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1 First definitions; examples

A linear code of length n and dimension k over a field K is a k-dimensional subspace
of Kn. In these notes, we will focus on binary codes, for which K = F2, or possibly an
extension thereof.∗ An important characteristic of a code is the minimum distance (for
the Hamming distance hd(·, ·)) d between two (distinct) codewords. Define wt(x), x ∈ Fn2
as the number of non-zero coordinates of x; hd(x,y) as wt(x + y). Then the minimum
distance of a code C is minx∈C,y 6=c∈C hd(x,y), which by linearity of C is equivalent to
minx6=0∈C wt(x). The main parameters of length, dimension, and minimum distance of a
code C are summarized by saying that C is an [n, k, d]F2 code. While determining n and k
is usually straightforward, it is in general a hard problem to compute d.

Given a code C, it will often be necessary to have an explicit encoding map x ∈ Fk2 7→
x′ ∈ C from messages to codewords. Such a map can be easily obtained by sampling
k linearly-independent codewords g1, . . . , gk and forming the generator matrix G whose
rows are the gis.

† The encoding map is then simply x 7→ x × G. One should remark
that in general the matrix G (and thence the encoding map) will not be unique, as it
depends on the selected codewords. A specific class of generator matrices are the ones in
systematic form, corresponding to block matrices

(
Ik A

)
, where Ik is the k-dimensional

identity matrix andA is a redundancy block. A code always admits at least one systematic
encoder, up to a permutation of the coordinates of its codewords. One may be obtained
by selecting k linearly-independent columns of a generator matrix G; applying a column
permutation on G such that those columns are in the first k positions; and computing
the reduced row-echelon form of G. In other words, one obtains an encoder in systematic
form by finding a permutation matrix P such that GP is of the form G′ :=

(
G1 G2

)
where G1 is invertible, and by computing G−11 G

′.
From the existence of a systematic encoder, one deduces that the largest possible

minimum distance (or weight) of an [n, k] linear code is dMDS = n − k + 1, which is a
special case of the Singleton bound. Indeed, the maximum possible weight of any row of
a systematic encoder is 1 on the left (identity) block, and n− k on the right (redundancy)
block. A code reaching this bound is called maximum-distance separable, or MDS.

Finally, note that for some codes, there may exist alternative encoders that do not
explicitly use a generator matrix.

∗Consequently, we may take the liberty of equating subtraction with addition in any formula or algo-
rithm. In order to minimize the confusion, we will try to make this systematic. Nonetheless, most of the
discussion seamlessly generalises to other (finite) fields.
†Note that the we use the convention that vectors are row vectors, if not specified otherwise.
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Example 1 (AES MixColumn). Let M be the matrix used in the MixColumn operation
of the AES block cipher. The code generated by

(
I4 M

)
is an MDS code of paramateres

[8, 4, 5]F28
.

Example 2 (Binary Reed-Muller codes). The binary Reed-Muller code of order r and
in m variables RM(r,m) is the vector-space formed by the multi-point evaluations of m-
variate Boolean functions of degree ≤ r over Fm2 . In other words, a message is a Boolean
function, and its associated (Reed-Muller) codeword is obtained by evaluating it over its
entire domain.

The codewords of this code have length 2m and form a space of dimension k :=∑r
i=0

(
m
i

)
. It can be shown that the minimum weight of any codeword is 2m−r [MS06, Ch.

13, Thm. 3]. The parameters of RM(r,m) are thus [2m, k, 2m−r]F2 .
A (non-systematic) encoding of a message can be efficiently computed by using a fast

Möbius transform. Due to its involutive nature, the same transform can also be used to
decode a codeword back to a message. However, this does not correct any error and on
its own it is thus of rather limited use.

