Cryptology complementary Exercices#1

2018-W06

Exercise 1: One-time pad

Q.1: Let $x \in \mathbf{F}_2$ and r be an element drawn uniformly at random from \mathbf{F}_2 (i.e. $\Pr[r = 0] = \Pr[r = 1] = 0.5$. What is:

- $\Pr[x + r = 0]$?
- $\Pr[x + r = 1]$?
- $\Pr[x = 0 | x + r = 0]$?
- $\Pr[x = 0 | x + r = 1]$?
- $\Pr[x = 1 | x + r = 0]$?
- $\Pr[x = 1 | x + r = 1]$?

Hint. You may use Bayes' formula: Pr[A|B] = Pr[B|A] Pr[A] / Pr[B].

Q.2: Let $\mathbf{x} \in \mathbf{F}_2^n$ and *r* be an element drawn uniformly at random from \mathbf{F}_2^n . For each element \mathbf{y} , \mathbf{z} of \mathbf{F}_2^n , what is $\Pr[\mathbf{x} + \mathbf{r} = \mathbf{y}]$? $\Pr[\mathbf{x} = \mathbf{z} | \mathbf{x} + \mathbf{r} = \mathbf{y}]$?

Q.3: Assume that $x \in \{0, 1\}^n$ is a message written as binary data. Assume that $r \in \{0, 1\}^n$ is drawn uniformly at random among all binary strings of length *n*. Explain why observing $x \oplus r$ (the bitwise XOR of *x* and *r*) does not reveal any information about *x*.

Q.4: We will informally say that a cipher \mathscr{C} is *perfectly secure* if observing the *ciphertext* $c = \mathscr{C}(p)$ does not reveal any new information about the *plaintext* p.

Let *p* and *k* be *n*-bit strings. Under what condition on *k* is the cipher $\mathscr{C} : p \mapsto p \oplus k$ perfectly secure?

Q.5: Let \mathscr{C} be a perfectly secure cipher as above. Is its concatenation $\mathscr{C}^2 : p || p' \mapsto p \oplus k || p' \oplus k$ perfectly secure?

Exercise 2: Binary vectors

Q. 1: Write a small "naïve" C function that computes the scalar product of two vectors of \mathbf{F}_2^{32} . This function must have the following prototype:

uint32_t scalar32_naive(uint32_t x, uint32_t y).

Q. 2: Write another implementation of the same function, of prototype

uint32_t scalar32_popcnt(uint32_t x, uint32_t y),

that uses a *bitwise and* instruction "&" and the *population count* function for 32-bit words "__builtin_popcount()".

Q. 3: Write a function that computes a matrix-vector product $\mathbf{x}M$ for $M \in \mathcal{M}_{32}(\mathbf{F}_2)$, using a scalar product as a sub-routine. This function must have the following prototype:

```
uint32_t mul32_scalar(uint32_t m[32], uint32_t x).
```

Q. 4: Write another such function using a *table* implementation. You may assume that all of the linear combinations of eight consecutive rows of the matrix have been precomputed and stored in a table uint32_t m[4] [256]. That is, m[0] [x] is equal to $\sum_{i \in \mathbf{nZ}(\mathbf{x})} M_i$, m[1] [x] is equal to $\sum_{i \in \mathbf{nZ}(\mathbf{x})} M_{i+8}$, etc., where nz(x) is the set of the indices of the non-zero bits of x. This function must have the following prototype:

```
uint32_t mul32_table(uint32_t m[4][256], uint32_t x).
```

Q.5: Write a test function that computes a large number (e.g. 2²⁴) of matrix-vector multiplications. Time the execution of the resulting programn, in function of the chosen implementation (including different implementations for the scalar product used in mul32_scalar).

Q.6: If possible, redo the previous question with another compiler.