
Introduction

2018–02–08

1/21

Cryptology complementary
]

Introduction

Pierre Karpman
pierre.karpman@univ-grenoble-alpes.fr

https://www-ljk.imag.fr/membres/Pierre.Karpman/tea.html

2018–02–08

pierre.karpman@univ-grenoble-alpes.fr
https://www-ljk.imag.fr/membres/Pierre.Karpman/tea.html

Introduction

2018–02–08

2/21

First things first

Main goals of this course: “practical” complement to the other
half

� Introduce some constructions (what’s a block cipher, a key
exchange?...)

� Introduce some implementation aspects (how do you do finite
field arithmetic?...)

� Introduce some attacks (how do yo compute a discrete
logarithm?...)

� Introduce some real-life usage (e.g. SSH)

Introduction

2018–02–08

3/21

Organisation

� Course format: mix of lectures/TDs/TPs

� (Probably) A contrôle continu evaluation (lab
session/homework, details T.B.D.)

� A final exam (ditto)

Introduction

2018–02–08

4/21

What’s crypto?

Quick answer: it’s about protecting secret data from adversaries

� In a communication (encrypted email, text messages; on the
web; when paying by credit card)

� On a device (encrypted hard-drive)

� During a computation (online voting)

� Etc.

Introduction

2018–02–08

5/21

Where does crypto run?

Crypto needs on various platforms

� High-end CPUs (Server/Desktop/Laptop computers,...)

� Mobile processors (Phones,...)

� Microcontrollers (Smartcards,...)

� Dedicated hardware (accelerating coprocessors, cheap
chips,...)

Introduction

2018–02–08

6/21

Techno constraints

Varying contexts, varying requirements

� Speed (throughput)

� Speed (latency)

� Code/circuit size

� Energy/power consumption

� Protection v. physical attacks

⇒ Implementation plays a big part in crypto

Introduction

2018–02–08

7/21

Quick example

A protocol (e.g. TLS) uses among others

� A key exchange algorithm (e.g. Di�e-Hellman)
— “public-key” cryptography

� instantiated with a secure group (e.g. ANSSI FRP256V1)

� An authenticated-encryption mode of operation (e.g. GCM)
— “symmetric-key” cryptography

� instantiated with a secure block cipher (e.g. the AES)

� A digital signature algorithm (e.g. ECDSA)
— “public-key” + “symmetric-key” cryptography

� instantiated with a secure group and a secure hash function
(e.g. SHA-3)

Introduction

2018–02–08

8/21

Protocols can be complex

ClientHello

ServerHello(v, kx, rid)

(full handshake)
kx = PSK|RSA PSK|DHE PSK|SRP|SRP RSA

ServerCertificate

ServerKeyExchange

ServerHelloDone

ClientKeyExchange

ClientCCS

ClientFinished

ServerNewSessionTicket

ServerCCS

ServerFinished

ApplicationData�

ntick = 1

kx = SRP RSA

� chint = 1

kx = RSA PSK|SRP RSA

(full handshake)
kx = DH|DH anon|ECDH|ECDH anon

ServerCertificate

ServerKeyExchange

(authenticate client?)

CertificateRequest

ServerHelloDone

ClientCertificate(co�er)

ClientKeyExchange

ClientCertificateVerify

ClientCCS

ClientFinished

ServerNewSessionTicket

ServerCCS

ServerFinished

ApplicationData�

ntick = 1

cask = 1 &
co�er = 1

co�er = 1

cask = 1

cask = 1 &
kx = DH|ECDH

(full handshake)
kx = RSA|DHE|ECDHE|RSA EXPORT|DHE EXPORT

ServerCertificate

ServerKeyExchange

(authenticate client?)

CertificateRequest

ServerHelloDone

ClientCertificate(co�er)

ClientKeyExchange

ClientCertificateVerify

ClientCCS

ClientFinished

ServerNewSessionTicket

ServerCCS

ServerFinished

ApplicationData�

ntick = 1

cask = 1 &
co�er = 1

cask = 1

cask = 1

kx = DHE|ECDHE|
RSA EXPORT|DHE EXPORT

(abbreviated handshake)

ServerNewSessionTicket

ServerCCS

ServerFinished

ClientCCS

ClientFinished

ApplicationData�

ntick = 1

rid = 1�rtick = 1

rid = 0 & rtick = 0

rid = 0 & rtick = 0

ntick = 0

kx = RSA

cask = 0

cask = 0

cask = 0 �
co�er = 0

ntick = 0

kx = DH anon|
ECDH anon

kx = DH|
ECDH

co�er = 2

cask = 0 �
kx = DH anon|

ECDH anon

cask = 0

cask = 0 �
co�er = 0

ntick = 0

kx= SRP|DHE PSK

�(kx = PSK &
chint = 1)

kx = PSK

& chint = 0kx = RSA PSK

& chint = 0

ntick = 0

Fig.9.
M

essage
sequences

for
the

ciphersuites
com

m
only

enabled
in

O
penSSL

552
552

Figure: Part of the TLS state machine, Beurdouche et al., 2015

Introduction

2018–02–08

9/21

“Doing crypto”

� Designing new primitives/constructions(/protocols)

� Analysing existing primitives/...

