Advanced cryptology (GBX9SY06)

*
Some coding theory aspects (useful) in cryptography

Pierre Karpman

2018-11

1 First definitions; examples

A linear code of length n and dimension k over a field K is a k-dimensional subspace
of K™. In these notes, we will focus on binary codes, for which K = Fs, or possibly an
extension thereof.* An important characteristic of a code is the minimum distance (for
the Hamming distance hd(-,-)) d between two (distinct) codewords. Define wt(x), € Fy
as the number of non-zero coordinates of x; hd(x,y) as wt(x + y). Then the minimum
distance of a code C is mingec y-eec hd(x,y), which by linearity of C is equivalent to
mingzoec wt(z). The main parameters of length, dimension, and minimum distance of a
code C are summarized by saying that C is an [n, k, d|p, code. While determining n and k
is usually straightforward, it is in general a hard problem to compute d.

Given a code C, it will often be necessary to have an explicit encoding map x € F§
' € C from messages to codewords. Such a map can be easily obtained by sampling
k linearly-independent codewords g1, ..., g and forming the generator matrix G whose
rows are the g;s.! The encoding map is then simply & — @ x G. One should remark
that in general the matrix G (and thence the encoding map) will not be unique, as it
depends on the selected codewords. A specific class of generator matrices are the ones in
systematic form, corresponding to block matrices (I k A), where I}, is the k-dimensional
identity matrix and A is a redundancy block. A code always admits at least one systematic
encoder, up to a permutation of the coordinates of its codewords. One may be obtained
by selecting k linearly-independent columns of a generator matrix G; applying a column
permutation on G such that those columns are in the first k£ positions; and computing
the reduced row-echelon form of G. In other words, one obtains an encoder in systematic
form by finding a permutation matrix P such that GP is of the form G’ := (G1 Gg)
where G is invertible, and by computing GflG’ .

From the existence of a systematic encoder, one deduces that the largest possible
minimum distance (or weight) of an [n, k| linear code is dyps = n — k + 1, which is a
special case of the Singleton bound. Indeed, the maximum possible weight of any row of
a systematic encoder is 1 on the left (identity) block, and n — k on the right (redundancy)
block. A code reaching this bound is called mazimum-distance separable, or MDS.

Finally, note that for some codes, there may exist alternative encoders that do not
explicitly use a generator matrix.

*Consequently, we may take the liberty of equating subtraction with addition in any formula or algo-
rithm. In order to minimize the confusion, we will try to make this systematic. Nonetheless, most of the
discussion seamlessly generalises to other (finite) fields.

fNote that the we use the convention that vectors are row vectors, if not specified otherwise.

https://www-ljk.imag.fr/membres/Pierre. Karpman/cry_adv2018_codes.pdf

Example 1 (AES MixColumn). Let M be the matrix used in the MixColumn operation
of the AES block cipher. The code generated by (I4 M) is an MDS code of paramateres
[87 47 5]F23 .

Example 2 (Binary Reed-Muller codes). The binary Reed-Muller code of order r and
in m variables RM(r, m) is the vector-space formed by the multi-point evaluations of m-
variate Boolean functions of degree < r over }'. In other words, a message is a Boolean
function, and its associated (Reed-Muller) codeword is obtained by evaluating it over its
entire domain.

The codewords of this code have length 2 and form a space of dimension k :=
>izo (). It can be shown that the minimum weight of any codeword is 2" [MS06, Ch.
13, Thm. 3]. The parameters of RM(r, m) are thus [2™, k, 2™ "]|p,.

A (non-systematic) encoding of a message can be efficiently computed by using a fast
Mobius transform. Due to its involutive nature, the same transform can also be used to
decode a codeword back to a message. However, this does not correct any error and on
its own it is thus of rather limited use.

