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These short lecture notes give a simple introduction to linear secret sharing from a
coding-theory perspective. They start by presenting threshold schemes based on MDS
codes, and then discuss the topic of more general access structures and their relation with
minimal codewords. They conclude with a short presentation of a simple perfectly-secure
message transmission protocol.

All of the studied schemes are analysed in a so-called information-theory setting. This
means that the adversary is computationally unbounded, and that security will follow
from statistical arguments.

1 Preliminaries: uniform masking in a finite group, inde-
pendence

We start with a definition of independence for random variables, and then state two useful
lemmas.

Definition 1 (Independence of random variables). Two random variables X7, X2 over
a finite set S are said to be statistically independent if and only if for all oy, € S,
Pr[X1 = a1 : X2 = ag] = Pr[X;] = o] (or equivalently Pr[X; = ay A Xo = ag] = Pr[X; =
041] X PI‘[XQ = 042]).

More generally, n random variables X1,..., X, are said to be statistically mutually
independent if and only if for all i € [1,n], for all a1, ..., an € S, Pr[X; = oy : A7, X =
a;] = Pr[X; = «;] (or equivalently for all PriA"X; = a5] = [[' Pr[X; = a]).”

Lemma 2. Let ¢ : § — S’ be a bijection between two equally-sized finite sets S and S'.
Then if X is a uniform random variable over S, ¢(X) is a uniform random variable over

S

Proof. We write ¢~ : S’ — S the inverse application of ¢. It then suffices to compute the
distribution of (X) which for all a € &’ is equal to Pr[p(X) = a] = Pr[X = ¢~ 1(a)] =
1/#S =1/#S". O

Lemma 3 (Equivalence of statistical and linear independence). Let X = (X1 - Xp)
be a vector of k uniform and mutually independent random variables over a finite field
Fy, and M € FZX”, n < k. Then the n random variables in the vector Y = (Yl . "Yn)

computed as Y = XM are uniform and independent if and only if M is of full rank n.

Proof. <= If M is not full-rank, then its right kernel is of dimension at least 1. Let A
be a non-null vector in this kernel, then either it is of weight one and then one of the
Y:’s follows a constant distribution, or it may be written (up to scalar multiplication) as
e; + X for some i, where e; is a (column) vector of the canonical basis and X’ is not null.

*Note that when one considers events rather than random variables, the generalisation to n events must
consider arbitrary partitions as well.
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This latter case means that there exists i € [1,n] s.t. the i*® column M, ; is equal to a
non-trivial linear combination M X’ of some other columns. It follows that Y; = X M, ; is
equal to X(MN) = (XM)X =YX and the n variables Y7, ..., Y, are thus not mutually
independent.

= We first remark that it is equivalent for Xi,..., X} to be uniform over F, and
mutually independent and for X to be uniform over IF’;: in one direction, mutual indepen-
dence and uniformity gives in particular that for all o« = (a1 ak), Pr[X =al =
PriAf_ X = au] = Hle Pr[X; = ;] = ¢~ %; in the other it follows from the fact that for
all i € [1,k], for all @ € IF’;, Pr[X; = a;: /\f# i =oj] =1/q="Pr[X; = a].

Now we assume without loss of generality that n = k. Then by assumption M is
invertible, and it admits a unique inverse M ~!. Since X1, ..., X} are uniform and mutually
independent, X is a uniform random variable over IF’; and, applying Lemma 2, so is Y and
it finally follows from the above that Y7, ...,Y, are mutually independent. ]

We now recall an essential result about the distribution of the sum of two independent
random variables over finite groups.

Let (G,+) be a finite group of order N; X, Y be independent random variables over
G. The distribution of X + Y is given by:

PriX +Y =a] =Y Pr[X =p]-Pr[Y =a -4, (1)
BeG

for any « € G. This is nothing but the discrete convolution of X and Y.
Now if Y is uniformly distributed, (1) simplifies to:

1

Pr[X+Y:a]:ZPr[X:5]%=N, (2)

BeG

i.e. the distribution of X +Y is uniform regardless of the distribution of X, which can
be arbitrary. Still assuming that Y is uniform, we also get the important property that
the a posteriori knowledge on the distribution of X after learning a sample of X + Y is
equal to its a priori knowledge. This is easy to show using Bayes’ formula since for every
« € G one has that:

PriX+Y =p8|X =qa] - Pr[X =q]
Pr[X +Y = g

PriX=a|X+Y =0]= =Pr[X=qa]. (3
It is also easy to show that the above is true for all («, ) pair iff. X or Y is uniform.

