
Advanced Cryptology
Final Exam

Fast correlation attacks on filtered LFSRs

2020-01-22

Instructions. This subject is for students who followed the Advanced Cryptology part of
this course only. The duration of this test is two hours. All documents are authorised. Be careful to
justify all your answers, possibly including any assumption that you deem to be necessary. Algorithms
must be described at a “reasonably high” level; the use of formal pseudocode is not mandatory.

The goal of this subject is to study some aspects of fast correlation attacks on filtered linear-feedback
shift-register (LFSR) stream ciphers.

Filtered LFSRs & the noisy channel model

We define a (binary) maximum-period-LFSR in Galois configuration with an n-bit state in the following
way: let P be a primitive (irreducible) polynomial of degree n over F2[X] and K := F2[X]/〈P 〉 be the
corresponding field extension. The state of the LFSR is a non-zero element S ∈ K× (i.e. a non-zero
polynomial of F2[X] of degree at most n − 1); one then defines a sequence s(t) associated with S as
s(t) := S × Xt (where X ∈ K; alternatively as polynomials over F2, the sequence is s(t) = S × Xt

mod P).
Let us denote by s(t)[i], 0 ≤ i < n, the ith coefficient of s(t) (seen as a polynomial); a filtered LFSR

is defined by the output sequence v(t) := f (s(t)[I1], . . . , s(t)[Il]), where f : Fl2 → F2 is a (non-linear)
Boolean function in l variables and I := {I1, . . . , Il} ⊆ J0, n−1K is a set of l indices. The noisy channel
model consists in modelling this sequence v as v(t) ≈

∑
i∈I s(t)[i] + et, where et ∼ Berη is a noise

term that is zero with probability η < 0.5; we write c the associated correlation |2η − 1|. To simplify
the notation and without loss of generality, we will actually model v(t) as v ′(t) := s(t)[n− 1] + et.

In this exercise, we will consider an attacker who has access to v and tries to determine the
corresponding initial state S. The entire analysis will be done in the noisy channel model, using v ′.

A first approach would be for an adversary to recover S[n−1] = s(0)[n−1] = v ′(0)+e0, S[n−2] =
s(1)[n−1] = v ′(1)+e1 etc. by using majority-logic decoding on many samples v ′(0)s with different e0s,
many samples v ′(1)s with different e1s, etc. Unfortunately, v ′ only provides a single sample for every
t. The idea is then to combine well-chosen terms of v to emulate the above approach by “creating”
many samples for a fixed state coefficient S[i]. This can be done using parity-check equations for
the LFSR, defined thusly: a parity-check equation of weight k for an LFSR defined by P is a subset
T = {t1, . . . , tk} ⊂ N s.t.

∑
t∈T s(t) = 0 for all possible initial values S = s(0). Note that if

M := Xt1 + · · · +Xtk is a multiple of P , then S ×M mod P = 0 and {t1, . . . , tk} is a parity-check
equation.

Let us now assume that an adversary knows sufficiently many parity-check equations that all share
a common index t1; this means that the adversary knows many relations of the form s(t1) = s(t2) +
· · ·+ s(tk), s(t1) = s(t′2) + · · ·+ s(t′k), etc.. Since those relations hold for the entire polynomials, they
also hold in particular for their individual coefficients, i.e. s(t1)[n−1] = s(t2)[n−1]+ · · ·+ s(tk)[n−1]
etc.. Now since s(t2)[n − 1] + · · · + s(tk)[n − 1] = v ′(t2) + · · · + v ′(tk) + et2 + · · · + etk etc., one
may try to determine the value s(t1)[n − 1] by using majority-logic decoding on the many samples
v ′(t2) + · · ·+ v ′(tk), v ′(t′2) + · · ·+ v ′(t′k), etc. which all involve independent error terms. This overall
approach is known as a fast correlation attack.

1

Q.1 (majority-logic decoding): Let d0, d1 be two random sequences over {0, 1} where d0(t) ∼
Ber0.5 (i.e. is uniform) and d1(t) ∼ Berη 6=0.5.

