Cryptology complementary Exercices\#1

2018-W06

Exercise 1: One-time pad

Q.1: Let $x \in \mathbf{F}_{2}$ and r be an element drawn uniformly at random from \mathbf{F}_{2} (i.e. $\operatorname{Pr}[r=0]=\operatorname{Pr}[r=$ $1]=0.5$. What is:

- $\operatorname{Pr}[x+r=0]$?
- $\operatorname{Pr}[x+r=1]$?
- $\operatorname{Pr}[x=0 \mid x+r=0]$?
- $\operatorname{Pr}[x=0 \mid x+r=1]$?
- $\operatorname{Pr}[x=1 \mid x+r=0]$?
- $\operatorname{Pr}[x=1 \mid x+r=1]$?

Hint. You may use Bayes' formula: $\operatorname{Pr}[A \mid B]=\operatorname{Pr}[B \mid A] \operatorname{Pr}[A] / \operatorname{Pr}[B]$.
Q.2: Let $\mathbf{x} \in \mathbf{F}_{2}^{n}$ and r be an element drawn uniformly at random from \mathbf{F}_{2}^{n}. For each element \mathbf{y}, \mathbf{z} of \mathbf{F}_{2}^{n}, what is $\operatorname{Pr}[\mathbf{x}+\mathbf{r}=\mathbf{y}]$? $\operatorname{Pr}[\mathbf{x}=\mathbf{z} \mid \mathbf{x}+\mathbf{r}=\mathbf{y}]$?
Q.3: Assume that $x \in\{0,1\}^{n}$ is a message written as binary data. Assume that $r \in\{0,1\}^{n}$ is drawn uniformly at random among all binary strings of length n. Explain why observing $x \oplus r$ (the bitwise XOR of x and r) does not reveal any information about x.
Q.4: We will informally say that a cipher \mathscr{C} is perfectly secure if observing the ciphertext $c=$ $\mathscr{C}(p)$ does not reveal any new information about the plaintext p.

Let p and k be n-bit strings. Under what condition on k is the cipher $\mathscr{C}: p \mapsto p \oplus k$ perfectly secure?
Q.5: Let \mathscr{C} be a perfectly secure cipher as above. Is its concatenation $\mathscr{C}^{2}: p\left\|p^{\prime} \mapsto p \oplus k\right\| p^{\prime} \oplus k$ perfectly secure?

Exercise 2: Binary vectors

Q. 1: Write a small "naïve" C function that computes the scalar product of two vectors of \mathbf{F}_{2}^{32}. This function must have the following prototype:

```
uint32_t scalar32_naive(uint32_t x, uint32_t y).
```

Q. 2: Write another implementation of the same function, of prototype

```
uint32_t scalar32_popcnt(uint32_t x, uint32_t y),
```

that uses a bitwise and instruction " $\&$ " and the population count function for 32-bit words "__builtin_popcount()".
Q. 3: Write a function that computes a matrix-vector product $\mathbf{x} M$ for $M \in \mathscr{M}_{32}\left(\mathbf{F}_{2}\right)$, using a scalar product as a sub-routine. This function must have the following prototype:

```
uint32_t mul32_scalar(uint32_t m[32], uint32_t x).
```

Q. 4: Write another such function using a table implementation. You may assume that all of the linear combinations of eight consecutive rows of the matrix have been precomputed and stored in a table uint32_t m [4] [256]. That is, m [0] [x] is equal to $\sum_{i \in \mathrm{nz}(\mathrm{x})} M_{i}, \mathrm{~m}[1][\mathrm{x}$] is equal to $\sum_{i \in \mathrm{nz}(\mathrm{x})} M_{i+8}$, etc., where $\mathrm{nz}(\mathrm{x})$ is the set of the indices of the non-zero bits of x . This function must have the following prototype:

```
uint32_t mul32_table(uint32_t m[4] [256], uint32_t x).
```

Q.5: Write a test function that computes a large number (e.g. 2^{24}) of matrix-vector multiplications. Time the execution of the resulting programn, in function of the chosen implementation (including different implementations for the scalar product used in mul32_scalar).
Q. 6: If possible, redo the previous question with another compiler.