In the case where both X and Y are uniform over a finite field, the result also follows
from the independence of X and X + Y, which can be shown as a direct application of
Lemma 3. We develop this in the following Example 4.

Example 4. Let X, Y be two uniform and independent random variables over some finite

field, then applying Lemma 3 to the matrix <(1) 1 i) one gets that X, Y and X +Y

are pairwise independent but not mutually independent uniform random variables. This
easily generalises to more than two input variables, and one for instance similarly gets
that X, Y, Z and X +Y + Z are independent at order three (meaning that any three of
them are mutually independent), but not mutually independent.

This example summarises much of the applications of Lemma 3 we will be interested in:
by forming random variables from well-chosen linear combinations of uniform, mutually
independent random variables, one obtains not mutually independent random variables
whose dependencies may be carefully controlled.


https://membres-ljk.imag.fr/Pierre.Karpman/cry_adv2021_secsha.pdf

https://membres-1jk.imag.fr/Pierre.Karpman/cry_adv2021_secsha.pdf

2 Threshold secret sharing

Definition 5 (Threshold secret-sharing). We define a threshold secret-sharing scheme in
the following, slightly informal way:

A (k,n), k € [2,n], secret-sharing scheme over a finite set S is a randomised algorithm
A that takes as input a secret s € S and returns n shares s € 8™ s.t. the two following
properties hold:

1. (Decoding (n — k) erasures.) There is a deterministic algorithm that returns s when
given any k distinct entries of s.

2. (Uniformity of (k — 1) tuples.) The distribution of any k — 1 distinct entries of s is
uniform (over the randomness of A).

Note that in the first property, we do not require that the reconstruction algorithm be
“efficient”, merely that it exists. Also, since s is arbitrary and fixed in the definition, the
second property directly implies that the distributions of the (k—1) tuples are independent
from it.

The definition may then be interpreted in the following way: if an adversary knows
at least k shares of a sharing then it is always able to retrieve the secret s whereas if it
knows only k — 1 shares or fewer it does not learn any “information” about s, in the sense
that the distribution of s conditioned on the knowledge of the at most k — 1 shares is the
same as its distribution without knowing any. This latter property is a direct consequence
of the fact that since the distribution of those shares is known to be uniform, anyone can
“simulate” it without knowing anything about s, and so observing them cannot reveal
anything about the latter.

Example 6. A simple (n,n) scheme can be built over a finite group (G, +) in the follow-
ing way: for ¢ € [1,n — 1] sample the s;s uniformly at random and independently, and
then define s, as s — Z?’;ll s;. It is straightforward to see that s can be uniquely recon-
structed from s, and that the distribution of any (n — 1) tuple is uniform follows from the
generalisation of Example 4 to n — 1 input variables’ and the application of Equation (2)
to s,,.

Although this first construction is quite elementary, it in fact already includes all the
ingredients that we will later use in more advanced ones. Namely, it samples n uniform
random variables with some prescribed dependency and uses one of those to mask the
secret with a one-time pad, then given some subset of shares, either they exhibit some
dependency and one of them is the one including the secret and so one can reconstruct it,
or the shares are mutually independent (or do not depend on the secret) and then nothing
is revealed.