1. Give a distinguisher for the two sequences, i.e. define an algorithm that has oracle access to
(d b, d b⊕1), b

$←− {0, 1} and that returns a guess for the value b (i.e., the adversary is given access
to both d0 and d1, but doesn’t know which is which).

2. How many samples of d b and d b⊕1 (up to a constant) does your distinguisher need in function
of η to succeed with an advantage close to 1?

Q.2 (—— of a random code): Let A $←− Fk×n2 ; we make the simplifying hypothesis that n� k so
that we may assume that the rank of A is k. Further let x ∈ Fk2, e ∼ Bernη 6=0.5 (a vectorial Bernoulli
distribution of parameter η), c := xA, ĉ := c+ e.

1. Explain how one can recover x from ĉ using majority-logic decoding, and state the necessary
assumptions for this decoding to be successful with probability close to 1.

2. What is the time complexity of this decoder? Is it (in general) possible to do better?

Q.3 (—— using parity-check equations): We now consider again the setting of a fast-correlation
attack as described in the introduction.

1. Explain how to use parity-check equations with a common term t1 which is arbitrary (i.e. not
necessarily 0) to recover S in its entirety (i.e. S[0], . . . S[n− 1]).

2. How many distinct parity-check equations of weight k are necessary for this recovery to be
successful with a probability close to 1?

We now turn to the problem of finding the parity-check equations necessary for a fast-correlation
attack. For this several approaches are possible, and we focus on one based on a generalised birthday
problem: given a function F : Fn2 → Fn′

2 , an integer k > 2, and a constant c ∈ Fn′
2 , find x1, . . . , xk ∈ Fn2

s.t.
∑k

i=1 F (xi) = c. In all of the following, we take k = 4.

Q.4 (generalised join operator): Let L1, L2 be two lists of N elements of Fn2 , and truncl : Fn2 → Fl2
be the truncation map to the l lowest coordinates of its argument. We define a generalised join operator
./l of parameter l ≤ n as L1 ./l L2 = {(x1, x2) : x1 ∈ L1, x2 ∈ L2, truncl(x1) = truncl(x2)}.

1. Give an efficient algorithm (with time complexity O(N logN), under the assumption that the
size of the output L1 ./l L2 ≤ N) for ./l, and analyse its time and memory complexity.

2. Explain how to use ./l to form the list L12 of pairs (xi, xj) ∈ L1 × L2 s.t. truncl(xi + xj) = 0.

3. Assuming that L1 and L2 contain uniformly random elements of Fn2 , explain why the expected
size of L12 ≈ N2/2l.

Q.5 (generalised birthday): Let L1, L2, L3, L4, L12, L34 be lists defined as in the previous question,
with parameter l.

1. Show that if (x1, x2) ∈ L12, (x3, x4) ∈ L34, then Pr[x1 + x2 + x3 + x4 = 0] = 2l−n, where the
probability is taken over the sampling of L1,

2. Let l = n/3. Describe an algorithm that takes as input L1, L2, L3, L4 of size 2l and that with
“high” probability returns one quadruple (x1, x2, x3, x4) ∈ L1×L2×L3×L4 s.t. x1+x2+x3+x4 =
0, and analyse its time and memory complexity.

3. Explain how to adapt the algorithm to find a quadruple of elements of L1, . . . that sums to any
constant c (or equivalently, explain how to find a quintuple (x1, x2, x3, x4, x5) that sums to 0,
where (x1, x2, x3, x4) ∈ L1 × L2 × L3 × L4 and x5 is fixed a priori).

4. Explain how to adapt the algorithm and the initial size of L1, . . . so that it returns an expected
number of 2q > 1 quadruples of L1, . . . that sum to 0?

2

Q.6 (application to parity-check equations): We now make the assumption that the values Xt

mod P are pseudo-random, i.e. that they can be considered to be independent and uniformly random
over Fn2 .

1. Explain how to use the above algorithm with 4 lists to generate many parity check equations of
weight 5 with a common term Xt1 .

References

[Wag02] David A. Wagner. A Generalized Birthday Problem. In Moti Yung, editor, Advances in
Cryptology — CRYPTO 2002, volume 2442 of Lecture Notes in Computer Science, pages
288–303. Springer, 2002.

3

This page intentionally left blank

4