Reed-Muller codes also follow a recursive “(u, u + v)” decomposition. One has that
RM(r + 1,m+ 1) = {u||(u+ v), u ∈ RM(r + 1,m), v ∈ RM(r,m)}. This follows from the
fact that an (m + 1)-variate Boolean function F (X1, . . . , Xm+1) of degree at most r + 1
can be written as F 0(X1, . . . , Xm) + Xm+1 F 1(X1, . . . , Xm), with deg(F 0) ≤ r + 1 and
deg(F 1) ≤ r. Furthermore, if we write F 0+ the m+ 1-variate function whose monomials
are identical to F 0, F 1+ for Xm+1 F 1, and ~X1,m a given assignement for the indeterminates
X1, . . . , Xm, then we always have:

— eval(F 0, ( ~X1,m)) = eval(F 0+, ( ~X1,m, 0)) = eval(F 0+, ( ~X1,m, 1));

— eval(F 1, ( ~X1,m)) = eval(F 1+, ( ~X1,m, 1));

— eval(F 1+, ( ~X1,m, 0)) = 0;

and the decomposition follows. Finally, one may notice that this is essentially the same
induction as the one used in the fast Möbius transform algorithm.

Given a code C, it is often important to be able to determine if a vector of its ambient
space is a codeword or not. This may be done using a map x 7→ y s.t. y is “zero” iff. x ∈ C.
One typically implements this with a parity-check matrix H ∈ Fn−k×n2 which is a basis
of the (right) kernel of a generator matrix G of C; the corresponding map, of codomain
Fn−k2 , is then x 7→H×x. Equivalently, H is made of (n−k) linearly-independent vectors
of Fn2 whose scalar product with any element of C is zero, and HGt and GHt are both
zero matrices. A parity-check matrix generates the dual of C, written C⊥, which is thence
an [n, n− k] code. A code that is its own dual is called self-dual.

2 Information set decoding

In this section we focus on the problem of finding “low-weight” codewords of a code,
which is also essentially equivalent to finding a close-by codeword to a given vector, i.e.
to decode. This is generally a hard problem for codes that do not exhibit any particular
structure (for instance if they are defined from a uniformly random generator matrix), as
it is NP-hard [BMvT78], but efficient algorithms may exist for some specific codes. For
now we will focus on “inefficient” generic algorithms that work for any code, but we will
later present a good list decoder for (punctured and shortened) first-order Reed-Muller
codes.

Let C be an [n, k, d] code for which G is a generator matrix. Enumerating all the
codewords of C can trivially be done in time 2k by multiplying G by all the vectors of Fk2.
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This immediately allows to find a weight-d codeword of C or to decode to the (or one of
the) closest codeword(s), but the cost is quickly prohibitive.

A first remark on the way to find better alternatives is that the problem that one
needs to solve usually does not require to enumerate all the codewords of C. For instance,
one may not need to find a codeword of minimum weight, but finding one of weight less
than a known bound may be enough. Similarly, in a decoding context, one may know an
upper-bound on the error weight. It is then possible to use a probabilistic algorithm that
stops when a “good-enough” solution has been found.

A second remark is that the decoding problem can be solved by finding low-weight
codewords; this will be used to justify the fact that we solely focus on algorithms for the
latter. This can be explained in the following way: let c ∈ C be an initial codeword, and
ĉ = c+ e be a noisy codeword obtained by adding a noise e of weight w ≤ max weight <
b(d − 1)/2c. Then c is the unique closest codeword to ĉ, and e is the unique vector of
weight w in the affine subspace e + C. Furthermore, this latter vector can be found by

searching for a “codeword” of weight w in the code generated by

(
G
ĉ

)
. This codeword

will even be unique, as for any c′ 6= c ∈ C, wt(c′+ ĉ) = wt(c′+c+e) ≥ wt(c′+c)−wt(e) ≥
d−max weight > w.

In practice decoding algorithms usually do not exploit this reduction; nonetheless the
internal structures of generic algorithms used in syndrome decoding are essentially identical
to the one of algorithms searching for low-weight codewords. Those solve the dual problem
of finding a low-weight linear combination of vectors of a certain basis that sum to the
null vector, where the weight of a combination is the number of vectors that appear in it
with a non-zero coefficient.