2.1 Threshold secret sharing from polynomial interpolation

We now briefly step back from the linear-algebraic view to present an elegant ad hoc secret
sharing scheme due to Shamir (1979) based on univariate polynomial interpolation in a
finite field (we will shortly see that it is a special case of the general construction one
directly obtains by applying Lemma 3 to the “threshold” constraint). It allows to build
(k,n) schemes for secrets in a finite field F, as long as n < O(q). It works as follows:
let P € Fy[X]<; be a polynomial of degree < k — 1 whose k — 1 a priori non-constant
coefficients ¢ € F’;_l are sampled uniformly and independently at random and whose

constant coefficient is the secret s to be shared, i.e. P = s+ Zf:_ll ciX". Then let a € Fy

fSince we stated Lemma 3 for variables over fields, one would also need it to suitably generalise it over
groups. This is however straightforward for binary matrices.
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be a vector whose entries are all pairwise distinct and not equal to zero, and define the
sharing s as eval(P,a).! We now prove that this defines a (k,n) secret sharing:

Proof. We show that the scheme satisfies the two properties of a (k,n) sharing.

1. Let Z C [1,n] be a subset of indices of size at least k. Using univariate interpolation,®

N

P:=3 s H]EI\{Z.} % is the unique polynomial of degree < k—1 that evaluates

to s; on a; for i € Z. It is thus equal to P, and one recovers s from eval(P,0).

2. Let Z C [1,n] be a subset of indices of size k — 1 and denote by sz the vector of
corresponding entries of s. Then for fixed s and a, the map ¢ — sz is bijective:

— Given s and ¢, s7 is obtained from the evaluation of the fully-determined poly-
nomial P on az.

< Since 0 ¢ a, one knows the evaluation of P on k distinct points {0} Uaz, which
allows to uniquely interpolate P and then obtain c.

Since this map is bijective and the distribution of ¢ is uniform and independent from
s, then by Lemma 2 so is the one of sz.

O

2.2 Generalisation to arbitrary MDS linear codes

We will now see how mazimum distance separable (MDS) codes naturally arise from the
structure of (linear) threshold secret sharing, and thus give a generalisation of the above
ad hoc construction. The observation here is that to obtain a (k,n) sharing one could use
n random variables over F, s.t. any k of them are statistically dependent while any k — 1
of them are mutually independent, and then use those as “masks” to hide the secret s in
a one-time-pad way s.t. s can be deduced from any dependence. If we ignore for a while
this last point and using Lemma 3, one may build the desired random variables from a
k x n matrix M s.t. any k — 1 of its columns are linearly independent (or equivalently,
any k of its columns span IF’;) This condition is then in fact equivalent to asking that M
generates an MDS code.

Definition 7 (Linear code). A linear code C over F, of length n and dimension k (written
[n,k]r,) is a k-dimensional linear subspace of Fy. Its minimum distance (or equivalently
mianimum weight) is defined as ming y+zec wt(x—y), where wt(-) is the “Hamming” weight
function that counts how many entries of its input are non-zero.

Every linear code can be generated by a matrix G € IF’; *™ in the following sense: V& € C,
dm € ]F’; s.t. = mG. Note that G is in general not unique.

Definition 8 (Maximum distance separable code). An [n, k| linear code is said to be
mazimum distance separable (MDS) iff. its minimum distance equals n — k + 1.

We now prove two fundamental results about MDS linear codes.

Theorem 9 (Existence). For any n, k < n € N, 3¢ s.t. an [n,klp, MDS linear code
exists.

#We do not consider a to be part of the sharing strictly speaking since it may be fixed and publicly
known, yet its knowledge is essential to a successful recovery of the secret.
$We use here the “Lagrange” basis, but the process is easily generalisable.
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Proof. We will prove this statement constructively by defining a family of MDS codes (wviz.
the “Reed-Solomon” codes).

Let Fy[X]<) denote the k-dimensional vector space of univariate polynomials over [,
of degree < k, and a € Fy be a vector of k < n < ¢ pairwise-distinct elements of Fy, then
the map Ff — F, P € Fy[X]<; ~— eval(P, a) is lincar. Since P has at most k — 1 distinct
roots, any input that is not the zero polynomial has an image of weight at least n — k + 1,
and this map thus defines an [n, k,n — k + 1] MDS linear code. O

Theorem 10 (Optimality for erasure decoding). An [n, k| linear code, is MDS iff. all its
generator matrices are s.t. every k of their columns are linearly independent.