Reed-Muller codes also follow a recursive “(u,u + v)” decomposition. One has that
RM(r +1,m+1) = {ul|(u +v),u € RM(r + 1,m),v € RM(r,m)}. This follows from the
fact that an (m + 1)-variate Boolean function F(X1,..., X,,11) of degree at most r + 1
can be written as FO(X1,..., X)) + Xpme1 FH(X1, ..., Xin), with deg(F°) < r + 1 and
deg(F') < r. Furthermore, if we write F°F the m 4 1-variate function whose monomials
are identical to FV, F'* for X™*1 F1 and X 1,m @ given assignement for the indeterminates
X1, ..., X, then we always have:

— eval(FO, (X1,,)) = eval(FO | (X ,,,0)) = eval(FOF, (X1, 1));
— eval(F', (X1,,)) = eval(F'* (X} 0, 1));
— eval(F'* (X1,,,0)) = 0;

and the decomposition follows. Finally, one may notice that this is essentially the same
induction as the one used in the fast Mobius transform algorithm.

Given a code C, it is often important to be able to determine if a vector of its ambient
space is a codeword or not. This may be done using a map « — y s.t. y is “zero” iff. « € C.
One typically implements this with a parity-check matric H € Fg_kxn which is a basis
of the (right) kernel of a generator matrix G of C; the corresponding map, of codomain
F2~" is then & — H x . Equivalently, H is made of (n — k) linearly-independent vectors
of F% whose scalar product with any element of C is zero, and HG*' and GH' are both
zero matrices. A parity-check matrix generates the dual of C, written C*, which is thence
an [n,n — k| code. A code that is its own dual is called self-dual.

2 Information set decoding

In this section we focus on the problem of finding “low-weight” codewords of a code,
which is also essentially equivalent to finding a close-by codeword to a given vector, i.e.
to decode. This is generally a hard problem for codes that do not exhibit any particular
structure (for instance if they are defined from a uniformly random generator matrix),
as it is NP-hard [?], but efficient algorithms may exist for some specific codes. For now
we will focus on “inefficient” generic algorithms that work for any code, but we will later
present a good list decoder for (punctured and shortened) first-order Reed-Muller codes.

Let C be an [n,k,d] code for which G is a generator matrix. Enumerating all the
codewords of C can trivially be done in time 2* by multiplying G by all the vectors of F5.

https://www-ljk.imag.fr/membres/Pierre.Karpman/cry_adv2018_codes.pdf

https://www-ljk.imag.fr/membres/Pierre. Karpman/cry_adv2018_codes.pdf

This immediately allows to find a weight-d codeword of C or to decode to the (or one of
the) closest codeword(s), but the cost is quickly prohibitive.

A first remark on the way to find better alternatives is that the problem that one
needs to solve usually does not require to enumerate all the codewords of C. For instance,
one may not need to find a codeword of minimum weight, but finding one of weight less
than a known bound may be enough. Similarly, in a decoding context, one may know an
upper-bound on the error weight. It is then possible to use a probabilistic algorithm that
stops when a “good-enough” solution has been found.

A second remark is that the decoding problem can be solved by finding low-weight
codewords; this will be used to justify the fact that we solely focus on algorithms for the
latter. This can be explained in the following way: let ¢ € C be an initial codeword, and
¢ = ¢ + e be a noisy codeword obtained by adding a noise e of weight w < max weight <
|(d —1)/2]. Then c is the unique closest codeword to &, and e is the unique vector of
weight w in the affine subspace e 4+ C. Furthermore, this latter vector can be found by

searching for a “codeword” of weight w in the code generated by <Cg> This codeword

will even be unique, as for any ¢’ # ¢ € C, wt(c'+¢é) = wt(c'+c+e) > wt(c' +c¢)—wt(e) >
d — maz weight > w.

The first probabilistic alternative to exhaustive search that we present is quite sim-
ple [?, ?]. Given G, randomly select k linearly-independent columns; this is called an
information set. Then permute these columns to the first k£ positions of G, and compute
the reduced row-echelon form (i.e. compute an alternative generator matrix G’ in system-
atic form, associated to the selected information set). Finally, check if any of the resulting
k rows have a weight less than the input bound. The idea behind this algorithm is that
any row of the obtained systematic encoder has by definition a very low weight of exactly
one on its first k positions, and the weight on the remaining n — k positions depends on
a random codeword linear combination. One then hopes that for some information sets,
the weight on these latter positions we also be small, resulting in an overall low-weight
codeword. In other words, the algorithm will return a weight-w codeword after examining
a given information set if it is s.t. there is a codeword of weight 1 over the information
set and of weight w — 1 over its complement, the redundancy set.

