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1 First definitions

A block cipher is a family of invertible mappings indexed by a key: E : K ×M →C , where both
E and its inverse E−1 are “efficiently computable”1. In practice, we only care about ciphers for
which M = C , meaning that E defines a family of permutations over M . In the vast majority
of cases, we also have M = {0,1}n for some integer n, often equal to 64 or 128 (though smaller,
larger, and intermediate values are possible). In some corner cases, however, it may be that M

has a different structure, for instance all integers smaller than a certain N , or the set of valid
credit-card numbers. This is the concern of format-preserving encryption, which will not be
addressed in this course. Note that as long as cryptography is implemented on digital circuits,
there is no similar incentive to take K of another form than {0,1}κ. To summarize, we will use
the following definition.

Definition 1 (Block ciphers). A block cipher is a family of mappings E : {0,1}κ× {0,1}n → {0,1}n

such that for all k ∈ {0,1}κ, E (k, ·) is a permutation. The quantities n and κ are positive integers,
called the block size (or length) and key size, respectively.

Block ciphers are important primitives in symmetric-key cryptography. When used with a
suitable mode of operation, they allow to ensure the confidentiality and authenticity of data.
We will not address the issue of modes in this course, but it is important to remember that they
are essential; without a proper mode, a block cipher is mostly useless.

There are many constructions that satisfy Definition 1, but not all of them are useful in a
cryptographic context. For instance, E such that for all k the mapping E (k, ·) is the identity is
not terribly good at providing confidentiality. We thus need to express one or several security
properties that should hold for a “good” block cipher. Intuitively and informally, we typically
require that:

1. Given x0, . . . , xm ,E (k, x0), . . . ,E (k, xm), it should be “hard” to find k, even if the xi s span
the entire message space {0,1}n . An attack violating this property is called a key-recovery
attack2.

2. Given x0, . . . , xm ,E (k, x0), . . . ,E (k, xm) and y0 (resp. E (k, y0)), it should be “hard” to learn
information about E (k, y0) (resp. y0) (except that it is distinct from the E (k, xi )s (resp.
xi s)). An attack violating this property is usually called a distinguishing attack.

The first of these informal properties is maybe the most obvious one to think of, but it is not
sufficient in itself to capture all the desired properties of a block cipher. For instance, one may

1As concrete block ciphers (usually) fix all their parameters, there is not much sense to argue about this efficiency
in terms of asymptotic complexity, and we will not attempt to give a precise definition of what “efficient” means in
this context.

2More generally, we may require that it should be hard to recover k ′ s.t. E (k, ·) = E (k ′, ·) on most inputs.
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consider a cipher E for which key-recovery attacks are hard, but such that for all k, E (k,m) = m
whenever m starts with a zero bit. It is quite clear that such an E does not provide adequate
confidentiality.

In order to be more precise about our requirements for good block ciphers, it is useful to
first consider ideal block ciphers. This allows to set a standard for any security property we
might be interested in, as these should be “maximally hard” for an ideal cipher. A concrete
(non-ideal) cipher E is then considered to be secure if it is hard to decide if one is interacting
with E or with an optimally-secure ideal cipher.

The definition of an ideal cipher is quite simple: it is simply a block cipherE such that for all
k, E(k, ·) is a permutation uniformly drawn at random among all permutations over the same
domain. Thus, all keys ofE define completely independent mappings that are all equally likely
to be selected. Fixing the notation, we have the following definition.

Definition 2 (Ideal block cipher). LetΠn denote the set of all 2n ! permutations over {0,1}n . For
any finite set S , we write x

$←− S the uniform sampling of x over all elements of S . Then, an

ideal block cipher is a cipherE : {0,1}κ×{0,1}n → {0,1}n such that for all k ∈ {0,1}κ,E(k, ·) $←−Πn .

Note that not all ideal ciphers are in fact secure. For instance, when randomly sampling an
ideal cipher, there is a 1/(2n !×2κ) chance thatE be defined as the insecure identity-everywhere
cipher. However, we claim that the odds of picking an “insecure” cipher are small enough for
this eventuality to be ignored altogether.

As already said above, one may use the notion of an ideal cipher to define the security of
a concrete one by how easy it is for an adversary to decide if he is interacting with an ideal
cipher or not. This corresponds to the notion of pseudorandom permutation (PRP). Informally,
this notion is expressed by having an adversary interacting with an oracle O which is randomly
chosen to be either of E (K , ·) or E(K , ·) for a random key K (as E is ideal, the latter case is
simplified by dropping the key and simply asking that E be a uniformly chosen permutation).
Then one considers what is the best advantage over a random choice that an adversary has of
deciding how O was instantiated.