Proof. = Let G € F ’;X” be a generator matrix of an [n, k] MDS code, and suppose that
there is a subset Z C [1,n] of k indices such that the columns indexed by Z are not
linearly independent. Equivalently this means that the submatrix Gz has rank < k; thus
its left kernel has dimension > 1 and 3m # 0 € F'g s.t. mGz = 0, and thusly a non-zero
codeword mG of weight at most n — k < n — k + 1, which is a contradiction with the fact
that the code generated by G is MDS.

< Let G € FZX" be as required. Then given x := mG, one can recover m from the
restriction x7 of ® to any Z C [1,n] of size k by inverting the full-rank submatrix Gz.
Consequently, the encodings of two distinct messages cannot be equal in more than k — 1
positions and the minimum distance of the code generated by G is thus at least (in fact
exactly) n — k + 1. O

This last property is exactly the one we were asking for in the above. It now only
remains to specify how to use the masks with carefully-crafted dependence to build a full
threshold scheme; this only requires a slight additional control over their dependency.

We now show how to define a (k, n) secret sharing scheme in F,; from an [n+1, k] MDS
linear code over the same field.

Let G be a publicly-known generator matrix for an [n + 1, k] MDS linear code over
F,, and reduce it in its first row to obtain the block matrix (el G ), where e; =

(1 0 - O)t is the first vector of the canonical basis and (by Theorem 10) G' € F’;X"
generates an [n, k] MDS code. Then a sharing of s is obtained by sampling ¢ uniformly
at random in F’;_l, setting m := (s c), and computing s as mG’ (or equivalently s is
formed from the last n coordinates of mG i.e. it is a codeword of the code obtained from
the one generated by G after puncturing it in its first position).

The fact that this defines a (k,n) scheme essentially follows from the structure of the
shares as s+ Y; where the Y;’s are k-dependent and (k — 1)-indpendent random variables.
We also provide a direct proof below.

Proof. We proceed as for the interpolation-based scheme.
1. Immediate from Theorem 10 and the fact that G’ is MDS.

2. Let Z C [1,n] be a subset of indices of size k — 1, then for a fixed s and G’, the map
c — st is bijective:
— Given s and ¢, one can easily compute mG’ = sz.

+ By construction and the MDS property of the codes generated by G and G,
" is of rank k—1 and e; is not in its span, hence R := (81 G’I) is invertible,
and ¢ can be computed from (5 .SI) "R ' =m.

Since this map is bijective and the distribution of ¢ is uniform and independent from
s, then by Lemma 2 so is the one of s7.

O]
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Finally, let us remark that there is nothing special about the choice of e; in the above
construction of G’ from G, and that any non-null vector would be similarly suitable to
embed the secret as the corresponding linear combination of elements of m. For instance
one can check that using instead the all-1 vector and setting m to the (k, k) additive
sharing from Example 6 also results in a (k,n) sharing.

3 Access structures and minimal codewords

A natural generalisation of secret sharing as described above given by Massey (1993) is
to make it possible to recover the secret from subsets of shares of different sizes. More
generally, we would ideally be able to have a fine-grained control over which specific subsets
allow to do so. For instance we may want a scheme s.t. sy 9y and s(3 34y allow to recover
the secret s1, with the constraint that only sets with one of {1,2} or {2,3,4} as a subset
allow to do so. We will see how to relate such a requirement to the structure of a linear
code used to perform the sharing; however to achieve such an imbalance between the
different shares’ roles the codes will not be MDS any more.

In all of the following we will drop the k parameter used previously in the definition
of (k,n) secret sharing schemes, since the knowledge of which subsets of shares determine
the secret will be a priori independent from the size of the subset. We replace this with
the notion of access structure defined below.

3.1 Access structures

We start with the following:

Definition 11 (Access structure). The access structure for a secret-sharing scheme with
n shares over a general set S is a subset A of p(S) s.t. for all sharings s € S™ of an
arbitrary secret s one has that:

1. There is a deterministic algorithm that returns s on input of any X € A.

2. The distribution of the elements of any X € (S) for which AA’ € As.t. X' C X is
uniform over the randomness used to compute the sharing.