There is also a simple interpretation of this algorithm if one directly thinks of it in a
“decoding” sense. An information set is by definition a set of positions that carries enough
information to fully determine the message corresponding to a codeword. Indeed, given
the value of a codeword on an information set, one can reconstruct the entire (non-noisy)
codeword by simply applying an encoder systematic w.r.t. this set; it is then easy to invert
the encoding to go back to the original message. Thus, what the above does is (randomly)
trying to find an information set over which the error vector is all-zero.

A variant of the above first algorithm due to Lee and Brickell [?] consists, for each
information set, in checking the weight of all linear combinations of rows of G’ of weight
less than a small value p (typically 2 or 3). This somehow amortizes the cost of computing
G’ by considering more codewords for each matrix, as now the algorithm returns on a
given information set if a codeword’s weight splits as (i,w — i),1 < i < p over itself and
its complement. Also, note that for binary codes, computing all of these can be done
particularly efficiently by using Gray codes.

Another variant due to Leon aims to reduce the practical cost of checking the weight
of a codeword, and is thus mostly useful for long codes. The idea is simply to first check
if a codeword generated from the above procedure has a small weight on a few positions
(i.e. to first consider a short punctured code), and only to look at the entire codeword in
that case. For instance, if one requires the punctured codeword to have weight zero on
its redundancy set of size [, one is in effect searching for codewords whose weight splits as

https://www-ljk.imag.fr/membres/Pierre.Karpman/cry_adv2018_codes.pdf

https://www-ljk.imag.fr/membres/Pierre. Karpman/cry_adv2018_codes.pdf

(7,0,w —1),1 < i < p over the information set, and the non-punctured (resp. punctured)
redundancy positions.

While this approach looks at fewer candidates per information set as the Lee-Brickell
algorithm, this is hoped to be counter-balanced by more efficient implementations.

Another algorithm due to Stern still follows the overall same approach, but improves
the time complexity at the cost of some memory [?]. The key idea is to split the search
space into two lists and to exploit collisions to obtain a quadratic speed-up at some stage
of the search. Starting from the initial algorithm, one splits the information set into two
subsets 1 and I5, and forms the lists A; and As of codewords of weight less than p on each
subset respectively. Then one only fully checks the weight of codewords formed by the sum
of elements of A1 and As that are identical over [prescribed positions Z of the redundancy
set. One is then searching for codewords whose weight splits as (i, 7,0, w—i—7),1 < 7,5 <p
over I1, I, Z and the remainder.

It is essential to notice that for a given information set, checking for each of the
#MN1# A2 candidate codewords if it is of the above form indeed takes a cost linear in #A1 o
(by using an appropriate data structure).

Finally, one may remark that this algorithm takes more input parameters than the
previous ones. This, together with the fact that it is not memory-less may make it harder
to determine what parameter choice is best suited to a given code.

An important observation made by Canteaut and Chabaud [?] is that the most expen-
sive step in the above algorithms is the computation of the systematic encoder for a given
information set. They then suggest that instead of selecting a new independent informa-
tion set at every iteration, one may “update” the current set by randomly replacing one of
its columns by one column of the redundancy set, which is much more efficient. Further-
more, one can easily be convinced that after a few iterations, the obtained information set
will be essentially independent from the starting one, hence there is no risk that one gets
stuck in a small subset of the search space considered by the other algorithms.

We will conclude by describing how to efficiently update an information set. Let
G = (I A) be a systematic generator matrix; our objective is to compute G’ = (I A)
which is a generator matrix for the same code and equal to the reduced row-echelon form of
a matrix obtained from G by swapping one column I.; of the identity with one column A. ;
of the redundancy matrix. First notice that this latter process only results in a systematic
matrix if A.; is linearly independent from I\I. ;, which is equivalent to requiring that
A;; =1+#0. Second, the matrix A’ is simply obtained from A by adding the row A; to
every row Ay where Ay ; = 1. Indeed, this corresponds to the “reduction” step one needs
to perform after swapping the above two columns.