� Deploying crypto in products

� Di↵erent goals, di↵erent techniques
� Ad-hoc analysis, discrete mathematics, algorithmics
� Computational number theory/algebraic geometry
� Low-level implementation (assembly, hardware)
� Formal methods
� Following “good practice”

Introduction

2018–02–08

10/21

Scope of an analysis

Many types of adversary

� Passive (“eavesdropper = Eve”)

� Not passive, i.e. active
� With or w/o physical access

� Side channels
� Fault attacks

� With varying scenarios (“one-time” or long-term secret?)

� With varying objectives

Introduction

2018–02–08

11/21

Security objectives?

Introduction

2018–02–08

11/21

Security objectives?

� Hard to find the secret (the key)

� Hard to find the message (confidentiality)

� Hard to change/forge a message (integrity/authenticity)

� Etc.

Introduction

2018–02–08

12/21

Small informal focus

Example: indistiguishability (IND-CPA)

1 Submit messages to an oracle O to be encrypted, & get the
result

2 Choose, m
0

, m
1

, send both to O

3 Receive O(mb) for a random b ∈ {0,1}
4 Goal: determine the value of b (better than by guessing)

� O has to be randomized

Introduction

2018–02–08

13/21

A code that’s not IND-CPA

Figure: Calvin & Hobbes’ code (Watterson)

Introduction

2018–02–08

14/21

Randomness is key in crypto

Random numbers always needed

� To generate keys

� To generate initialization vectors (IVs) or nonces

� To generate random masks (to protect against some attacks)

� Etc.

Introduction

2018–02–08

15/21

Random number generation is not easy

Lead to severe vulnerabilities, several times. For instance:

� Debian’s OpenSSL key generation (2006–2008)

� WWW RSA private keys with shared factors (Lenstra et al.,
2012)

� Smartcard RSA w/ biased private keys (Bernstein et al., 2013)

� Smartcard RSA w/ biased private keys (Nemec et al., 2017)

Introduction

2018–02–08

16/21

How not to generate random numbers

Figure: XKCD’s PRNG (Munroe)

Introduction

2018–02–08

16/21

How not to generate random numbers

Figure: Dilbert’s PRNG (Adams)

Terrible Kolmogorov complexity!

Introduction

2018–02–08

17/21

How to generate them, then?

A basic idea (e.g. /dev/random)

� Set up a “random” state (from e.g. physical sources)

� Refresh it continuously as randomness comes by

� Extract and refresh when outputs are needed

Introduction

2018–02–08

18/21

Random numbers are all you need?

A “perfect” encryption scheme, the one-time pad

1 Let the message m be in {0,1}n, n maybe large (say, 240)

2 Let the key k be
$←� {0,1}n

3 The ciphertext c = m ⊕ k

� Knowing c does not give information about m (Exercise)

Problems:

� Integrity not guaranteed

� Needs very large keys

� Needs “perfect” randomness too!

⇒ Later, we’ll see how to solve such issues practically

Introduction

2018–02–08

19/21

Keys: secret, private, public...

What are crypto keys like?

� Stream/Block cipher: a binary string

� Hash functions: �
� RSA: a prime number (secret), an integer (public)

� Di�e-Hellman: an integer (secret), a group element (public)

� Code-based: a (generating) matrix (of a code) (one secret,
one public)

� Etc.

Introduction

2018–02–08

20/21

Secrets large and small

What should the secret/public key size be (in bits)?

� Stream ciphers?

� Block ciphers?

� RSA?

� Di�e-Hellman (well-chosen F

∗
q)?

� Di�e-Hellman (well-chosen E(Fq))?
� Code-based (McEliece, Binary Goppa codes)?

Introduction

2018–02–08

20/21

Secrets large and small

What should the secret/public key size be (in bits)?

� Stream ciphers: e.g. 128 bits (+ a large (e.g. 128 bits) IV
necessary)

� Block ciphers: e.g. 128 bits

� RSA: e.g. 3072 bits

� Di�e-Hellman (well-chosen F

∗
q): e.g. 3072 bits

� Di�e-Hellman (well-chosen E(Fq)): e.g. 256 bits

� Code-based (McEliece, Binary Goppa codes)? e.g. 200 000
bytes

Introduction

2018–02–08

20/21

Secrets large and small

What should the secret/public key size be (in bits)?

⇒ Quite a complex matter! (Follow recommendations, e.g. from
ANSSI!)

Introduction

2018–02–08

21/21

What’s 128 bits anyway?

Objective: run a function 2128 times within 34 years (≈ 230
seconds), assuming:

� Hardware at 250 iterations/s (that’s pretty good)

� Trivially parallelizable (that’s not always the case in practice)

� 1000 W per device, no overhead (that’s pretty good)

⇒
� 2128−50−30 ≈ 248 machines needed
� ≈ 280000000 GW ’round the clock

� ≈ 170000000 EPR nuclear power plants

(Of course, technology may improve, but here’s quite a safe
margin)