In words, this means that the access structure contains all the “minimal” subsets of
shares that allow to recover the secret: any of these is enough to do so, and any subset
that does not include at least one of them is statistically independent from the secret (and
thence does not allows to learn anything about it). It is however not obvious that this
definition is not contradictory, i.e. that a secret sharing scheme does possess an access
structure. In the following we will show that this is always the case for schemes built over
linear codes.

3.2 Dual characterisation

We first show how to use the dual of the code used to build the secret sharing to determine
if a set of shares allows to recover the secret, and address the minimality condition next.
We consider as in the previous section (and w.l.o.g.) a sharing obtained as the n last
coordinates of (s ¢) G for a uniform ¢ and G a generator matrix of an [n + 1, k] linear
code C whose first column is equal to e;.

Let us give the following:

Definition 12 (Parity-check matrix). Let C be an [n, k]g,. A parity-check matriz for C is

any full-rank matrix H € anfk)xn s.t. for any generator matrix G € F';X" of C one has

GH! = ka(n—k).
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Definition 13 (Dual code). The dual C* of an [n, k] linear code C is the [n,n — k] code
st. Ve €C, Vy €C*, -y =0. Equivalently, it is the code generated by a parity-check
matrix for C.

And then:

Lemma 14. Consider an n-share secret sharing scheme defined from a linear code C as
above; a subset of shares of indices in X allows to recover the secret iff. Ix € C* of support
{1} U X', X' C X. Furthermore, in the negative case the subset of shares is statistically
independent from the secret.

Proof. = Let x € C* be as required. By definition of the dual code this means that for
every sharing s of s, since (s 3) € C one has (5 s) -x = 0. Let us write x as (5 w’)
where £ # 0, then we have s§¢ = —s - ' which means that s can be uniquely recovered as
an appropriate linear combination of the known shares X.
< By the assumption that there is no x satisfying the requirement we have that the
first column G of G is not in the column space of the submatrix Gy with columns in
X. Thus by Lemma 3 the observed shares (s S) Gy are statistically independent from
s = (5 s) G,.7
O

3.3 Minimal codewords

The previous lemma can be used to determine if a subset of shares allows to recover the
secret or if it is statistically independent from it; to further determine if it is an access
structure (and to also justify the well-foundedness of this definition) we will need the
additional concept of minimal codewords. In all of the following we use the notation

x < y (resp. < y) to mean that supp(z) C supp(y) (resp. supp(x) C supp(y)).

Definition 15 (Minimal codeword). A minimal codeword of a linear code C is a codeword
@ with its first non-zero coordinate equal to 1 s.t.: 1) there is no distinct «’ € C with its
first non-zero coordinate equal to 1 and @’ < @; 2) or equivalently there is no non-zero
' eCst o <.

Proof. =(1) = —(2) X s.t. (x — \z’) < @.
—(2) = —(1) 3\ s.t. the first coordinate of Az’ equals 1. O

The first characterisation implies in particular that no two distinct minimal codewords
may have the same support.
Massey then proves the following:

Lemma 16. Every codeword x of C is a linear combination of minimal codewords {x;}
s.t. for all i one has x; < .

Proof. Let € C be a non-zero codeword. If it is minimal (up to scaling by a scalar) then
we are done; otherwise there must exist a non-zero codeword x; < & which by induction
may be assumed to be minimal. Thus 3\ s.t. (x — Ax1) < « and the first part of the
result follows by induction; the second part immediately follows from the base case and
the two inclusions 1 < « and (x — Ax1) < . O

This leads to the following;:

T0ur statement of Lemma 3 would only allow us to apply it in the case where s is a uniform random
variable. However it is easy to extend it for arbitrary distributions in the present case, as long as we only
require the independence of the shares from s.
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Corollary 17. For every codeword x € C that is not minimal (up to rescaling), there is a
minimal codeword ' < x whose first non-zero coordinate is at the same index as the first
non-zero coordinate of x.

