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First things first

Main goals of this course: “practical” complement to the other
half

� Introduce some constructions (what’s a block cipher, a key
exchange?...)

� Introduce some implementation aspects (how do you do finite
field arithmetic?...)

� Introduce some attacks (how do yo compute a discrete
logarithm?...)

� Introduce some real-life usage (e.g. SSH)
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Organisation

� Course format: mix of lectures/TDs/TPs

� (Probably) A contrôle continu evaluation (lab
session/homework, details T.B.D.)

� A final exam (ditto)
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What’s crypto?

Quick answer: it’s about protecting secret data from adversaries

� In a communication (encrypted email, text messages; on the
web; when paying by credit card)

� On a device (encrypted hard-drive)

� During a computation (online voting)

� Etc.
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Where does crypto run?

Crypto needs on various platforms

� High-end CPUs (Server/Desktop/Laptop computers,...)

� Mobile processors (Phones,...)

� Microcontrollers (Smartcards,...)

� Dedicated hardware (accelerating coprocessors, cheap
chips,...)
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Techno constraints

Varying contexts, varying requirements

� Speed (throughput)

� Speed (latency)

� Code/circuit size

� Energy/power consumption

� Protection v. physical attacks

⇒ Implementation plays a big part in crypto
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Quick example

A protocol (e.g. TLS) uses among others

� A key exchange algorithm (e.g. Di�e-Hellman)
— “public-key” cryptography

� instantiated with a secure group (e.g. ANSSI FRP256V1)

� An authenticated-encryption mode of operation (e.g. GCM)
— “symmetric-key” cryptography

� instantiated with a secure block cipher (e.g. the AES)

� A digital signature algorithm (e.g. ECDSA)
— “public-key” + “symmetric-key” cryptography

� instantiated with a secure group and a secure hash function
(e.g. SHA-3)
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Protocols can be complex
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Figure: Part of the TLS state machine, Beurdouche et al., 2015
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“Doing crypto”

� Designing new primitives/constructions(/protocols)

� Analysing existing primitives/...

� Deploying crypto in products

� Di↵erent goals, di↵erent techniques
� Ad-hoc analysis, discrete mathematics, algorithmics
� Computational number theory/algebraic geometry
� Low-level implementation (assembly, hardware)
� Formal methods
� Following “good practice”
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Scope of an analysis

Many types of adversary

� Passive (“eavesdropper = Eve”)

� Not passive, i.e. active
� With or w/o physical access

� Side channels
� Fault attacks

� With varying scenarios (“one-time” or long-term secret?)

� With varying objectives
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Security objectives?



Introduction

2018–02–08

11/21

Security objectives?

� Hard to find the secret (the key)

� Hard to find the message (confidentiality)

� Hard to change/forge a message (integrity/authenticity)

� Etc.
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Small informal focus

Example: indistiguishability (IND-CPA)

1 Submit messages to an oracle O to be encrypted, & get the
result

2 Choose, m
0

, m
1

, send both to O

3 Receive O(mb) for a random b ∈ {0,1}
4 Goal: determine the value of b (better than by guessing)

� O has to be randomized
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A code that’s not IND-CPA

Figure: Calvin & Hobbes’ code (Watterson)
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Randomness is key in crypto

Random numbers always needed

� To generate keys

� To generate initialization vectors (IVs) or nonces

� To generate random masks (to protect against some attacks)

� Etc.
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Random number generation is not easy

Lead to severe vulnerabilities, several times. For instance:

� Debian’s OpenSSL key generation (2006–2008)

� WWW RSA private keys with shared factors (Lenstra et al.,
2012)

� Smartcard RSA w/ biased private keys (Bernstein et al., 2013)

� Smartcard RSA w/ biased private keys (Nemec et al., 2017)
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How not to generate random numbers

Figure: XKCD’s PRNG (Munroe)
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How not to generate random numbers

Figure: Dilbert’s PRNG (Adams)

Terrible Kolmogorov complexity!
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How to generate them, then?

A basic idea (e.g. /dev/random)

� Set up a “random” state (from e.g. physical sources)

� Refresh it continuously as randomness comes by

� Extract and refresh when outputs are needed
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Random numbers are all you need?

A “perfect” encryption scheme, the one-time pad

1 Let the message m be in {0,1}n, n maybe large (say, 240)

2 Let the key k be
$←� {0,1}n

3 The ciphertext c = m ⊕ k

� Knowing c does not give information about m (Exercise)

Problems:

� Integrity not guaranteed

� Needs very large keys

� Needs “perfect” randomness too!

⇒ Later, we’ll see how to solve such issues practically
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Keys: secret, private, public...

What are crypto keys like?

� Stream/Block cipher: a binary string

� Hash functions: �
� RSA: a prime number (secret), an integer (public)

� Di�e-Hellman: an integer (secret), a group element (public)

� Code-based: a (generating) matrix (of a code) (one secret,
one public)

� Etc.
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Secrets large and small

What should the secret/public key size be (in bits)?

� Stream ciphers?

� Block ciphers?

� RSA?

� Di�e-Hellman (well-chosen F

∗
q)?

� Di�e-Hellman (well-chosen E(Fq))?
� Code-based (McEliece, Binary Goppa codes)?
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Secrets large and small

What should the secret/public key size be (in bits)?

� Stream ciphers: e.g. 128 bits (+ a large (e.g. 128 bits) IV
necessary)

� Block ciphers: e.g. 128 bits

� RSA: e.g. 3072 bits

� Di�e-Hellman (well-chosen F

∗
q): e.g. 3072 bits

� Di�e-Hellman (well-chosen E(Fq)): e.g. 256 bits

� Code-based (McEliece, Binary Goppa codes)? e.g. 200 000
bytes
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Secrets large and small

What should the secret/public key size be (in bits)?

⇒ Quite a complex matter! (Follow recommendations, e.g. from
ANSSI!)
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What’s 128 bits anyway?

Objective: run a function 2128 times within 34 years (≈ 230
seconds), assuming:

� Hardware at 250 iterations/s (that’s pretty good)

� Trivially parallelizable (that’s not always the case in practice)

� 1000 W per device, no overhead (that’s pretty good)

⇒
� 2128−50−30 ≈ 248 machines needed
� ≈ 280000000 GW ’round the clock

� ≈ 170000000 EPR nuclear power plants

(Of course, technology may improve, but here’s quite a safe
margin)


