Cryptology complementary

Finite fields — the practical side (1)

Pierre Karpman
pierre.karpman@univ-grenoble-alpes.fr
https://www-ljk.imag.fr/membres/Pierre.Karpman/tea.html

2018-03-15

Bits as field elements

- Digital processing of information \leadsto dealing with bits
- Error-correcting codes, crypto \leadsto need analysis \leadsto maths
- \Rightarrow bits (no structure) \mapsto field elements (math object)
- "Natural" match: $\{0,1\} \cong \mathbb{F}_{2} \equiv \mathbb{Z} / 2 \mathbb{Z} \equiv$ "(natural) integers modulo 2"
- \mathbb{F}_{2} : two elements $(0,1)$, two operations $(+, \times)$

What's \mathbb{F}_{2} like?

- Addition \equiv exclusive or $(\mathrm{XOR}(\oplus))$
- Multiplication \equiv logical and (\wedge)
- \Rightarrow "Boolean" arithmetic
- Fact: any Boolean function $f:\{0,1\}^{n} \rightarrow\{0,1\}$ can be computed using only \oplus and \wedge
- Fact 2: ditto, $g:\{0,1\}^{n} \rightarrow\{0,1\}^{m}$
- Fact 3: ditto, using NAND ($\neg \circ \wedge)$

One bit is nice, but...

- We rather need bit strings $\{0,1\}^{n}$ than single bits
- Now two "natural" matches:
- \mathbb{F}_{2}^{n} (vectors over \mathbb{F}_{2})
- Can add two vectors
" Cannot multiply "internally" (but there's a dot/scalar product)
- $\mathbb{Z} / 2^{n} \mathbb{Z}$ (natural integers modulo 2^{n})
- Can add, multiply
- Not all elements are invertible (e.g. 2) \Rightarrow only a ring

A third way

- Also possible: $\mathbb{F}_{2^{n}}$: an extension field
- Addition "like in $\mathbb{F}_{2}^{n "}$
- Plus an internal multiplication
- All elements (except zero) are invertible
- (Just in a moment)

Why are these useful?

- Allows to perform operations on data
- E.g. adding two messages together
- Vector spaces \Rightarrow linear algebra (matrices)
- Powerful tools to solve "easy" problems
- (Intuition: crypto shouldn't be linear)
- Fields \Rightarrow polynomials
- With one or more variable
- \Rightarrow Can compute differentials
- Can mix $\mathbb{F}_{2}^{n}, \mathbb{Z} / 2^{n} \mathbb{Z}$ to make things "hard"
- Popular "ARX" strategy in symmetric cryptography (FEAL/MD5/SHA-1/Chacha/Speck/...)
- Just take the integers and reduce modulo N
- Operations work "as usual"
- Over a finite set
- Problem: have to ensure invertibility of all elements
- Necessary condition N has to be prime
- (Otherwise, $N=p q \Rightarrow p \times q=0 \bmod N \Rightarrow$ neither is invertible)
- In fact also sufficient: $\mathbb{F}_{p}=\mathbb{Z} / p \mathbb{Z}$ is a field for p prime

Fields \Rightarrow polynomials

- One can define the polynomials $\mathbb{F}_{p}[X]$ over a finite field
- One can divide polynomials (e.g. $\left.\left(X^{2}+X\right) /(X+1)=X\right)$
$\Rightarrow \Rightarrow$ notion of remainder (e.g. $\left(X^{2}+X+1\right) /(X+1)=(X, 1)$
$\bullet \Rightarrow$ can define multiplication in $\mathbb{F}_{p}[X]$ modulo a polynomial Q
- If $\operatorname{deg}(Q)=n$, operands are restricted to a finite set of poly. of deg < n

Finite fields with polynomials

- $\mathbb{F}_{p}[X] / Q$ is a finite set of polynomials
- With addition, multiplication working as usual (again)
- To make it a field: have to ensure invertibility of all elements
- Necessary condition: Q is irreducible, i.e. has no non-constant factors (Q is "prime")
- In fact also sufficient: $\mathbb{F}_{p}[X] / Q$ is a field for Q irreducible over \mathbb{F}_{p}
- Claim: irreducible polynomials of all degrees exist over any given finite field

Quick questions

- How many elements does have a field built as $\mathbb{F}_{p}[X] / Q$, when $\operatorname{deg}(Q)=n$?
- Describe the cardinality of finite fields that you know how to build
- Let $\alpha \in \mathbb{F}_{q}=\mathbb{F}_{p}[X] / Q$. what is the result of $\alpha+\alpha+\ldots+\alpha$ ($p-1$ additions)?