This finally leads to the main result we want to show:

Theorem 18. The access structure of a secret sharing scheme built from a code C is the
set of the supports of the minimal codewords of C+ whose first coordinate is non-zero (with
1 then excluded from these sets).

Proof. The fact that subsets of shares of this form allow to reconstruct the secret is a
consequence of Lemma 14; it remains to show that no subset that does not include one of
these allows to do so.

Again from Lemma 14 we have that if X' allows to reconstruct the secret then there
must exist & € C*+ with support included in {1}UX and whose first coordinate is non-zero.
Now either & is minimal (up to rescaling) and the previous inclusion is an equality and we
are done, or by Corollary 17 there is a minimal codeword x’ < & whose first coordinate
is a 1; from Lemma 14 supp(x’) C X still allows to reconstruct the secret and we can
conclude. O

This result is useful in that it justifies the fine-grained notion of access structure for
linear secret sharing schemes and gives a conceptually simple characterisation thereof. In
turn one may hope to use this characterisation to build secret sharing schemes with specific
access structures as soon as this one can be mirrored by the minimal codewords of some
linear code.

4 Perfectly-secure message transmission

We now briefly introduce perfectly-secure message transmission (or PSMT') as a generali-
sation of secret sharing as presented above. The generalisation is in two ways: 1) we may
now consider interactive protocols where several participants may exchange information
in several “rounds” of communication; 2) the adversary (somewhat implicit in the above
secret-sharing scenario) is now active, so that it may tamper with exchanged messages.

In short the goal of PSMT is for two (or more) participants to exchange a secret in
a way such that the adversary does not learn anything about it. We again wish to do
this w.r.t. a very strong security objective, viz. that whatever the adversary may learn
is statistically independent from the secret. To achieve this goal, the participants have
access to a certain number of n channels with the guarantee (or in fact, the assumption)
that the adversary controls at most ¢ of them.

Remark 19. If in the above scenario the adversary is further assumed to be passive,
the problem is immediately solved in all the relevant cases ¢ < n in only one round of
communication from the existence of (n,n) secret sharing.

This remark justifies the fact that we only need to further develop techniques against
active adversaries.

The goal of this section is to present an elegant scheme from Spini and Zémor (2016) for
two participants 21 and 28, in its simple and unoptimised form; it is a two-round protocol
in the setting n = 2¢ 4 1, which for that number of rounds is minimal (Dolev et al., 1993).

A first simple observation is that since in the chosen setting n > 2t, reliable communi-
cation between 2 and ‘B is trivial to achieve as it is enough to broadcast any message over
the n channels and decode with a majority vote. It is however equally obvious that this
method does not provide any confidentiality since the adversary may read any message
from one of the channels it controls.
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The idea is then for B to transmit a number of independent codewords from an [n, ¢+
1,t 4+ 1]p, MDS code, where each coordinate i € [1,n] is sent over the corresponding
channel. Note that from the previous sections these codewords all naturally induce (t+1,n)
secret-sharing, and 2[ may pick one codeword to recover the secret and use the latter as
a one-time-pad to reliably and confidentially broadcast a message. However because of
adversarial tampering and since t > (d—1)/2 = t/2, 2 will in general not be able to recover
the original codeword and the derived secret it uses may thus be “noisy”. The crux of the
method is then to provide % with sufficient information so that it may itself remove the
noise from the secret and finally recover the message, without revealing anything to the
adversary.

We now describe the techniques used by Spini and Zémor to resolve this last point.

4.1 Decoding from a syndrome-spanning subset

We first recall the following;:

Definition 20 (Syndrome of a vector). Let C be an [n, k|p, and H one of its parity-check

matrices. The syndrome (usually written s) of a vector z € Fy w.r.t. H is defined as
Hzx'.

Note that from the definition of a parity-check matrix, Hx! = 0" % iff. € C. In
particular if one has y := x + e for some e € F}y and some x € C, then Hy' = He'.

We now wish to show that 9B is able to recover an error e; from its syndrome He!
as long as the former belongs to a suitable subspace for which B possesses a basis (or
“spanning subset”) and its image through the syndrome map. We will then show that
this can be ensured in the above protocol, which will allow us to conclude.

