
Advanced Cryptology (GBX9SY06)

Attacking LPN(100, 1/8)

2020-01-09

Grading

This assignment is graded as part of the contrôle continu. You must send a written report
(in a portable format) describing your work and the corresponding source code, including
all tests, with compilation and execution instructions by 2020-01-17T18:00+0100)
to:

pierre.karpman@univ-grenoble-alpes.fr.

Working in teams of two is allowed and encouraged (but not mandatory), in which case
only one report needs to be sent, with the name of both students clearly mentioned.

Objective

The goal of this exercise is to implement Blum, Kalai & Wasserman (“BKW”)’s algorithm
to solve LPN problems in dimension 100 with noise probability 1/8. For a description of
the algorithm, one may refer to the lecture notes and/or to [BL12].

How to proceed

You must first download the tarball https://www-ljk.imag.fr/membres/Pierre.Karpman/
bkw.tar.bz2 which includes a file bkw_fillme.c that implements a function lpn_sampl c

er_100_8 to be used to generate problem instances. This file also declares some suggested
data structures to implement BKW, but you are free not to use them.

You should then:

— Determine appropriate parameters for the algorithm, that will allow you to solve the
problems “efficiently” (e.g. in less than 15 minutes) with a “high” success probability
(e.g. more than 0.5).

— Implement a straightforward version of BKW as a function void bkw(const uint c

64_t s[2], uint64_t rs[2]), where s is the “secret” to be found and used in the
LPN sampler, and rs is to be updated with the solution.

— If time permits, you could also implement an improved version of your solver by
e.g. using a fast Walsh-Hadamard transform, or a resampler for an equivalent sparse
secret, or both.

1

mailto:pierre.karpman@univ-grenoble-alpes.fr
https://www-ljk.imag.fr/membres/Pierre.Karpman/bkw.tar.bz2
https://www-ljk.imag.fr/membres/Pierre.Karpman/bkw.tar.bz2


https://www-ljk.imag.fr/membres/Pierre.Karpman/cry_adv2019_tp_bkw.pdf

Some advices:

— You can use the fact that you actually know the secret to easily test parts of your
algorithm and to fine-tune the number of samples needed for a high sucess proba-
bility.

— It may be a good idea to first implement the last step of the algorithm (i.e. a straight
majority-logic decoding process).

— Recursive programming is cool.

References

[BL12] Daniel J. Bernstein and Tanja Lange, Never Trust a Bunny, Radio Fre-
quency Identification. Security and Privacy Issues - 8th International Work-
shop, RFIDSec 2012, Nijmegen, The Netherlands, July 2-3, 2012, Revised
Selected Papers (Jaap-Henk Hoepman and Ingrid Verbauwhede, eds.), Lec-
ture Notes in Computer Science, vol. 7739, Springer, 2012, Available as
https://eprint.iacr.org/2012/355.pdf, pp. 137–148.

2

https://www-ljk.imag.fr/membres/Pierre.Karpman/cry_adv2019_tp_bkw.pdf
https://eprint.iacr.org/2012/355.pdf

