Cryptology complementary Block ciphers (1)

Pierre Karpman
pierre.karpman@univ-grenoble-alpes.fr
https://www-ljk.imag.fr/membres/Pierre.Karpman/tea.html

2018-02-15

Block ciphers: "simple" binary mappings

Block ciphers

A block cipher is a mapping $\mathcal{E}: \mathcal{K} \times \mathcal{M} \rightarrow \mathcal{M}^{\prime}$ s.t. $\forall k \in \mathcal{K}, \mathcal{E}(k, \cdot)$ is invertible

In practice, most of the time:

- Keys $\mathcal{K}=\{0,1\}^{\kappa}$, with $\kappa \in\{\not \boxed{A} 4, \not, \varnothing$, $\varnothing \varnothing, 112,128,192,256\}$
- Plaintexts/ciphertexts $\mathcal{M}=\mathcal{M}^{\prime}=\{0,1\}^{n}$, with $n \in\{64,128,256\}$

Note

Block cipher inputs are bits, not vectors; field, ring elements

Block ciphers: for what?

Ultimate goal: symmetric encryption

- plaintext + key \mapsto ciphertext
- ciphertext + key \mapsto plaintext
- ciphertext \mapsto ???

With arbitrary plaintexts $\in\{0,1\}^{*}$
Block ciphers: do that for plaintexts $\in\{0,1\}^{n}$

- (Very) small example: 32 randomly shuffled cards $=5$-bit block cipher
- Typical block sizes $n=$ "what's easy to implement"

What's a good block cipher

Expected behaviour:

- Given oracle access to $\mathcal{E}(k, \cdot)$, with a secret $k \stackrel{\$}{\leftarrow} \mathcal{K}$, it is "hard" to find k
- (Same with oracle access to $\left.\mathcal{E}^{ \pm}(k, \cdot):=\left\{\mathcal{E}(k, \cdot), \mathcal{E}^{-1}(k, \cdot)\right\}\right)$
- Given $c=\mathcal{E}(k, m)$, it is "hard" to find m (when k 's unknown)
- Given m, it is "hard" to find $c=\mathcal{E}(k, m)$ (idem)

But that's not enough!

We need more

Define $\mathcal{E}_{k}: x_{L}\left\|x_{R} \mapsto x_{L}\right\| \mathcal{E}_{k}^{\prime}\left(x_{R}\right)$ for some \mathcal{E}^{\prime}

- If \mathcal{E}^{\prime} verifies all props. from the previous slide, then so does \mathcal{E}
- But \mathcal{E} is obviously not so nice
- \Rightarrow need a better way to formulate expectations

(S)PRP security

- Let $\operatorname{Perm}(\mathcal{M})$ be the set of the $(\# \mathcal{M})$! permutations of \mathcal{M}
- Ideally, $\forall k, \mathcal{E}(k, \cdot) \stackrel{\Im}{\leftarrow} \operatorname{Perm}(\mathcal{M})$
- In practice, good enough if \mathcal{E} is a "good" pseudo-random permutation (PRP):
- An adversary has access to an oracle \mathfrak{G}
- In one world, $\mathfrak{d} \stackrel{\mathbf{s}}{\leftarrow} \operatorname{Perm}(\mathcal{M})$
- In another, $k \stackrel{\mathfrak{s}}{\leftarrow} \mathcal{K}, \mathfrak{G}=\mathcal{E}(k, \cdot)$
- The adversary cannot tell in which world he lives

(S)PRP security: why it makes sense

It's easy to distinguish the two worlds if:

- It's easy to recover the key of $\mathcal{E}(k, \cdot)$ (try and see)
- It's easy to predict what $\mathcal{E}(k, m)$ will be (ditto)
- $\mathcal{E}_{k}: x_{L}\left\|x_{R} \mapsto x_{L}\right\| \mathcal{E}_{k}^{\prime}\left(x_{R}\right)$ (random permutations don't to that (often))
- \mathcal{E} is \mathbb{F}_{2}-linear (say), or even "close to"
\Rightarrow Don't have to explicitly define all the "bad cases"

Complexity issues

We still need to define what means "hard" \Rightarrow complexity measures:

- Time (T) ("how much computation")
- Memory (M) ("how much storage")
- Memory type (sequential access, RAM)
- Data (D) ("how many oracle queries")
- Query type (to \mathcal{E}, to \mathcal{E}^{-1}, etc.)
- Success probability (p)

Generic attack examples

Take $\mathcal{E}:\{0,1\}^{\kappa} \times\{0,1\}^{n} \rightarrow\{0,1\}^{n}$

- Can guess an unknown key with $T=2^{\kappa}, M=O(1), D=O(1)$, $p=1$
- Can guess an unknown key with $T=1, M=O(1), D=0$, $p=2^{-\kappa}$
- Given $\mathcal{E}(k, m)$, can guess m with $T=1 ; M=O(1), D=0$, $p=2^{-\kappa}$
- Given $\mathcal{E}(k, m)$, can guess m with $T=1 ; M=O(1), D=0$, $p=2^{-n}$
- Given $\mathcal{E}(k, m)$, can guess m with $T=2^{\kappa} ; M=O(1)$, $D=\mathrm{O}(1), p=1$

A "single" measure

Define advantage functions associated $\mathrm{w} /$ the security properties.
For instance:

Adv ${ }^{\text {PRP }}$

$\operatorname{Adv}_{\mathcal{E}}^{\mathrm{PRP}}(q, t)=$

$$
\begin{aligned}
& \max _{A_{q, t}} \mid \operatorname{Pr}\left[A_{q, t}^{\mathfrak{U}}()=1: \mathfrak{O} \stackrel{\mathfrak{s}}{\leftarrow} \operatorname{Perm}(\mathcal{M})\right] \\
& -\operatorname{Pr}\left[A_{q, t}^{\mathfrak{U}}()=1: \mathfrak{O}=\mathcal{E}(k, \cdot), k \stackrel{\stackrel{\Im}{\leftarrow} \mathcal{K}] \mid}{ } .\right.
\end{aligned}
$$

$A_{q, t}^{\mathfrak{U}}$: An algorithm running in time $\leq t$, making $\leq q$ queries to \mathfrak{C}

"Good PRPs"

There is no definition of what a good PRP \mathcal{E} is, but one can expect that:

$$
\operatorname{Adv}_{\mathcal{E}}^{\mathrm{PRP}}(q, t) \approx t / 2^{\kappa}
$$

(As long as $q \geq \mathrm{O}(1)$)