Quick remarks

- Two finite fields of equal cardinality are unique up to isomorphism
- But different choices for Q may be possible \Rightarrow different representations
- One can build extension towers: extensions over fields that were already extension fields, iterating the same process as for a single extension

How to implement finite field operations?

- \mathbb{F}_{p} :
- Addition: add modulo
- Multiplication: multiply modulo
- Inverse: use the extended Euclid algorithm or Little Fermat Theorem
- $\mathbb{F}_{p^{d}}$:
- Addition: add modulo, coefficient-wise
- Multiplication: multiply polynomials modulo (w.r.t. polynomial division) \Rightarrow Use LFSRs
- Inverse: use the extended Euclid algorithm or Lagrange Theorem

So what are LFSRs?

LFSR = Linear Feedback Shift Register

LFSR (type 1)

An LFSR of length n over a field \mathbb{K} is a map
$\mathcal{L}:\left[s_{n-1}, s_{n-2}, \ldots, s_{0}\right] \mapsto$
$\left[s_{n-2}-s_{n-1} r_{n-1}, s_{n-3}-s_{n-1} r_{n-2}, \ldots, s_{0}-s_{n-1} r_{1},-s_{n-1} r_{0}\right.$] where the $s_{i}, r_{i} \in \mathbb{K}$

LFSR (type 2)

An LFSR of length n over a field \mathbb{K} is a map
$\mathcal{L}:\left[s_{n-1}, s_{n-2}, \ldots, s_{0}\right] \mapsto$
$\left[s_{n-2}, s_{n-3}, \ldots, s_{0}, s_{n-1} r_{n-1}+s_{n-2} r_{n-2}+\ldots+s_{0} r_{0}\right]$ where the s_{i}, r_{i} $\in \mathbb{K}$

Theorem: The two above definitions are "equivalent"

Characterization

An LFSR is fully determined by:

- Its base field \mathbb{K}
- Its state/register size n
- Its feedback function $\left(r_{n-1}, r_{n-2}, \ldots, r_{0}\right)$

An LFSR may be used to generate an infinite sequence (U_{m}) (valued in \mathbb{K}):
1 Choose an initial state $S=\left[s_{n-1}, \ldots, s_{0}\right]$
$2 U_{0}=S[n-1]=s_{n-1}$
[3 $U_{1}=\mathcal{L}(S)[n-1]$
$4 U_{2}=\mathcal{L}^{2}(S)[n-1]$, etc.

Some properties

- The sequence generated by an LFSR is periodic (Q: Why?)
- Some LFSRs map non-zero initial states to the zero one (Q: Give an example?)
- Some LFSRs generate a sequence of maximal period (Q: What is it?)
- It is very easy to recover the feedback function of an LFSR from (enough outputs of) its generated sequence (Q: How?)

A simple case: binary LFSRs

We will in fact mostly care about:

- LFSRs of type 1
- Over \mathbb{F}_{2}
\mathcal{L} becomes:
1 Shift bits to the left
2 If the (previous) msb was 1
1 Add (XOR) 1 to some state positions (given by the feedback function)

Some formalism

The feedback function of an LFSR can be written as a polynomial:

- $\left(r_{n-1}, r_{n-2}, \ldots, r_{0}\right) \equiv X^{n}+r_{n-1} X^{n-1}+\ldots+r_{1} X+r_{0}$
- \mathcal{L} corresponds to the multiplication by X mod the feedback polynomial
Example:
- Take \mathcal{L} of length 4 over \mathbb{F}_{2} and feedback polynomial $X^{4}+X+1$
- $\Rightarrow \mathcal{L}:\left(s_{3}, s_{2}, s_{1}, s_{0}\right) \mapsto\left(s_{2}, s_{1}, s_{0} \oplus s_{3}, s_{3}\right)$