The first probabilistic alternative to exhaustive search that we present is quite sim-
ple [Pra62, McE78]. Given G, randomly select k linearly-independent columns; this is
called an information set. Then permute these columns to the first k positions of G, and
compute the reduced row-echelon form (i.e. compute an alternative generator matrix G′

in systematic form, associated to the selected information set). Finally, check if any of the
resulting k rows have a weight less than the input bound. The idea behind this algorithm
is that any row of the obtained systematic encoder has by definition a very low weight
of exactly one on its first k positions, and the weight on the remaining n − k positions
depends on a random codeword linear combination. One then hopes that for some infor-
mation sets, the weight on these latter positions will also be small, resulting in an overall
low-weight codeword. In other words, the algorithm will return a weight-w codeword after
examining a given information set if it is s.t. there is a codeword of weight 1 over the
information set and of weight w − 1 over its complement, the redundancy set.

There is also a simple interpretation of this algorithm if one directly thinks of it in a
“decoding” sense. An information set is by definition a set of positions that carries enough
information to fully determine the message corresponding to a codeword. Indeed, given
the value of a codeword on an information set, one can reconstruct the entire (non-noisy)
codeword by simply applying an encoder systematic w.r.t. this set; it is then easy to invert
the encoding to go back to the original message. Thus, what the above does is (randomly)
trying to find an information set over which the error vector is all-zero.

A variant of the above first algorithm due to Lee and Brickell [LB88] consists, for each
information set, in checking the weight of all linear combinations of rows of G′ of weight
less than a small value p (typically 2 or 3). This somehow amortizes the cost of computing
G′ by considering more codewords for each matrix, as now the algorithm returns on a
given information set if a codeword’s weight splits as (i, w − i), 1 ≤ i ≤ p over itself and
its complement. Also, note that for binary codes, computing all of these can be done
particularly efficiently by using Gray codes.
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Another variant due to Leon aims to reduce the practical cost of checking the weight
of a codeword, and is thus mostly useful for long codes. The idea is simply to first check
if a codeword generated from the above procedure has a small weight on a few positions
(i.e. to first consider a short punctured code), and only to look at the entire codeword in
that case. For instance, if one requires the punctured codeword to have weight zero on
its redundancy set of size l, one is in effect searching for codewords whose weight splits as
(i, 0, w − i), 1 ≤ i ≤ p over the information set, and the non-punctured (resp. punctured)
redundancy positions.

While this approach looks at fewer candidates per information set as the Lee-Brickell
algorithm, this is hoped to be counter-balanced by more efficient implementations.

Another algorithm due to Stern still follows the overall same approach, but improves
the time complexity at the cost of some memory [Ste88]. The key idea is to split the
search space into two lists and to exploit collisions to obtain a quadratic speed-up at some
stage of the search. Starting from the initial algorithm, one splits the information set
into two subsets I1 and I2, and forms the lists Λ1 and Λ2 of codewords of weight less
than p on each subset respectively. Then one only fully checks the weight of codewords
formed by the sum of elements of Λ1 and Λ2 that are identical over l prescribed positions
Z of the redundancy set. One is then searching for codewords whose weight splits as
(i, j, 0, w − i− j), 1 ≤ i, j ≤ p over I1, I2, Z and the remainder.

It is essential to notice that for a given information set, checking for each of the
#Λ1#Λ2 candidate codewords if it is of the above form indeed takes a cost linear in #Λ1,2

(by using an appropriate data structure).
Finally, one may remark that this algorithm takes more input parameters than the

previous ones. This, together with the fact that it is not memory-less may make it harder
to determine what parameter choice is best suited to a given code.

An important observation made by Canteaut and Chabaud [CC98] is that the most
expensive step in the above algorithms is the computation of the systematic encoder for
a given information set. They then suggest that instead of selecting a new independent
information set at every iteration, one may “update” the current set by randomly replacing
one of its columns by one column of the redundancy set, which is much more efficient (with
the obvious drawback that not all the information set is replaced anymore). Furthermore,
one can easily be convinced that after a few iterations, the obtained information set will
be essentially independent from the starting one, hence there is no risk that one gets stuck
in a small subset of the search space considered by the other algorithms. To carry out
a rigorous analysis of the algorithm, it is appropriate to model this random walk as a
Markov process.