We start with:

Lemma 21. Let C be an [n, k,d|r, linear code for which H is a parity-check matriz. Let
& be a linear subspace of Fy whose elements all have weight d — 1 or less. Then the map
og: € — F:}_k, e — He' is injective.

Proof. By definition the (right) kernel of H is C. From CNE = {0"} the kernel of o¢ is
trivial and the map is thence injective. O

Now since o¢ is injective and linear it must admit an efficiently-computable inverse
ng :Im(og) C F’J*k — & which is also linear. We formalise this as:

Proposition 22. Let C, H, £, o¢ be as above and t := dim(E). Let Bg := (e1 -+ )
be a basis for £ (where the blocks are here row-wise; note also that in this case e; may
not necessarily be equal to the i vector of the canonical basis of the ambient space) and
Bgs = (31 st) = HBE. Then one may efficiently compute og and 051 from the
knowledge of Bg and Bg.

Proof. This follows immediately from the definitions and by linearity:
— ogle:= Zle Aiei) = A; 25:1 og(ei) = A Z§=1 Si-
* Ugl(s = Eﬁzl Aisi) = Ai Zﬁ:l 051(31‘) =i Zle €i-


https://membres-ljk.imag.fr/Pierre.Karpman/cry_adv2021_secsha.pdf

https://membres-1jk.imag.fr/Pierre.Karpman/cry_adv2021_secsha.pdf

4.2 A perfectly-secure message transmission protocol

We are now ready to fully describe and analyse the two-round PSMT protocol from Spini
and Zémor, in its simple form.
Using all notations as above, one does the following:

0. In order to transmit one message defined over Iy, 2, B and the adversary agree on
an [n,t+1,t+ 1]p, code C and on a parity-check matrix H. They also equip C with
a (t+1,n) secret-sharing scheme; from the previous sections and w.l.0.g. we assume
that the secret is recovered from a codeword x as x - h where h € Fy is a suitable
fixed, publicly-known vector.

1. B selects t + 1 codewords {@;}i1<i<i+1 independently and uniformly at random and
sends them to 2 using the n channels that they share together. Specifically, the i*®
channel is used to transmit the i*" coordinate of all the ¢ + 1 codewords.

2. These codewords are received by 2 as {y; := x; + €;}1<i<t+1, where the e;’s are
error vectors of Iy of weight less than ¢ introduced by the adversary. 2l computes
{s; := Hy!}1<i<t+1 and picks i s.t. s; € <3j>1§j7éi§t+1§H in the following we assume
w.l.o.g. that ¢ = 1. It then computes s := y; - h, encrypts the message m € F, that
it wants to send as ¢ := m + s and broadcasts it over the n channels. Finally it
further broadcasts {s;}i<i<i+1 and {y;}o<i<t+1.

3. B computes {e;}a<i<t+1 from {y;}e<i<i+1 and its knowledge of {x;}a<i<t+1. Since
the errors all have weight ¢ < ¢t + 1, knowing {e;}a<i<t+1 and {s;}a<i<t+1 is then
enough to recover e; from s1 € (sj)2<i<t+1 by Proposition 22. From then it can
easily recompute s as (x1 + e1) - h and decrypt c.

The correctness of the protocol follows from its description and the previous results,
and we conclude with a short, somewhat informal security analysis. We only need to
show that the distribution of s is uniform and independent from the data known to the
adversary at the end of a run. This follows immediately from the remarks that: 1) the
broadcast values {s;}1<i<t+1 are already known by the adversary since for all i one has
si = Hy! = Hel and the e;’s are error terms that it itself introduces; 2) the non-revealed
noisy codeword y; is independent from the revealed ones {y}o<i<it1; 3) s = y1 - h =
(1 +e1) -h = (x;-h)+ (e1 - h), where (e; - h) is known by the adversary, and x; - h
uniform and statistically independent from the (at most) ¢ shares of the (¢t + 1,n) sharing
that it controls. O

IThis is always possible since the errors span a subspace of dimension at most ¢.
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