Advanced Crypto Final Exam

2019-01-24

Exercise 1: Course questions

The (main) questions of this exercise are independent. The clarity and completeness of the answers will be taken into account for grading.

Q1:

- 1. Define the followings:
 - The Möbius transform of a Boolean function
 - The RM(r, m) of binary Reed-Muller codes
- 2. Explain how it is possible to encode efficiently a message into a Reed-Muller codeword without using a generator matrix. Is this encoding systematic?

Q2: Describe Prange's algorithm for finding a low-weight codeword of a binary linear code, and one of its improvements of your choice.

Q3: Let $P: \{0,1\}^n \to \{0,1\}^n$ be a public permutation. We define the following block cipher constructions:

- EM₁: $\{0,1\}^n \times \{0,1\}^n \to \{0,1\}^n$, as EM₁ $(k,p) = P(k \oplus p) \oplus k$
- EM₂: $\{0,1\}^n \times \{0,1\}^n \to \{0,1\}^n$, as EM₂ $(k,p) = P(P(P(k \oplus p) \oplus k) \oplus k) \oplus k$
- EM₃: $\{0,1\}^{3n} \times \{0,1\}^n \to \{0,1\}^n$, as EM₃ $(k,p) = P(P(k_1 \oplus p) \oplus k_2) \oplus k_3$
- 1. Assuming that P does not have any structural weakness, which of EM₁, EM₂ and EM₃ provides the best security in a single-key attack setting?
- 2. Give a XOR related-key distinguishing attack for EM_1 that has advantage ≈ 1 and negligible time and query complexity. Can you adapt your attack to EM_2 and EM_3 ?

Exercise 2: an interpolation attack

The goal of this exercise is to study an interpolation attack on a low-degree block cipher. Let the round function $\rho: \mathbb{F}_{2^{129}} \times \mathbb{F}_{2^{129}} \to \mathbb{F}_{2^{129}}$ be defined as $(k, x) \mapsto (x + k)^3$. It can be shown that ρ is invertible and has the best possible differential uniformity and linearity; this makes it a mapping with optimal protection against standard differential and linear cryptanalysis. However, it is quite obvious that the algebraic expression of ρ over $\mathbb{F}_{2^{129}}$ is simple, insofar as it is a sparse polynomial of low degree. This can be exploited to attack ciphers built from (too) few iterations of ρ .

Let us further define $E_2: \{0,1\}^{387} \times \{0,1\}^{129} \to \{0,1\}^{129}$ as $E_2(k_1||k_2||k_3,x) = \rho(k_2,\rho(k_1,x)) + k_3 = ((x+k_1)^3 + k_2)^3 + k_3$.

Q1:

1. Show that the encryption c of a message m with E_2 under a key $k_1||k_2||k_3$ can be expressed as the following degree-9 polynomial:

$$c = m^9 + m^8 k_1 + m^6 k_2 + m^4 k_1^2 k_2 + m^3 k_2^2 + m^2 (k_1 k_2^2 + k_1^4 k_2)$$

+ $m(k_1^2 k_2^2 + k_1^8) + k_1^3 k_2^2 + k_1^6 k_2 + k_1^9 + k_2^3 + k_3$ (1)

(Hint: Remember that in characteristic-2 fields, $(a+b)^2 = a^2 + b^2$.)

Q2:

- 1. Propose a linearization of *Equation* 1. How many unknowns do you get?
- 2. How many known plaintext-ciphertext pairs do you need at minimum to retrieve all the unknowns of the linearization?
- 3. What is the time and query complexity to solve this system?
- 4. Does solving this system allow to retrieve the secret key $k_1||k_2||k_3$?
- 5. Does it allow to compute $E_2(k_1||k_2||k_3,m')$ for an arbitrary message m' without knowing (or recomputing) $k_1||k_2||k_3$?

Q3: We recall that a degree-d polynomial P(X) can be uniquely interpolated from its evaluation on d+1 distinct points $x_0, \ldots x_d$ as:

$$P(X) = \sum_{i=0}^{d} P(x_i) \prod_{0 \le j \ne i \le d} (X - x_j) / (x_i - x_j).$$

- 1. Explain how to solve the linearization of Equation 1 using interpolation.
- 2. What is the naïve time and query complexity of this method?
- 3. Do you think it is possible to do better? How?

Q4: We define E_n similarly as E_2 , with n compositions of ρ instead of 2.

- 1. Do you think that the above attack is still efficient on E_6 ?
- 2. What about E_{10} ?
- 3. And E_{89} ?

(Hint: $\log_2(3) \approx 1.58$)

Remark. The interpolation attack presented here is due to Jakobsen and Knudsen (FSE '97).