We will conclude by describing how to efficiently update an information set. Let
G =

(
I A

)
be a systematic generator matrix; our objective is to compute G′ =

(
I A′

)
which is a generator matrix for the same code and equal to the reduced row-echelon form of
a matrix obtained fromG by swapping one column I·,i of the identity with one columnA·,j
of the redundancy matrix. First notice that this latter process only results in a systematic
matrix if A·,j is linearly independent from I\I·,i, which is equivalent to requiring that
Ai,j = 1 6= 0. Second, the matrix A′ is simply obtained from A by adding the row Ai to
every row Ai′ where Ai′,j = 1. Indeed, this corresponds to the “reduction” step one needs
to perform after swapping the above two columns.

3 Learning Parity with Noise cryptosystems

In this section, we introduce the Learning Parity with Noise (LPN) problem, and its
application to the design of cryptosystems. The LPN problem is rather attractive because

of its very concise description. Let s
$←− Fk2, a

$←− Fk2, e← Berη, where Berη is the Bernoulli
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distribution of parameter η; that is, Pr[e = 1] = η. Then the LPN problem is to guess the
value of the scalar product s ·a when given (a, s ·a+e). An algorithm is then said to solve
this problem with advantage ε if it answers correctly with probability p and 2|p−1/2| = ε.
Another, equivalent formulation of the problem is to ask one to distinguish (a, s · a + e)

from (a, r
$←− F2).

It is clear that if η = 1/2, the distribution of s · a+ e is independent of a and s, and
no algorithm can succeed with a non-zero advantage. Similarly, without prior knowledge
about s and except when a = 0, one cannot hope to solve the problem given a single
query of the above form, even in the absence of noise (i.e. even when η = 0) since in that
case s ·a is uniformly distributed. It is then natural to extend the problem to arbitrarily-
many queries q, where the unknown (secret) vector s is kept constant. One may then

reformulate the problem as letting A
$←− Fk×q2 , e← Berη,q (that is, each bit of e ∈ Fq2 has

independent probability η to be equal to one), and asking to distinguish (A, sA+e) from

(A,u) where u
$←− Fq2. An algorithm is then said to (t, q) solve LPNk,η with advantage ε

if it makes q queries and has running time t (in some metric).
It is now again clear that if η = 0, the problem is trivially solvable as long as rank(A) =

k, as it is then enough to identify k linearly-independent columns of A to recover s (which
then allows to predict all the other queries with advantage 1). In the more meaningful
case where η > 0, recovering s becomes equivalent to decoding a noisy codeword for
some random code of length q (which is a parameter that may be chosen by the solving
algorithm). We will discuss this matter in more details in the next section, and focus
for now on some LPN-based cryptosystems whose security depends on the computational
hardness of this problem.

We first describe LPN-C, which is a family of symmetric encryption schemes defined
by Gilbert et al. [GRS08]. While the confidentiality of an LPN-C instance reduces to the
hardness of a corresponding LPN problem, the scheme is inherently malleable and must
thus be used in conjunction with a MAC.

An LPN-C instance is parameterized by a random code length k, a noise level η, a
message length r, and the parameters of an [m, r, d] binary code C, assumed to be efficiently
decodable up to w errors and s.t. Pr[wt(e) > w : e← Berη,m] is small. The scheme works
as follows. The sender and the receiver first share a secret random matrix M ∈ Fk×m2 .

Then, to encrypt an r-bit message x, the sender draws a vector a
$←− Fk2 and e← Berη,m,

computes y = C(x) + aM + e, and sends (a,y) to the receiver. To decrypt, the receiver
computes ŷ = y+aM = C(x) + e, and uses the decoder of C to recover x. The designers
of LPN-C proposed some parameters for secure instantiations of LPN-C, but without
specifying which code C to choose. An example is to take k = 768, m = 160, η = 1/20,
r = 75, d = 25.

An informal way to argue about the security of this scheme is that if one uses param-
eters for which the LPN problem is hard to solve, then the (encoded) message C(x) is
whitened by a pseudo-random mask aM + e which is hard to distinguish from random,
and is thus encrypted by a secure “stream cipher”.‡

We now turn to an LPN-based public-key cryptosystem due to Alekhnovich [Ale03].
This is a highly impractical design, as it only encrypts a single bit and the decryption of
“1” fails with probability 1/2. It is however of theoretical interest, and is rather simple to
describe.

