Cryptology complementary Exercises \#5

2018-W15

In the following exercises, we let $N=p q$ be the product of two prime numbers, $e \in(\mathbb{Z} / \varphi(N) \mathbb{Z})^{\times}, d=e^{-1}$. We define the RSA permutation RSA-P with parameters N and e as RSA-P : $\mathbb{Z} / N \mathbb{Z} \rightarrow \mathbb{Z} / N \mathbb{Z}, m \mapsto m^{e}$. Its inverse is given by $c \mapsto c^{d}$.

Exercise 1: Domain of an RSA permutation

Q. 1: Using the extended Euclid algorithm, show that if $0<\alpha<N$ is such that $\operatorname{gcd}(\alpha, N)=1$, then α has a multiplicative inverse modulo N. Show then that for any $e>0, \alpha^{e}$ is invertible modulo N. Does this guarantee that $x \mapsto x^{e}$ is invertible over $(\mathbb{Z} / N \mathbb{Z})^{\times}$?
Q. 2: Consider now $0<\alpha<N$ with $\operatorname{gcd}(\alpha, N)=p$. What is the value of $\alpha \bmod p$ (meaning the remainder of the division of α by p, abusing notations)? Does α have an inverse modulo N ? What is $\operatorname{gcd}(\alpha, q)$? How many such elements are there in $\mathbb{Z} / N \mathbb{Z}$? What is $\alpha^{q-1} \bmod q$?
The goal of the next questions is to characterize the values of multiples of p modulo N.
Q. 3: Let $0<u<N$ be the unique number that verifies $u \equiv 0 \bmod p, u \equiv 1 \bmod q$. Show how to compute u using the CRT (i.e. using inversion modulo q)?
Q. 4: Let again α be as in Q. 2. Using the result of $\mathbf{Q .}$. , find $0<\beta<N$ s.t. $\alpha^{q-1} \equiv \beta$ $\bmod N$. Idem for $0<\gamma<N$ s.t. $\alpha^{k(q-1)} \equiv \gamma \bmod N($ for any $k)$? Give two necessary conditions on e for the map $x \mapsto x^{e}$ (over $\mathbb{Z} / N \mathbb{Z}$) to be invertible.
Q. 5: Let $e \in(\mathbb{Z} / \varphi(N) \mathbb{Z})^{\times}, d=e^{-1}$. Show that $\alpha^{e d} \equiv \alpha \bmod q ; \alpha^{e d} \equiv \alpha \bmod N$. Are there any elements not invertible by $x \mapsto x^{e}$? What is the domain of an RSA permutation?

Exercise 2: Semi-homomorphic property of an RSA permutation

Q. 1: Let $m, m^{\prime} \in \mathbb{Z} / N \mathbb{Z}, c=\operatorname{RSA}-\mathrm{P}(m), c^{\prime}=\operatorname{RSA}-\mathrm{P}\left(m^{\prime}\right)$. Give an expression for $c c^{\prime}$ of the form x^{e} (for some x). Use this expression to compute the value RSA- $\mathrm{P}^{-1}\left(c c^{\prime}\right)$.
Q. 2: Explain how the above property allows to multiply two numbers without decrypting them.
Q. 3: Note that the above procedure is deterministic. Does a modified procedure that works with encrypted numbers of the form $\operatorname{pad}(x)$ (where pad is a non-deterministic function) still allow to multiply numbers in encrypted form?