3 Learning Parity with Noise cryptosystems

In this section, we introduce the Learning Parity with Noise (LPN) problem, and its
application to the design of cryptosystems. The LPN problem is rather attractive because
of its very concise description. Let s € IF’QC, as F’;, e < Ber,;, where Ber,, is the Bernoulli
distribution of parameter 7; that is, Pr[e = 1] = 7. Then the LPN problem is to guess the
value of the scalar product s-a when given (a, s-a+e¢). An algorithm is then said to solve
this problem with advantage ¢ if it answers correctly with probability p and 2|p—1/2| = e.

It is clear that if n = 1/2, the distribution of @ - s + e is independent of a and s, and
no algorithm can succeed with a non-zero advantage. Similarly, without prior knowledge
about s and except when a = 0, one cannot hope to solve the problem given a single
query of the above form, even in the absence of noise (i.e. even when n = 0). It is then
natural to extend the problem to arbitrarily-many queries ¢, where the unknown (secret)

vector s is kept constant. One may then reformulate the problem as letting A & ngq,

https://www-ljk.imag.fr/membres/Pierre.Karpman/cry_adv2018_codes.pdf

https://www-ljk.imag.fr/membres/Pierre. Karpman/cry_adv2018_codes.pdf

e < Ber, , (that is, each bit of e € F has independent probability 1 to be equal to one),

and asking to distinguish (A, sA + e) from (A, u) where u < F4. An algorithm is then
said to (t,q) solve LPNy, , with advantage ¢ if it makes ¢ queries and has running time ¢.

It is now again clear that if n = 0, the problem is trivially solvable as long as rank(A) =
k, as it is then enough to identify k linearly-independent columns of A to recover s (which
then allows to predict all the other queries with advantage 1). In the more meaningful
case where n > 0, recovering s becomes equivalent to decoding a noisy codeword for
some random code of length ¢ (which is a parameter that may be chosen by the solving
algorithm). We will discuss this matter in more details in the next section, and focus
for now on some LPN-based cryptosystems whose security depends on the computational
hardness of this problem.

We first describe LPN-C, which is a family of symmetric encryption schemes defined by
Gilbert et al. [?]. While the confidentiality of an LPN-C instance reduces to the hardness
of a corresponding LPN problem, the scheme is inherently malleable and must thus be
used in conjunction with a MAC.

An LPN-C instance is parameterized by a random code length k, a noise level 7, a
message length r, and the parameters of an [m, r, d| binary code C, assumed to be efficiently
decodable up to w errors and s.t. Pr{wt(e) > w : e - Ber,,,] is small. The scheme works
as follows. The sender and the receiver first share a secret random matrix M € Fg X

Then, to encrypt an r-bit message a, the sender draws a vector a & F’§ and e < Bery ,,
computes y = C(x) + aM + e, and sends (a,y) to the receiver. To decrypt, the receiver
computes £ = y +aM = x + e, and uses the decoder of C to recover . The designers
of LPN-C proposed some parameters for secure instantiations of LPN-C, but without
specifying which code C to choose. An example is to take k = 768, m = 160, n = 1/20,
r="175,d=25.

An informal way to argue about the security of this scheme is that if one uses param-
eters for which the LPN problem is hard to solve, then the (encoded) message C(x) is
whitened by a pseudo-random mask aM + e which is hard to distinguish from random,
and is thus encrypted by a secure “stream cipher”.!

We now turn to an LPN-based public-key cryptosystem due to Alekhnovich [?]. This
is a highly impractical design, as it only encrypts a single bit and the decryption of “1”
fails with probability 1/2. It is however of theoretical interest, and is rather simple to
describe.

This scheme is parameterized by an integer n, from which one derives m = 2n, k =

A
n'/?=¢ n = k/n. The public key is a matrix A’ € F3™*™ generated as (é) where

~

AL F3*™ é=xA+e x & F3, e < Bery,,. The private key is the vector e. In other
words, one defines a random [2n,n| code with generating matrix A and augments it with
a low-weight codeword e to the code C generated by A’. One can indeed check that e is
in the span of A’ as it is equal to (m 1) A’} This augmentation is however done in a
“hidden” way, as recovering e from A’ is a (hard) decoding problem for the code defined
by A.