This scheme is parameterized by an integer n, from which one derives m = 2n, k =

‡There is a slight difference between this setting and the actual definition of LPN that we have used:
here the matrix is secret and the vector a is public. Yet, this simply corresponds to m “single” queries for
m independent secrets batched together into M .
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n1/2−ε, η = k/n. The public key is a matrix A′ ∈ Fn+1×m
2 , generated as

(
A
ĉ

)
where

A
$←− Fn×m2 , ĉ = xA+ e, x

$←− Fn2 , e← Berη,m. The private key is the vector e. In other
words, one defines a random [2n, n] code with generating matrix A and augments it with
a low-weight codeword e to the code C generated by A′. One can indeed check that e is
in the span of A′, as it is equal to

(
x 1

)
A′.§ This augmentation is however done in a

“hidden” way, as recovering e from A′ is a (hard) decoding problem for the code defined
by A.

To encrypt one bit for the public keyA′, the sender proceeds as follows. To encrypt the

bit 1, it sends a vector α1
$←− Fm2 . To encrypt the bit 0, it computes and sends α0 = d+e′,

where e′ ← Berη,m and d is a uniformly random element of C⊥. The receiver computes
the decryption of α as α · e.

It is quite immediate to see that upon receiving α1, decryption will fail with probability
1/2. It is a bit less obvious that the decryption of α0 is more successful. In that case,
the receiver computes α0 · e = d · e + e · e′. Because d ∈ C⊥, e ∈ C, this simplifies to
e · e′. Finally, the probability that e and e′ have a non-disjoint support is ≈ (1− η)k (as
it is enough for e and e′ to have disjoint supports, and that their expected weights are k),
which is asymptotically less than 0.5.

We already have informally argued that computing the secret key e from the public
key A′ reduces to a hard decoding problem. We may now also remark that distinguishing
α0 from α1 reduces to an LPN-like problem for a generating matrix of C⊥. Alekhnovich
then showed that the latter is computationally indistinguishable from a random matrix
(informally this also follows from the hardness of LPN, since in that case ĉ “looks random”,
and then so does A′ and a basis of its kernel), which allows to conclude the reduction to
LPN.

We conclude this overview by describing an LPN-based symmetric authentication pro-
tocol named Lapin [HKL+12]. Strictly speaking, Lapin is based on the Ring-LPN variant
of the problem, whose aim is to decrease the communication complexity. We will first
describe it in the LPN framework, and will address this difference next.

A challenger and a verifier share two secret vectors s, s′ ∈ Fn2 . To authenticate the

challenger, the verifiers draws C
$←− Fn×n2 and send it to the former. The challenger

then draws R
$←− GL(n,F2), e ← Berη,n, and sends (R, (sC + s′)R + e). The verifier

then recovers e and validates the challenge if it is of weight less than µηn for some small
acceptance threshold µ.

The Ring-LPN variant of the protocol works similarly, but works over modular rings of
the form F2[X]/〈f〉, for some polynomial f . The challenge matrix C is replaced by a ring
element π(c), c ∈ Fλ2 , where π is a mapping verifying some conditions; the matrix R is
replaced by an invertible element of the ring r; the secrets are now also ring elements s and
s′, and so is the error e (still drawn from a Bernoulli distribution, when seen as a vector).
The message sent by the challenger is then simply (r, (s π(c) + s′)r + e). The advantage
of this variant over the matrix version of the protocol is that the ring elements (esp. r)
have a much more compact representation of size ≈ n than n×n random matrices, which
essentially decreases the communication cost by a factor n. However, the security now
depends on the hardness of decoding codes possessing some structure, which may allow
for more efficient algorithms.

Finally, a (still informal) way to argue about the security of this protocol is to notice
that the challenger’s answer can be written (in the original LPN case) as sCR+ s′R+ e.
In other words, one is masking the challenge-and-secret-dependent string sCR by an LPN
query s′R+ e, which is by assumption computationally indistinguishable from random.

