Cryptology complementary Exercices#2

2018-W07

Exercise 1: PRPs

Q.1: Let $\mathscr{E}: \{0,1\}^{\kappa} \times \{0,1\}^{n} \to \{0,1\}^{n}$ be a block cipher for which there is a subset $\mathscr{K}' \subset \{0,1\}^{\kappa}$ of weak keys of size 2^{w} such that if $k \in \mathscr{K}'$, $\mathscr{E}(k,\cdot): x \mapsto x$.

Give a lower-bound for $\mathbf{Adv}^{\mathrm{PRP}}_{\mathscr{E}}(1,1)$.

Q.2: Some mode of operation of block ciphers rely on the fact that $\mathcal{E}(k,0)$ is an unpredictable value when k is random and secret (with 0 denoting the all-zero binary string).

Show that this is a reasonable assumption. More precisely, give a lower-bound on $\mathbf{Adv}^{\mathrm{PRP}}_{\mathscr{E}}(1,1)$ assuming that one can predict this value with unit time and success probability p.

Q.3: Assume that \mathscr{E} is a "good" block cipher. Define a related cipher \mathscr{E}' for which $\mathscr{E}(k,0)$ is trivially predictable for any key (several constructions are possible).

Exercise 2: Meet-in-the-middle attack

Let $\mathscr{E}: \{0,1\}^{\kappa} \times \{0,1\}^n \to \{0,1\}^n$ be a block cipher. Assuming that κ is too small to provide adequate security against generic attacks, one wishes to define another cipher \mathscr{E}' with larger keys. A possible construction is to use "double-encryption" and have $\mathscr{E}': \{0,1\}^{\kappa} \times \{0,1\}^{\kappa} \times \{0,1\}^{n} \to \{0,1\}^{n}$ defined as $\mathscr{E}'(k,k',\cdot): x \mapsto \mathscr{E}(k,\mathscr{E}(k',x))$.

Q.1: Show that double-encryption only marginally increases the "effective" key length by giving an attack that works with time 2^{κ} , memory 2^{n} , a negligible amount of queries, and success probability 1.

Hint: Observe that the outer and inner keys are used in sequence. Try to find a partially encrypted value that can be obtained by partial encryption with k' or partial decryption with k. Use this to "meet in the middle".

Q.2: The attack of the previous question can be interrupted after t steps in a "natural way". How? What is the probability of successfully finding (k, k') in function of t and κ . How does this compare with $\mathscr E$ (assuming that $\mathscr E$ is "good", i.e. $\mathbf{Adv}^{\mathrm{PRP}}_{\mathscr E}(q, t) \approx t/2^{\kappa}$)?