X 4

+X 3
+X + 1

Example 2:

▸ α = X 5 +X 3 +X , γ = X 4 +X (0x12)

▸ αγ = X 4α +Xα
▸ X 4α = X (X (X 7 +X 5 +X 3))
▸ X (X 7 +X 5 +X 3) = (X 8 +X 6 +X 4) + (X 8 +X 4 +X 3 +X + 1) =
X 6 +X 3 +X + 1

▸ X (X 6 +X 3 +X + 1) = X 7 +X 4 +X 2 +X

▸ = X 7 +X 4 +X 2 +X (0x96) + X 6 +X 4 +X 2 (0x54) =
X 7 +X 6 +X (0xC2)



Finite Fields in practice 2018–03–15 24/24

Exercise

1 Implement (in C) the multiplication by X in
F28 ≡ F2[X ]/X 8 +X 4 +X 3 +X + 1, using a byte (type
uint8 t) to represent field elements

2 Using the previous function, implement the multiplication of
two arbitrary elements