§One may also remark that for the chosen parameters, e /∈ span(A) with high probability. In the
unlikely event where this would be the case, one can simply choose another vector and try again.
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4 LPN-solving algorithms

It is quite clear that solving an LPN instance can be done by using generic decoding
algorithms. Indeed, one may simply try to solve the search variant of the LPN problem,
which on sA + e tries to recover s, i.e. tries to decode a noisy codeword of the code
generated by A. As solving the search problem allows to solve the distinguishing problem
as well, the hardness of LPN is not more than the one of decoding.

One subtlety that we already mentioned is that an LPN-solving algorithm is free to
choose the number of oracle queries it wants to use, i.e. the length of the code it wishes to
decode. Surely this has to be sufficiently large to even make a successful decoding possible
(for instance one may try to ensure that there is at least one error-free information set
w.h.p.), but there is no similar constraint on the maximum number of queries.

We will now describe an algorithm that specifically exploits the ability to make many
queries in an LPN problem to decrease the time complexity for solving the (search) prob-
lem (at the cost of a potentially huge increase in memory and query complexity). This
algorithm was first described in this context by Blum, Kalai and Wasserman [BKW03],
and is traditionally called BKW ; we heavily base our presentation on the variant described
by Bernstein and Lange [BL12].

We first describe a simple variant of BKW. An intuition behind the algorithm is that
given sufficiently many LPN queries s · a + e with a fixed, vector a, one can efficiently
recover one bit of s (viz. s · a) using a majority vote among the samples. This requires
≈ c−2 samples, where c = 1− 2η (0 < η < 1/2) is the correlation of the noise. Repeating
this process for k linearly independent masks a leads to a full recovery of s.

Of course, as the masks a of LPN queries are uniformly random, collecting enough
samples for a single one is equivalent to observing a c−2-multi-collision, which requires
2k·(c

−2−1)/c−2 ≈ 2k samples, so this does not really improve on the exhaustive search of
the secret. The idea behind BKW is then to artificially create samples of the above form
by combining many random ones; this may provide enough samples to apply majority
decoding, but each sample is now “noisier”, and one must then find a proper tradeoff.

More precisely, BKW proceeds as follows. To solve an instance of LPN with noise level
η (i.e. noise correlation c = |1 − 2η|) and dimension k with q queries making a pool P0,
we start by fixing a block-size parameter b. Then one creates a table T of size 2b and an
updated pool P1, both initially empty. Next, for each sample x = (a, v = a · s + e) ∈ P ,
do the following:

1. Call i the integer value corresponding to the last b bits of a. If T [i] = ∅, update it
as T [i]←[ (a, v).

2. Else, retrieve (a′, v′) from T [i] and update x as (a, v)←[ (a+a′, v+ v′) and store it
in P1.

At the end of this process, and provided that q � 2b, there are q− 2b samples in P1 which
all have their masks a equal to zero on their last b bits. However, the corresponding dot
products indeed became noisier, the correlation c having been squared.¶ One may now
clear the table T of all its entries and start this process again, obtaining a pool P2 of
q − 2b+1 samples with masks whose 2b last bits are zero and noise correlation c4, etc., up
to a pool Pt of q − t2b samples with masks with tb zeroes and noise correlation c2

t
.

The original algorithm chooses t and b s.t. tb = k − 1, that is the last pool is made
of samples with masks a of the form (0, . . . , 0), which are useless, and (1, 0, . . . , 0), whose
corresponding v values can be used to find the first bit of s by a majority vote. This latter

¶One can check that the probability of error is 2η(1−η) = 2(η−η2), giving a correlation 1−4(η−η2) =
(1− 2η)2.
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step will succeed w.h.p. if #Pt ≈ c−2
t+1

. Finally, the remaining bits of s are iteratively
retrieved using the same process.

