
Advanced Crypto

Final Exam

2019-01-24

Exercise 1: Course questions

The (main) questions of this exercise are independent. The clarity and completeness of
the answers will be taken into account for grading.

Q1:

1. Define the followings:

— The Möbius transform of a Boolean function

— The RM(r,m) of binary Reed-Muller codes

2. Explain how it is possible to encode efficiently a message into a Reed-Muller code-
word without using a generator matrix. Is this encoding systematic?

Q2: Describe Prange’s algorithm for finding a low-weight codeword of a binary linear
code, and one of its improvements of your choice.

Q3: Let P : {0, 1}n → {0, 1}n be a public permutation. We define the following block
cipher constructions:

— EM1 : {0, 1}n × {0, 1}n → {0, 1}n, as EM1(k, p) = P(k ⊕ p)⊕ k

— EM2 : {0, 1}n × {0, 1}n → {0, 1}n, as EM2(k, p) = P(P(P(k ⊕ p)⊕ k)⊕ k)⊕ k

— EM3 : {0, 1}3n × {0, 1}n → {0, 1}n, as EM3(k, p) = P(P(k1 ⊕ p)⊕ k2)⊕ k3

1. Assuming that P does not have any structural weakness, which of EM1, EM2 and
EM3 provides the best security in a single-key attack setting?

2. Give a XOR related-key distinguishing attack for EM1 that has advantage ≈ 1 and
negligible time and query complexity. Can you adapt your attack to EM2 and EM3?

Exercise 2: an interpolation attack

The goal of this exercise is to study an interpolation attack on a low-degree block cipher.
Let the round function ρ : F2129 ×F2129 → F2129 be defined as (k, x) 7→ (x+ k)3. It can

be shown that ρ is invertible and has the best possible differential uniformity and linearity;
this makes it a mapping with optimal protection against standard differential and linear
cryptanalysis. However, it is quite obvious that the algebraic expression of ρ over F2129 is
simple, insofar as it is a sparse polynomial of low degree. This can be exploited to attack
ciphers built from (too) few iterations of ρ.

Let us further define E2 : {0, 1}387 × {0, 1}129 → {0, 1}129 as E2(k1||k2||k3, x) =
ρ(k2, ρ(k1, x)) + k3 = ((x+ k1)

3 + k2)
3 + k3.

1

Q1:

1. Show that the encryption c of a message m with E2 under a key k1||k2||k3 can be
expressed as the following degree-9 polynomial:

c = m9 +m8k1 +m6k2 +m4k21k2 +m3k22 +m2(k1k
2
2 + k41k2)

+m(k21k
2
2 + k81) + k31k

2
2 + k61k2 + k91 + k32 + k3 (1)

(Hint: Remember that in characteristic-2 fields, (a+ b)2 = a2 + b2.)

Q2:

1. Propose a linearization of Equation 1. How many unknowns do you get?

2. How many known plaintext-ciphertext pairs do you need at minimum to retrieve all
the unknowns of the linearization?

3. What is the time and query complexity to solve this system?

4. Does solving this system allow to retrieve the secret key k1||k2||k3?

5. Does it allow to compute E2(k1||k2||k3,m′) for an arbitrary message m′ without
knowing (or recomputing) k1||k2||k3?

Q3: We recall that a degree-d polynomial P(X) can be uniquely interpolated from its
evaluation on d+ 1 distinct points x0, . . . xd as:

P(X) =

d∑
i=0

P(xi)
∏

0≤j 6=i≤d
(X − xj)/(xi − xj).

1. Explain how to solve the linearization of Equation 1 using interpolation.

2. What is the näıve time and query complexity of this method?

3. Do you think it is possible to do better? How?

Q4: We define En similarly as E2, with n compositions of ρ instead of 2.

1. Do you think that the above attack is still efficient on E6?

2. What about E10?

3. And E89?

(Hint: log2(3) ≈ 1.58)

Remark. The interpolation attack presented here is due to Jakobsen and Knudsen (FSE
’97).