Exercise 3: birthday algorithms for the subset sum problem

Given k+1 integers $x_1, \ldots, x_k, s \in \mathbb{N}$, a subset sum problem* of size k consists in finding k binary coefficients $\alpha_1, \ldots, \alpha_k \in \{0, 1\}$ (if they exist) s.t. $\sum_{i=1}^k \alpha_i x_i = s$ (where this sum is computed over the integers). In other words, one wants to find a subset of a given generating set $\{x_1, \ldots, x_k\}$ that sums to a target s.

In all of the following, we assume random instances where $\#x_{1,\dots,k}$ (the bitsize of $x_{1,\dots,k}$) $\approx \#s = n$ and n is "large" (for instance $\approx k$).

In your answers to the questions of this exercise, algorithms must be described as clearly and as concisely as possible. This does not necessarily imply the use of formal pseudo-code.

Q1:

1. Describe an algorithm that solves a subset sum problem of size k with worst-case time complexity $\mathcal{O}(2^k)$ and constant memory complexity.

Q2: Let $S = \{x_1, \ldots, x_k\}$ be the generating set of a subset sum problem instance. Assume k is even and define $S_1 = \{x_1, \ldots, x_{k/2}\}$; $S_2 = \{x_{k/2+1}, \ldots, x_k\}$, so that $S = S_1 \cup S_2$.

- 1. Show that there is a solution to the problem with generating set S and target s iff. $\exists s_1, s_2 \text{ s.t.}$:
 - (a) there is a solution to the problem instance of generating set S_1 and target s_1 ;
 - (b) there is a solution to the problem instance of generating set S_2 and target s_2 ;
 - (c) $s = s_1 + s_2$.
- 2. What is the time complexity required to compute the set \mathbb{S}_1 (resp. \mathbb{S}_2) of all targets s_1 (resp. s_2) that have a solution for the set \mathcal{S}_1 (resp. \mathcal{S}_2)?
- 3. Let us store \mathbb{S}_1 and \mathbb{S}_2 in two tables \mathcal{T}_1 , \mathcal{T}_2 . What is the expected size of those tables? How much does it cost to sort them?
- 4. We now assume that \mathcal{T}_1 (resp. \mathcal{T}_2) has been sorted in increasing (resp. decreasing) order. Describe an algorithm that solves the subset sum problem in maximum time $\#\mathcal{T}_1 + \#\mathcal{T}_2$.
- 5. What is the total time and memory complexity of this algorithm (ignoring possible log factors)?

*

The objective of the remainder is to improve the algorithm of the previous question by decreasing its memory complexity without increasing its time complexity.

Q3: We recall that a maximum (resp. minimum) priority queue is a data structure that allows efficient (e.g. logarithmic time) insertion (insert) of an element and efficient extraction (pop) of the maximum (resp. minimum) element for some order relation. We also introduce a function $next(x, \mathcal{T})$ that returns the element following x (if it exists) in a sorted table \mathcal{T} .

Let us assume that $k \equiv 0 \mod 4$ so that we may further split S_1 into $S_{11} = \{x_1, \ldots, x_{k/4}\}$, $S_{12} = \{x_{k/4+1}, \ldots, x_{k/2}\}$, that naturally define sets S_{11} and S_{12} of reachable targets. Let \mathcal{H}_1 be a (min.) priority queue initialized with $\{(x_1, x_2) : x_1 = \min S_{11}, x_2 \in S_{12}\}$ and \mathcal{T}_{11} be a sorted table (in increasing order) of the elements of S_{11} .

^{*}This can also be considered a particular case of the more general family of knapsack problems.

- 1. Show that $\min \mathbb{S}_1 \in \mathcal{H}_1$ (where an element is represented as a pair (x, y) that sums to its value).
- 2. Show that the last of the following sequence of instruction returns the second smallest element of \mathbb{S}_1 :
 - (a) $(x_1, x_2) = pop(\mathcal{H}_1);$
 - (b) $insert((next(x_1, T_{11}), x_2,), H_1);$
 - (c) $(x'_1, x'_2) = pop(\mathcal{H}_1)$.
- 3. Describe an algorithm that outputs all the elements of \mathbb{S}_1 in increasing order with memory complexity $\mathcal{O}(2^{k/4})$. What is its time complexity (again ignoring log. factors)? (You will be careful to prove the emphasized statements.)

Q4:

1. Describe an algorithm that solves a subset sum problem of size k with worst-case time complexity $\mathcal{O}(2^{k/2})$ and memory complexity $\mathcal{O}(2^{k/4})$.

Q5:

- 1. Is the improvement of the algorithm of **Q3** over the ones of **Q2** and **Q1** practically useful in an implementation?
- 2. Would it be practically useful to further decrease the memory complexity?
- 3. Estimate the maximum problem size that can be solved on a reasonably priced server (e.g. FunFoehn: 16 cores @ 2.0 GHz; 256 GB of RAM) within one year ($\approx 2^{25}$ seconds) for all three algorithms.

Remark. The algorithm studied in this exercise is due to Schroeppel and Shamir (FOCS'79).