We now introduce a first optimization to the above algorithm, due to Levieil and
Fouque [LF06]. Let l be a second “block size” parameter, corresponding to an exhaustive
search step. The goal is to guess s by blocks of l bits instead of blocks of 1; the first
iteration of BKW is then stopped at tb = k − l. At that point, one has N := q − t2b
noisy dot products with masks ai whose l first bits only may be non-zero.‖ Let y ∈ Fk2
be a vector whose k − l last bits are zero; the idea is to notice that if y and s are equal
on their first l bits, then ai · y = ai · s. Consequently, for every sample (ai, vi), one has
ai · y + vi = ei (where ei is an aggregated error of some correlation c′ coming from the
pool creation) which is then one with non-uniform probability (1 − c′)/2. On the other
hand, if y and s disagree on their last bits, ai · y + vi = ai · (y + s) + ei for a non-zero
term y + s, and from the uniformity of ai on its first l bits, this expression is one with
probability 1/2 exactly. If N ≈ c′−2, it is thus possible to distinguish the value of y that
matches s to recover its last l bits.

The full process for one block of size l is as follows:

1. For all 2l candidates yi for the first l bits of s, compute ĉyi =
∑N

j=0(−1)aj ·yi+vj

(where the sum is over Z).

2. Return the yi for which |ĉyi | is largest.

A key algorithmic observation is that, the above is similar to the computation of the
Hadamard-Walsh spectrum of the Boolean function i 7→ vi, for which fast algorithms
exist. One can indeed remark that for y and y′ that differ only on a single bit, on position
l (w.l.o.g.), if we write y′′ the common part of the two vectors of length l−1 and a1j (resp.

a0j ) the masks whose lth bit is 1 (resp. 0); then we have the following; let

A :=
∑
a1
j

(−1)aj ·y+vj , B :=
∑
a0
j

(−1)aj ·y′′+vj , −A =
∑
a1
j

(−1)aj ·y′+vj ,

and ĉy = A+B, ĉy′ = −A+B, and this equality can be applied l times recursively.

The above idea can be further optimized by first applying a transformation on the
LPN samples in order to reduce the problem to finding an equivalent low weight secret.
This idea is due to Kirchner [Kir11] and works as follows. Denote A the full matrix of the
masks of q queries to an LPN oracle of dimension k. Let A1 be an information set of k
linearly-independent columns of A, and let A2 denote k columns of A not in A1. The key
observation is that the sum (sA1 + e1)A

−1
1 A2 + sA2 + e2 simplifies to e1A

−1
1 A2 + e2. In

other words, one can transform the 2k queries w.r.t. masks A1 and A2 for the secret s into
k queries for the “secret” e1, whose expected Hamming weight is given by the noise level
η, and is then strictly less than k/2. The same transformation can be applied many times
by changing A2, and one can then run a BKW algorithm to retrieve e1 (which obviously
immediately leads to s). There is no particular advantage in using this transformation
when applying the original BKW algorithm, but when one guesses the secret by block, it
becomes enough to guess secrets of low weight, which reduces the search space. Finally,
note that the joint computation of the many correlations ĉy can still be done efficiently
for those sparse secrets.

We conclude this section by mentioning that even prior the publication of the BKW
algorithm, Bleichenbacher described a similar algorithm to exploit biased DSA signa-
tures [Ble00, AFG+14]. Recall that in a DSA (or Schnorr) signature, the signer provides

‖Note that as N � l, non-noisy approximations would indeed allow to uniquely recover the first l bits
of s.
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a pair (c, r + cx), where x is a secret exponent, c is random and depends on the message
to be signed, and r is a random mask. If r is uniform, the secret cx is blinded by a
one-time-pad and nothing can be learned. But if r is biased, then one obtains a problem
of noisy decoding similar to LPN. Bleichenbacher’s algorithm to retrieve x from many
signatures consists in combining samples to zero some of their bits, and to apply a fast
Fourier transform to recover, say, 40 bits of the secret. The original bias exploited by
Bleichenbacher was a small modulo bias: instead of taking r uniformly in S, #S ≈ 2160, it
was uniform over [0, . . . , 2160 − 1] and then reduced modulo #S. Finally, we remark that
similarly to information-set decoding style algorithms, one can also recover a DSA secret
using fewer sample signatures with biased masks by finding short vectors in a Euclidean
lattice [HS01].