Back to multiplication: the $\mathbb{F}_{2^{n}}$ case

- $\alpha \in \mathbb{F}_{2^{n}}$ is "a polynomial of deg $<n^{\prime \prime}$
- So $\alpha=\alpha_{n-1} X^{n-1}+\ldots+\alpha_{1} X+\alpha_{0}$
- So we can multiply α by $X \Rightarrow \alpha_{n-1} X^{n}+\ldots+\alpha_{1} X^{2}+\alpha_{0} X$
- But this may be of deg $=n$, so not in $\mathbb{F}_{2^{n}}$
- So we reduce the result $\bmod Q=q_{n} X^{n}+q_{n-1} X^{n-1}+\ldots+q_{1} X+q_{0}$, the defining polynomial of $\mathbb{F}_{2^{n}}=\mathbb{F}_{2}[X] / Q$
- This can be implemented with an LFSR!

Reduction illustrated: two cases

Case 1: $\operatorname{deg}(\alpha X)<n$

- There's nothing to do

Case 2: $\operatorname{deg}(\alpha X)=n$

- Then $\operatorname{deg}(\alpha X-Q)<n$
- And $\alpha X-Q$ is precisely the remainder of $\alpha X \div Q$
- (Think how $2 N>a>N \bmod N=a-N)$

Summary

- An element of $\mathbb{F}_{2^{n}}=\mathbb{F}_{2}[X] / Q$ is a polynomial
- ...is a state of an LFSR with feedback polynomial Q
- Multiplication by X is done $\bmod Q$
- ...is the result of clocking the LFSR once
- Multiplication by X^{2} is done by clocking the LFSR twice, etc.
- Multiplication by $\beta_{n-1} X^{n-1}+\ldots+\beta_{1} X+\beta_{0}$ is done "the obvious way"

A note on representation

It is convenient to write $\alpha=\alpha_{n-1} X^{n-1}+\ldots+\alpha_{1} X+\alpha_{0}$ as the integer $a=\alpha_{n-1} 2^{n-1}+\ldots+\alpha_{1} 2+\alpha_{0}$

- Example: $X^{4}+X^{3}+X+1 "=" 27=0 \times 1 \mathrm{~B}$

Examples in $\mathbb{F}_{2^{8}} \equiv \mathbb{F}_{2}[X] / X^{8}+X^{4}+X^{3}+X+1$

Example 1:

$$
\begin{aligned}
& \alpha=X^{5}+X^{3}+X(0 \times 2 \mathrm{~A}), \beta=X^{2}+1(0 \times 05) \\
& \alpha+\beta=X^{5}+X^{3}+X^{2}+X+1(0 \times 2 \mathrm{~F}) \\
& \alpha \beta=X^{2} \alpha+\alpha=X^{7}+X^{5}+X^{3}(0 \times \mathrm{A} 8)+X^{5}+X^{3}+X= \\
& X^{7}+X(0 \times 82)
\end{aligned}
$$

Examples in $\mathbb{F}_{2^{8}} \equiv \mathbb{F}_{2}[X] / X^{8}+X^{4}+X^{3}+X+1$

Example 2:

$$
\begin{aligned}
& \alpha= \\
& X^{5}+X^{3}+X, \gamma=X^{4}+X(0 \times 12) \\
& \alpha \gamma= X^{4} \alpha+X \alpha \\
& \quad X^{4} \alpha=X\left(X\left(X^{7}+X^{5}+X^{3}\right)\right) \\
& \quad X\left(X^{7}+X^{5}+X^{3}\right)=\left(X^{8}+X^{6}+X^{4}\right)+\left(X^{8}+X^{4}+X^{3}+X+1\right)= \\
& X^{6}+X^{3}+X+1 \\
& \quad X\left(X^{6}+X^{3}+X+1\right)=X^{7}+X^{4}+X^{2}+X \\
&= X^{7}+X^{4}+X^{2}+X(0 \times 96)+X^{6}+X^{4}+X^{2}(0 \times 54)= \\
& X^{7}+X^{6}+X(0 \mathrm{xC} 2)
\end{aligned}
$$

Exercise

1 Implement (in C) the multiplication by X in $\mathbb{F}_{2^{8}} \equiv \mathbb{F}_{2}[X] / X^{8}+X^{4}+X^{3}+X+1$, using a byte (type uint8_t) to represent field elements
2 Using the previous function, implement the multiplication of two arbitrary elements