To encrypt one bit for the public key A’, the sender proceeds as follows. To encrypt the
bit 1, it sends a vector oy & FZ'. To encrypt the bit 0, it computes and sends cvg = d+¢€’,
where €' < Ber,;, and d is a uniformly random element of Ct. The receiver computes
the decryption of a as « - e.

#There is a slight difference between this setting and the actual definition of LPN that we have used:
here the matriz is secret and the vector a is public. Yet, this simply corresponds to m “single” queries for
m independent secrets batched together into M.

$One may also remark that for the chosen parameters, e ¢ span(A) with high probability. In the
unlikely event where this would be the case, one can simply choose another vector and try again.

https://www-ljk.imag.fr/membres/Pierre.Karpman/cry_adv2018_codes.pdf

https://www-ljk.imag.fr/membres/Pierre. Karpman/cry_adv2018_codes.pdf

It is quite immediate to see that upon receiving a1, decryption will fail with probability
1/2. It is a bit less obvious that the decryption of ag is more successful. In that case, the
receiver computes ag-e =d - e + e - €. Because d € C*, e € C, this simplifies to e - €.
Finally, the probability that e and e’ have a non-disjoint support is =~ (1 — 1), which is
negligible.

We already have informally argued that computing the secret key e from the public
key A’ reduces to a hard decoding problem. We may now also remark that distinguishing
o from o reduces to an LPN-like problem for a generating matrix of C*. Alekhnovich
then showed that the latter is computationally indistinguishable from a random matrix,
which allows to conclude the reduction to LPN.

We conclude this overview by describing an LPN-based symmetric authentication pro-
tocol named Lapin [?]. Strictly speaking, Lapin is based on the Ring-LPN variant of the
problem, whose aim is to decrease the communication complexity. We will first describe
it in the LPN framework, and will address this difference next.

A challenger and a verifier share two secret vectors s, ' € F. To authenticate the

challenger, the verifiers draws C & F3 " and send it to the former. The challenger

then draws R <& GL(n,Fy), e + Ber, », and sends (R, (sC + s')R + e). The verifier
then recovers e and validates the challenge if it is of weight less than unn for some small
acceptance threshold pu.

The Ring-LPN variant of the protocol works similarly, but works over rings of the form
Fo[X]/(f), for some polynomial f. The challenge matrix C is replaced by a ring element
m(c), ¢ € T, where 7 is a mapping verifying some conditions; the matrix R is replaced
by an invertible element of the ring r; the secrets are now also ring elements s and s,
and so is the error e (still drawn from a Bernoulli distribution, when seen as a vector).
The message sent by the challenger is then simply (r, (sw(c) + s')r + €). The advantage
of this variant over the matrix version of the protocol is that the ring elements (esp.)
have a much more compact representation of size ~ n than n x n random matrices, which
essentially decreases the communication cost by a factor n. However, the security now
depends on the hardness of decoding codes posessing some structure, which may allow for
more efficient algorithms.

Finally, a (still informal) way to argue about the security of this protocol is to notice
that the challenger’s answer can be written (in the original LPN case) as sSCR+ s'R+r.
In other words, one is masking the string challenge-and-secret-dependent string sC' R by
an LPN query s'R + e, which is by assumption computationally indistinguishable from
random.

4 LPN solving algorithms

It is quite clear that solving an LPN instance can be done by using generic decoding
algorithms. Indeed, one may simply try to solve the search variant of the LPN problem,
which on sA + e tries to recover s, i.e. tries to decode a noisy codeword of the code
generated by A. As solving the search problem allows to solve the distinguishing problem
as well, the hardness of LPN is not more than the one of decoding.

One subtlety that we already mentioned is that an LPN-solving algorithm is free to
choose the number of oracle queries it wants to use, i.e. the length of the code it wishes to
decode. Surely this has to be sufficiently large to even make a successful decoding possible
(for instance one may try to ensure that there is at least one error-free information set
w.h.p.), but there is no similar constraint on the maximum number of queries.