2

Exercise 3: birthday algorithms for the subset sum problem

Given k + 1 integers x1, . . . , xk, s ∈ N, a subset sum problem∗ of size k consists in finding
k binary coefficients α1, . . . , αk ∈ {0, 1} (if they exist) s.t.

∑k
i=1 αixi = s (where this

sum is computed over the integers). In other words, one wants to find a subset of a given
generating set {x1, . . . , xk} that sums to a target s.

In all of the following, we assume random instances where #x1,...,k (the bitsize of x1,...,k)
≈ #s = n and n is “large” (for instance ≈ k).

In your answers to the questions of this exercise, algorithms must be described as clearly
and as concisely as possible. This does not necessarily imply the use of formal pseudo-code.

Q1:

1. Describe an algorithm that solves a subset sum problem of size k with worst-case
time complexity O(2k) and constant memory complexity.

Q2: Let S = {x1, . . . , xk} be the generating set of a subset sum problem instance.
Assume k is even and define S1 = {x1, . . . , xk/2}; S2 = {xk/2+1, . . . , xk}, so that S =
S1 ∪ S2.

1. Show that there is a solution to the problem with generating set S and target s iff.
∃s1, s2 s.t.:

(a) there is a solution to the problem instance of generating set S1 and target s1;

(b) there is a solution to the problem instance of generating set S2 and target s2;

(c) s = s1 + s2.

2. What is the time complexity required to compute the set S1 (resp. S2) of all targets
s1 (resp. s2) that have a solution for the set S1 (resp. S2)?

3. Let us store S1 and S2 in two tables T1, T2. What is the expected size of those
tables? How much does it cost to sort them?

4. We now assume that T1 (resp. T2) has been sorted in increasing (resp. decreasing)
order. Describe an algorithm that solves the subset sum problem in maximum time
#T1 + #T2.

5. What is the total time and memory complexity of this algorithm (ignoring possible
log factors)?

∗

The objective of the remainder is to improve the algorithm of the previous question
by decreasing its memory complexity without increasing its time complexity.

Q3: We recall that a maximum (resp. minimum) priority queue is a data structure
that allows efficient (e.g. logarithmic time) insertion (insert) of an element and efficient
extraction (pop) of the maximum (resp. minimum) element for some order relation. We
also introduce a function next(x, T) that returns the element following x (if it exists) in
a sorted table T .

Let us assume that k ≡ 0 mod 4 so that we may further split S1 into S11 = {x1, . . . , xk/4},
S12 = {xk/4+1, . . . , xk/2}, that naturally define sets S11 and S12 of reachable targets. Let
H1 be a (min.) priority queue initialized with {(x1, x2) : x1 = minS11, x2 ∈ S12} and T11
be a sorted table (in increasing order) of the elements of S11.

∗This can also be considered a particular case of the more general family of knapsack problems.

3

1. Show that minS1 ∈ H1 (where an element is represented as a pair (x, y) that sums
to its value).

2. Show that the last of the following sequence of instruction returns the second smallest
element of S1:

(a) (x1, x2) = pop(H1);

(b) insert((next(x1, T11), x2,),H1);

(c) (x′1, x
′
2) = pop(H1).

3. Describe an algorithm that outputs all the elements of S1 in increasing order with
memory complexity O(2k/4). What is its time complexity (again ignoring log. fac-
tors)? (You will be careful to prove the emphasized statements.)

Q4:

1. Describe an algorithm that solves a subset sum problem of size k with worst-case
time complexity O(2k/2) and memory complexity O(2k/4).

Q5:

1. Is the improvement of the algorithm of Q3 over the ones of Q2 and Q1 practically
useful in an implementation?

2. Would it be practically useful to further decrease the memory complexity?

3. Estimate the maximum problem size that can be solved on a reasonably priced
server (e.g. FunFoehn: 16 cores @ 2.0 GHz; 256 GB of RAM) within one year (≈ 225

seconds) for all three algorithms.

Remark. The algorithm studied in this exercise is due to Schroeppel and Shamir (FOCS’79).

4

