Cryptology complementary Block ciphers (1)

Pierre Karpman pierre.karpman@univ-grenoble-alpes.fr https://www-ljk.imag.fr/membres/Pierre.Karpman/tea.html

2018-02-15

Block ciphers

^{2018–02–15} 1/11

Block ciphers

A block cipher is a mapping $\mathcal{E} : \mathcal{K} \times \mathcal{M} \to \mathcal{M}'$ s.t. $\forall k \in \mathcal{K}, \mathcal{E}(k, \cdot)$ is invertible

In practice, most of the time:

- ▶ Keys $\mathcal{K} = \{0, 1\}^{\kappa}$, with $\kappa \in \{\emptyset / 4, \emptyset / 0, \emptyset / 0, \frac{112}{12}, 128, 192, 256\}$
- Plaintexts/ciphertexts $\mathcal{M} = \mathcal{M}' = \{0, 1\}^n$, with $n \in \{64, 128, 256\}$

Note

Block cipher inputs are bits, not vectors; field, ring elements

Ultimate goal: symmetric encryption

- plaintext + key \mapsto ciphertext
- ciphertext + key \mapsto plaintext
- ciphertext → ???

With arbitrary plaintexts $\in \{0, 1\}^*$

Block ciphers: do that for plaintexts $\in \{0,1\}^n$

- (Very) small example: 32 randomly shuffled cards = 5-bit block cipher
- Typical block sizes n = "what's easy to implement"

Expected behaviour:

- Given *oracle access* to $\mathcal{E}(k, \cdot)$, with a secret $k \stackrel{s}{\leftarrow} \mathcal{K}$, it is "hard" to find k
- (Same with oracle access to $\mathcal{E}^{\pm}(k, \cdot) \coloneqq \{\mathcal{E}(k, \cdot), \mathcal{E}^{-1}(k, \cdot)\})$
- Given $c = \mathcal{E}(k, m)$, it is "hard" to find m (when k's unknown)
- Given *m*, it is "hard" to find $c = \mathcal{E}(k, m)$ (idem)

But that's not enough!

Define $\mathcal{E}_k : x_L || x_R \mapsto x_L || \mathcal{E}'_k(x_R)$ for some \mathcal{E}'

- If \mathcal{E}' verifies all props. from the previous slide, then so does \mathcal{E}
- ${\scriptstyle \blacktriangleright}$ But ${\cal E}$ is obviously not so nice
- ightarrow = need a better way to formulate expectations

- Let $\mathsf{Perm}(\mathcal{M})$ be the set of the $(\#\mathcal{M})!$ permutations of \mathcal{M}
- Ideally, $\forall k, \mathcal{E}(k, \cdot) \stackrel{\$}{\leftarrow} \operatorname{Perm}(\mathcal{M})$
- In practice, good enough if *E* is a "good" pseudo-random permutation (PRP):
 - \triangleright An adversary has access to an oracle ${\mathfrak O}$
 - ▶ In one world, $\mathfrak{O} \stackrel{s}{\leftarrow} \operatorname{Perm}(\mathcal{M})$
 - In another, $k \stackrel{s}{\leftarrow} \mathcal{K}, \mathfrak{O} = \mathcal{E}(k, \cdot)$
 - The adversary cannot tell in which world he lives

It's easy to distinguish the two worlds if:

- It's easy to recover the key of $\mathcal{E}(k,\cdot)$ (try and see)
- It's easy to predict what $\mathcal{E}(k,m)$ will be (ditto)
- ▶ $\mathcal{E}_k : x_L ||x_R \mapsto x_L || \mathcal{E}'_k(x_R)$ (random permutations don't to that (often))
- \mathcal{E} is \mathbb{F}_2 -linear (say), or even "close to"
- \Rightarrow Don't have to explicitly define all the "bad cases"

We still need to define what means "hard" \Rightarrow complexity measures:

- Time (T) ("how much computation")
- Memory (M) ("how much storage")
 - Memory type (sequential access, RAM)
- Data (D) ("how many oracle queries")
 - Query type (to \mathcal{E} , to \mathcal{E}^{-1} , etc.)
- Success probability (p)

Take $\mathcal{E}: \{0,1\}^{\kappa} \times \{0,1\}^n \rightarrow \{0,1\}^n$

- Can guess an unknown key with $T = 2^{\kappa}$, M = O(1), D = O(1), p = 1
- Can guess an unknown key with T = 1, M = O(1), D = 0, $p = 2^{-\kappa}$
- Given $\mathcal{E}(k, m)$, can guess m with T = 1; M = O(1), D = 0, $p = 2^{-\kappa}$
- Given $\mathcal{E}(k, m)$, can guess m with T = 1; M = O(1), D = 0, $p = 2^{-n}$
- Given $\mathcal{E}(k, m)$, can guess m with $T = 2^{\kappa}$; M = O(1), D = O(1), p = 1

Define advantage functions associated w/ the security properties. For instance:

 $\begin{aligned} \mathbf{Adv}^{\mathsf{PRP}} \\ \mathbf{Adv}^{\mathsf{PRP}}_{\mathcal{E}}(q,t) = \\ & \max_{A_{q,t}} |\Pr[A^{\mathfrak{G}}_{q,t}() = 1 : \mathfrak{G} \xleftarrow{\mathsf{s}} \mathsf{Perm}(\mathcal{M})] \\ & -\Pr[A^{\mathfrak{G}}_{q,t}() = 1 : \mathfrak{G} = \mathcal{E}(k,\cdot), k \xleftarrow{\mathsf{s}} \mathcal{K}] | \end{aligned}$

 $A_{q,t}^{\mathfrak{O}}$: An algorithm running in time $\leq t$, making $\leq q$ queries to \mathfrak{O}

Block ciphers

"Good PRPs"

There is no definition of what a good PRP $\ensuremath{\mathcal{E}}$ is, but one can expect that:

$$\mathsf{Adv}^{\mathsf{PRP}}_{\mathcal{E}}(q,t) \approx t/2^{\kappa}$$

(As long as $q \ge O(1)$)