We will now describe an algorithm that specifically exploits the ability to make many
queries in an LPN problem to decrease the time complexity for solving the (search) prob-
lem (at the cost of a potentially huge increase in memory and query complexity). This

https://www-ljk.imag.fr/membres/Pierre.Karpman/cry_adv2018_codes.pdf

https://www-ljk.imag.fr/membres/Pierre. Karpman/cry_adv2018_codes.pdf

algorithm was first described in this context by Blum, Kalai and Wasserman [?], and is
traditionally called BKW; we heavily base our presentation on the variant described by
Bernstein and Lange [?].

We first describe a simple variant of BKW. An intuition behind the algorithm is that
given sufficiently many LPN queries s - a + e with a fized, vector a, one can efficiently
recover one bit of s (viz. s-a) using a majority vote among the samples. This requires
2 samples, where ¢ = 1 — 21 (0 < 7 < 1/2) is the correlation of the noise. Repeating
this process for k linearly independent masks a leads to a full recovery of s.

Of course, as the masks a of LPN queries are uniformly random, collecting enough
samples for a single one is equivalent to observing a c¢~2-multi-collision, which requires
ok-(c72=1)/c™? o ok samples, so this does not really improve on the exhaustive search of
the secret. The idea behind BKW is then to artificially create samples of the above form
by combining many random ones; this may provide enough samples to apply majority
decoding, but each sample is now “noisier”, and one must then find a proper tradeoff.

More precisely, BKW proceeds as follows. To solve an instance of LPN with noise level
n (i.e. noise correlation ¢ = |1 — 27n|) and dimension k with ¢ queries making a pool Py,
we start by fixing a block-size parameter b. Then one creates a table T of size 2° and an
updated pool Pj, both initially empty. Next, for each sample x = (a,v =a-s+e¢) € P,
do the following;:

~Cc

1. Call i the integer value corresponding to the last b bits of a. If T'[i] = 0, update it
as T[i] <= (a,v).

2. Else, retrieve (a’,v) from T'[i] and update = as (a,v) <= (a + a’,v +v') and store it
in Pl.

At the end of this process, and provided that ¢ > 2°, there are ¢ — 2° samples in P; which
all have their masks a equal to zero on their last b bits. However, the corresponding dot
products indeed became noisier, the correlation ¢ having been squared.Y One may now
clear the table T of all its entries and start this process again, obtaining a pool P of
q — 2Y*1 samples with masks whose 2b last bits are zero and noise correlation ¢*, etc., up
to a pool P, of ¢ — t2° samples with masks with tb zeroes and noise correlation .

The original algorithm chooses ¢ and b s.t. tb = k — 1, that is the last pool is made
of samples with masks a of the form (0, ...,0), which are useless, and (1,0,...,0), whose
corresponding v values can be used to find the first bit of s by a majority vote. This latter
step will succeed w.h.p. if #P, ~ 2 Finally, the remaining bits of s are iteratively
retrieved using the same process.

We now introduce a first optimization to the above algorithm, due to Levieil and
Fouque [?]. Let [be a second “block size” parameter, corresponding to an exhaustive
search step. The goal is to guess s by blocks of | bits instead of blocks of 1; the first
iteration of BKW is then stopped at tb = k — [. At that point, one has N := ¢ — ¢2°
noisy dot products with masks a; whose [first bits only may be non-zero.! Let y € F’g
be a vector whose k — [last bits are zero; the idea is to notice that if y and s are equal
on their first [bits, then a; - y = a; - s. Consequently, for every sample (a;,v;), one has
a; -y +v; = e; (where e; is an aggregated error of some correlation ¢’ coming from the
pool creation) which is then one with non-uniform probability (1 — ¢’)/2. On the other
hand, if y and s disagree on their last bits, a; - y + v; = a; - (y + s) + e; for a non-zero
term y + s, and from the uniformity of a; on its first [bits, this expression is one with

TOne can check that the probability of error is 2n(1—n) = 2(n—n?), giving a correlation 1 —4(n—n?) =
(1—2n)*

