Cryptology complementary Final Examination

2018-05-17

Instructions

The duration of this examination is one hour. Answers to the questions must be detailed and complete to get maximum credit. The full scale is not determined yet: it may not be necessary to answer all questions in order to obtain a perfect mark.

Unique Exercise: Block cipher block size extension

In all of the following, $\mathcal{E}: \{0,1\}^{\kappa} \times \{0,1\}^{n} \to \{0,1\}^{n}$ is a publicly-known block cipher with κ -bit keys and n-bit blocks. (In particular, this means that anyone is able to efficiently evaluate $\mathcal{E}(\cdot,\cdot)$ and its inverse $\mathcal{E}^{-1}(\cdot,\cdot)$.) We recall the following definition.

Definition 1. PRP Advantage. The PRP advantage of a block cipher \mathcal{E} is a function that returns the maximum advantage of any algorithm with bounded resources trying to distinguish \mathcal{E} with a random key from a random permutation. Formally, it is given by:

$$\begin{split} \mathbf{Adv}^{\mathrm{PRP}}_{\mathcal{E}}(q,t) &= \max_{A_{q,t}} |\Pr[A^{\mathcal{O}}_{q,t}() = 1: \mathcal{O} \xleftarrow{\$} \mathrm{Perms}(\{0,1\}^n)] \\ &- \Pr[A^{\mathcal{O}}_{q,t}() = 1: \mathcal{O} = \mathcal{E}(k,\cdot), k \xleftarrow{\$} \{0,1\}^\kappa]| \end{split}$$

In the above, $A_{q,t}^{\mathcal{O}}$ denotes an algorithm with *oracle access* to \mathcal{O} , running in time t (for an unspecified time unit, common to all algorithms) and making q queries to its oracle. Also, for a finite set \mathcal{S} , $X \stackrel{\$}{\leftarrow} \mathcal{S}$ means that X is drawn uniformly at random from \mathcal{S} , and $\mathsf{Perms}(\mathcal{S})$ denotes the set of permutations over \mathcal{S} .

- **Q. 1:** Assume that $\mathbf{Adv}_{\mathcal{E}}^{\mathrm{PRP}}(t,q) \approx t/2^{\kappa}$ when $q \geq c$, c a (small) constant and the time unit is the time necessary to evaluate \mathcal{E} once.
 - 1. Explain why it is not possible to have a block cipher $\mathcal{E}': \{0,1\}^{\kappa} \times \{0,1\}^n \to \{0,1\}^n$ such that $\mathbf{Adv}_{\mathcal{E}'}^{\mathrm{PRP}}(t,q) \ll \mathbf{Adv}_{\mathcal{E}}^{\mathrm{PRP}}(t,q)$?
 - 2. Can \mathcal{E} be considered to be a "good" block cipher?
 - 3. Would \mathcal{E} be a practically useful block cipher if one had $\kappa = 32$, n = 128?
 - 4. Same question with $\kappa = 128$, n = 128?
 - 5. Same question with $\kappa = 256$, n = 8?

••

We now wish to use \mathcal{E} to build a new block cipher \mathcal{F} with a larger block size 2n.

- **Q. 2:** Let $k \in \{0,1\}^{\kappa}$; $x_L, x_R \in \{0,1\}^n$; $\cdot ||\cdot|$ denote string concatenation. We first define $\mathcal{F}(k, x_L || x_R)$ as $\mathcal{E}(k, x_L) || \mathcal{E}(k, x_R)$.
 - 1. What can you say about $\mathcal{F}(k, x_L || x_R)$ and $\mathcal{F}(k, x_L || x_R')$, when $x_R' \neq x_R$?
 - 2. Using the above property, show that \mathcal{F} can easily be distinguished from a random permutation by an algorithm with small time and query complexity (you don't need to precisely analyse the advantage of your algorithm).
 - 3. Explain why \mathcal{F} is not a good block cipher.
- **Q. 3:** We redefine \mathcal{F} as following. Let $c_R = x_L \oplus \mathcal{E}(k, x_R)$, $c_L = x_R \oplus \mathcal{E}(k, c_R)$, then $\mathcal{F}(k, x_L || x_R) = c_L || c_R$.
 - 1. Show that $\mathcal{F}(k,\cdot)$ is efficiently invertible by anyone knowing k, by giving an expression for x_R in function of c_L and c_R (and k) and an expression for x_L in function of c_R and x_R (and k). Is \mathcal{E}^{-1} needed to compute \mathcal{F}^{-1} ?
 - 2. Show that in fact, \mathcal{F} is its own inverse (i.e. is an involution).
 - 3. Let a be an arbitrary element of $\{0,1\}^n$. What is the probability $p_a = \Pr[\mathcal{P}(a) = a : \mathcal{P} \stackrel{\$}{\leftarrow} \mathsf{Perms}(\{0,1\}^n)]$ that a is a fixed point of a randomly drawn permutation \mathcal{P} ?
 - 4. Let a be as above; what is the probability $q_a = \Pr[\mathcal{P}(\mathcal{P}(a)) = a | \mathcal{P}(a) \neq a : \mathcal{P} \leftarrow \text{Perms}(\{0,1\}^n)]$ that a is in a cycle of length two, conditioned on the fact that a is not a fixed point?
 - 5. Show that \mathcal{F} is not a good block cipher, by specifying an algorithm with q=1, t=2 that distinguishes it from a random permutation. Give an analysis of the advantage of your algorithm. (Hint: compare the values $\mathcal{O}(\mathcal{O}(a))$ in function of how \mathcal{O} is instantiated. Then find in which cases your algorithm fails, and the probability of failure (or equivalently of success) in function of p_a and q_a .)
 - 6. Give a reasonable alternative defintion for PRP advantage (that only changes the definition of \mathcal{O}) where the algorithm of the previous question has advantage zero.
- **Q. 4:** In order to make \mathcal{F} non-involutory, one suggests to use two keys for the two internal calls to \mathcal{E} . That is, one redefines \mathcal{F} as following. Let $k_1, k_2 \in \{0, 1\}^{\kappa}$, $c_R = x_L \oplus \mathcal{E}(k_1, x_R)$, $c_L = x_R \oplus \mathcal{E}(k_2, c_R)$, then $\mathcal{F}(k_1||k_2, x_L||x_R) = c_L||c_R$.
 - 1. Show that if $k_1 \neq k_2$, then \mathcal{F} is not (necessarily) an involution.
 - 2. Let $c_L||c_R = \mathcal{F}(k_1||k_2, x_L||x_R)$; $c_L'||c_R' = \mathcal{F}(k_1||k_2, x_L'||x_R)$ with $x_L' \neq x_L$. Give a simple expression for $c_R \oplus c_R'$.
 - 3. Show that \mathcal{F} is not a good block cipher, by specifying an efficient algorithm to distinguish it from a random permutation (you don't need to precisely analyse the advantage of your algorithm).
- **Q. 5:** The structure of the two previous questions can be generalized to more *rounds*. Let $k_1||\dots||k_r\in\{0,1\}^{r\kappa}, x_L||x_R\in\{0,1\}^{2n}$. One defines x_L^0 and x_R^0 as x_L and x_R respectively; $x_R^i=x_L^{i-1}\oplus\mathcal{E}(k_i,x_R^{i-1}), \ x_L^i=x_R^{i-1}; \ c_L=x_R^r, \ c_R=x_L^r.$
 - 1. Give a lower bound for the number of round r for such a structure to result in a good block cipher.

Note: The structure studied in Q. $3 \sim Q$. 5 is a Feistel structure/network/ladder.