5 The Goldreich-Levin theorem

In this section, we present the application of list decoding to a proof of existence of hard-
core predicates for one-way functions, due to Goldreich and Levin [GL89]. Informally, the
objective is to show that if F : {0, 1}n → {0, 1}m is a one-way function, in the sense that
it is hard to find a preimage x given F (x), then it is also hard to predict (with probability
significantly away from 1/2) the value a · x, for an arbitrary a ∈ Fn2 (where x ∈ Fn2 is the
canonical embedding of x ∈ {0, 1}n). A possible proof is to show that if one is given a
prediction oracle for (several) a · x with correlation c, then one can reconstruct x w.h.p.
with time and memory complexity c−2. Thus, if “it costs at least T to invert F”, one has
that it is impossible to predict the value of an arbitrary predicate of the above form with
correlation (≈ advantage) better than 1/

√
T .∗∗

One first subtlelty that deserves to be mentioned is that because of the nature of the
result we want to prove, the predicate oracle that we will use to invert F can only be
called once for a given mask a: indeed, it makes no sense to define different predictions
a ·x several times as x itself is fixed. On the other hand, the mask a on which we call the
oracle can be chosen freely. This is to be contrasted with, say, an LPN setting, where one
is given a · s for random (and uncontrolled) masks a, that may still be potentially equal,
in case of unlikely collisions. Yet in either case the effect is the same: it is (by definition or
computationally) feasible to recover x by recovering enough biased predictions or samples
with the same n linearly-independent masks. Finally, an accurate modelisation of the
oracle’s power in terms of codes is to say that if A ∈ Fn×q2 has q pairwise distinct columns,
querying a prediction oracle with q masks A and advantage ε (meaning that a prediction
is correct with probability p > 1/2; 2p−1 = ε) is equivalent to obtaining a noisy codeword
xA+ e with e← Berη, q, η = 1/2− ε/2.

A second essential remark is that F and F (x) are both known to the adversary. Thus,
as soon as one knows a “small” list L that contains x w.h.p., one can recover x uniquely
by mapping F to L and comparing the result to F (x) (here we assume that L does not
contain collisions for F , which is true w.h.p. if it is small).

Putting the two remarks together, what we need is an efficient list-decoding algorithm
for a code generated by a matrix A with pairwise-distinct columns. In the remainder, we
will give exactly such an algorithm for a punctured first-order Reed-Muller code.

Let V ∈ Fn×(r+1)
2 be a projection matrix of rank r+ 1, where 2r ≈ (1− 2η)−2 = ε−2 is

the number of samples required to distinguish the uniform distribution from Berη w.h.p.,
and whose first column is a unit vector bi (corresponding to the bit xi that one wishes to

recover); let y = xV ∈ F(r+1)
2 be the projected message; let W ∈ F(r+1)×2r

2 be the matrix

∗∗Note that this does not mean that no predicate could be predicted; for instance F could be one-way
and still fully reveal the first bit of its input. However one is expected to be unsuccessful on arbitrary
inputs, so also for instance on random ones.
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whose first row is all one and whose r × 2r lower block is made of all the vectors of Fr2;
let z = yW , and remark that if y is seen as a degree-1 Boolean function in r variables,
then z corresponds to the first-order Reed-Muller code RM(1, r) encoding of y. Now the
problem is: given a noisy codeword ẑ = z+e, recover xi. If the noise level is low, one can
simply use an efficient decoding algorithm for a Reed-Muller code. However, if η is close
to 1/2, the expected weight of e is 2rη ≈ 2r−1 which corresponds to the minimum distance
of RM(1, r), and unique decoding is not possible anymore. An observation that may not
seem extremely useful at first is that despite a high-level of noise, one can obtain a list of
2r possible values for xi in the following way: 1) guess the value of y[1, . . . , r] and build a
matching vector y′, with y′[0] = 0; 2) compute z′ = ẑ + y′W ; 3) if wt(z′) > 2r−1, guess
xi = 1, else guess xi = 0.†† Now the crucial point is that this process can be in fact jointly
applied to all the bits of x by using the same projection matrix V , up to its first column.‡‡

By doing so, the guess for the value of the last r bits of y can be reused for every bit of
x to obtain a list of 2r consistent predictions for x in its entirety. An example high-level
implementation of this list decoder is given at https://github.com/P1K/LectureNotes/
blob/master/CRY-M2-ADV/sw/list_decoding/simple_encoder_decoder.sage.
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