INote that as N > [, non-noisy approximations would indeed allow to uniquely recover the first [bits
of s.

https://www-ljk.imag.fr/membres/Pierre.Karpman/cry_adv2018_codes.pdf

https://www-ljk.imag.fr/membres/Pierre. Karpman/cry_adv2018_codes.pdf

probability 1/2 exactly. If N ~ ¢/72, it is thus possible to distinguish the value of y that
matches s to recover its last [bits.
The full process for one block of size [is as follows:

1. For all 2! candidates y; for the first [bits of s, compute &, = Z;.V:O(_l)aj-y#vj
(where the sum is over Z).

2. Return the y; for which |é,,| is largest.

A key algorithmic observation is that, the above is similar to the computation of the
Hadamard-Walsh spectrum of the Boolean function ¢ — wv;, for which fast algorithms
exist. One can indeed remark that for y and ¢’ that differ only on a single bit, on position
I (w.lo.g.), if we write y” the common part of the two vectors of length [— 1 and ajl (resp.

a(;) the masks whose I'" bit is 1 (resp. 0); then we have the following; let

A= (=0m v, Bi= Y (—DwY A=y ()Y,
al al
J J

1
a;
J

and ¢y = A+ B, ¢y = —A+ B, and this equality can be applied [times recursively.

The above idea can be further optimized by first applying a transformation on the
LPN samples in order to reduce the problem to finding an equivalent low weight secret.
This idea is due to Kirchner [?] and works as follows. Denote A the full matrix of the
masks of ¢ queries to an LPN oracle of dimension k. Let A; be an information set of k
linearly-independent columns of A, and let As denote k columns of A not in A;. The key
observation is that the sum (sA; + el)AflAQ + sAy + ey simplifies to elAf1 + es. In
other words, one can transform the 2k queries w.r.t. masks A; and A, for the secret s into
k queries for the “secret” e;, whose expected Hamming weight is given by the noise level
7, and is then strictly less than k/2. The same transformation can be applied many times
by changing Ay, and one can then run a BKW algorithm to retrieve e; (which obviously
immediately leads to s). There is no particular advantage in using this transformation
when applying the original BKW algorithm, but when one guesses the secret by block, it
becomes enough to guess secrets of low weight, which reduces the search space. Finally,
note that the joint computation of the many correlations ¢, can still be done efficiently
for those sparse secrets.

We conclude this section by mentioning that even prior the publication of the BKW
algorithm, Bleichenbacher described a similar algorithm to exploit biased DSA signa-
tures [?, ?]. Recall that in a DSA (or Schnorr) signature, the signer provides a pair
(c,r + cx), where x is a secret exponent, ¢ is random and depends on the message to be
signed, and r is a random mask. If r is uniform, the secret cz is blinded by a one-time-
pad and nothing can be learned. But if r is biased, then one obtains a problem of noisy
decoding similar to LPN. Bleichenbacher’s algorithm to retrieve x from many signatures
consists in combining samples to zero some of their bits, and to apply a fast Fourier trans-
form to recover, say, 40 bits of the secret. The original bias exploited by Bleichenbacher
was a small modulo bias: instead of taking r uniformly in S, #S ~ 2'90 it was uniform
over [0,...,2'% — 1] and then reduced modulo #S. Finally, we remark that similarly to
information-set decoding style algorithms, one can also recover a DSA secret using fewer
sample signatures with biased masks by finding short vectors in a Euclidean lattice [?].

5 The Goldreich-Levin theorem

In this section, we present the application of list decoding to a proof of existence of hard-
core predicates for one-way functions, due to Goldreich and Levin [?]. Informally, the

https://www-ljk.imag.fr/membres/Pierre.Karpman/cry_adv2018_codes.pdf

https://www-ljk.imag.fr/membres/Pierre. Karpman/cry_adv2018_codes.pdf

objective is to show that if F': {0,1}" — {0, 1} is a one-way function, in the sense that
it is hard to find a preimage x given F'(x), then it is also hard to predict (with probability
significantly away from 1/2) the value a - «, for any a € Fy (where & € F3 is the canonical
embedding of z € {0,1}"). A possible proof is to show that if one is given a prediction
oracle for (several) a - & with correlation ¢, then one can reconstruct w.h.p. with time
and memory complexity ¢=2. Thus, if “it costs at least T to invert F”, one has that
it is impossible to predict the value of any of the above predicates with correlation (=~
advantage) better than 1/v/T.

One first subtlelty that deserves to be mentioned is that because of the nature of the
result we want to prove, the predicate oracle that we will use to invert F' can only be
called once for a given mask a: indeed, it makes no sense to define different predictions
a - x several times as « itself is fixed. On the other hand, the mask a can be chosen freely.
This is to be contrasted with, say, an LPN setting, where one is given a - s for random
masks a, that may still be potentially equal, in case of unlikely collisions. Yet in either
case the effect is the same: it is (by definition or computationally) feasible to recover x
by recovering enough biased predictions or samples with the same n-linearly independent
masks. Finally, an accurate modelisation of the oracle’s power in terms of codes is to
say that if A € ngq has ¢ pairwise distinct columns, querying a prediction oracle with ¢
masks A and advantage ¢ (meaning that a prediction is correct with probability p > 1/2;
2p — 1 = ¢) is equivalent to obtaining a noisy codeword xA + e with e < Ber,, ¢,
n=1/2—¢/2.

A second essential remark is that F' and F(z) are both known to the adversary. Thus,
as soon as one knows a “small” list L that contains x w.h.p., one can recover x uniquely
by mapping F to L and comparing the result to F(z) (here we assume that L does not
contain collisions for F', which is true w.h.p. if it is small).

Putting the two remarks together, what we need is an efficient list-decoding algorithm
for a code generated by a matrix A with pairwise-distinct columns. In the remainder, we
will give exactly such an algorithm for a punctured first-order Reed-Muller code.

Let V € FSX(TH) be a projection matrix of rank r + 1, where 2" ~ (1 — 27) 2 = ¢~2
is the number of samples to distinguish the uniform distribution from Ber, w.h.p., and
whose first column is a unit vector b; (corresponding to the bit x; that one wishes to
recover); let y = 2V € Fgrﬂ) be the projected message; let W € Fg’ﬂ)wr be the matrix
whose first row is all one and whose r x 2" lower block is made of all the vectors of I}; let
z = yW , and remark that if y is seen as a degree-1 Boolean function in r variables, then
z corresponds to the first-order Reed-Muller RM(1,7) encoding of y. Now the problem
is: given a noisy codeword 2 = z + e, recover z;. If the noise level is low, one can simply
use an efficient decoding algorithm for a Reed-Muller code. However, if 7 is close to 1/2,
the expected weight of e is 2"n ~ 2"~! which corresponds to the minimum distance of
RM(1,r), and unique decoding is not possible anymore. An observation that may not
seem extremely useful at first is that despite a high-level of noise, one can obtain a list of
2" possible values for z; in the following way: 1) guess the value of y[1,...,r| and build a
matching vector y', with y'[0] = 0; 2) compute 2’ = 2 + y'W; 3) if wt(z') > 2771, guess
x; = 1, else guess x; = 0. Now the crucial point is that this process can be in fact jointly
applied to all the bits of x by using the same projection matrix V', up to its first column.
By doing so, the guess for the value of the last r bits of y can be reused for every bit of x
to obtain a list of 2" consistent predictions for x in its entirety.

References

[MS06] Florence Jessie MacWilliams and Neil James Alexander Sloane. The Theory of
Error-Correcting Codes. North-Holland Mathematical Library. North-Holland, 12

https://www-ljk.imag.fr/membres/Pierre.Karpman/cry_adv2018_codes.pdf

https://www-1jk.imag.fr/membres/Pierre. Karpman /cry_adv2018_codes.pdf

edition, 2006.

10

https://www-ljk.imag.fr/membres/Pierre.Karpman/cry_adv2018_codes.pdf

	First definitions; examples
	Information set decoding
	Learning Parity with Noise cryptosystems
	LPN solving algorithms
	The Goldreich-Levin theorem