It seems clear that the advantage should in fact be a function of the data complexity (the
number of queries to O ) and of the time complexity (where the unit is generally the time it takes
to evaluate E ) of the adversary. For instance, this accounts for the fact that any cipher (even an
ideal one) of key size κ can be broken by exhaustive key search in time 2κ, and yet could still be
secure if the adversary only has more limited resources. We then define the PRP security of E

through the following PRP advantage function (see e.g. [BKR00, BR]).

Definition 3 (PRP advantage). The PRP advantage of E : {0,1}κ× {0,1}n → {0,1}n is defined as:

AdvPRP
E (q, t ) := max

Aq,t

∣∣∣Pr
[

AO
q,t (·) = 1 : O

$←−Πn

]
−Pr

[
AO

q,t (·) = 1 : O = E (K , ·),K
$←− {0,1}κ

]∣∣∣ ,

where AO
q,t denotes an adversary A who makes at most q queries to its oracle O , runs in time at

most t , and returns a unique bit.
A similar notion of strong PRP (SPRP) can be defined, where the adversary is additionally

granted access to the inverse of O .

Now we can use Definition 3 to formulate some requirements about the security of a “good”
block cipher E . As, we would ideally want E to behave as close as possible to an ideal cipher
E (defined over the same domains), i.e. we wish that AdvPRP

E (q, t ) ≈ AdvPRP
E (q, t ) for all q , t (for

instance, we would like to have AdvPRP
E (1, t ) ≈ t/2κ). By abuse of terminology, we usually say of

such an hypothetical cipher that “it is a PRP”.
Note that breaking PRP security does not even require to recover the key k when O = E (k, ·),

which was one of the informal goals stated at the beginning of this section. As recovering the
key does however allow to break PRP security, focusing only on the latter does not weaken the
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requirements on E , and allows to capture the second informal goal of resisting distinguishing
attacks.

The notion of PRP is useful to express desirable properties for concrete block ciphers. How-
ever, it is in itself useless to actually evaluate their security. That it is to say, the definition pro-
vides very little insight into how to compute e.g. AdvPRP

AES-128. It is in fact the goal of cryptanalysis
in general, by finding explicit attacks, to lower-bound the advantage function for specific ci-
phers and complexities.

2 An ideal construction

We now present a generic construction of block ciphers due to Even and Mansour [EM91,
EM97], which is very simple yet of considerable interest. Let P : {0,1}n → {0,1}n be a “public”
(i.e. not secret) permutation, then one simply defines the Even-Mansour cipher built from P as
E (k1||k2,m) :=P (m⊕k1)⊕k2, for all keys (k1||k2) of 2n bits and all messages m. In fact, we can
also go for an even simpler definition by taking k1 = k2, thence obtaining E (k,m) =P (m⊕k)⊕k.
What is remarkable is that both of these constructions can be proven to be good PRPs, assum-
ing that P is itself a “good” permutation. Intuitively, this implies for instance that P should not
admit efficient distinguishers, in line with our second intuitive requirement for a block cipher.
However, this is not an easy notion to formalize; the approach taken by Even and Mansour to
prove their construction is then to only allow an adversary to make black-box oracle queries
to P . A possible interpretation is then to consider this number of queries itself to denote the
“time complexity” of the attack.

2.1 Proof sketch

The security theorem proved by Even and Mansour does not use the notion of PRP, which was
not formalised at the time. Instead, it proves that the success probability of an adversary for
the existential forgery problem (EFP) is upper-bounded by O(DT /2n), where D is the number
of queries to E or its inverse (with an unknown fixed random key) and T the number of black-
box queries to P or its inverse. In other words, the scheme achieves security up to the birthday
bound. Note however that the proof can be adapted to a PRP setting, but we will rather focus
on the original formulation.

The EFP attack considered here does the following: the adversary is first given access to
E (k, ·), E−1(k, ·), P and P −1 to make any query he wants; then, he must provide a pair (p,c)
such that E (k, p) = c, and neither p nor c was queried for the E or E−1 oracle respectively.
One can show without much trouble that this attack is not easier than decrypting a challenge
ciphertext without knowing the key, or more generally recovering an unknown key.

We now briefly sketch the proof. The idea is to keep track of all queries made by the ad-
versary and to count the number of possible bad keys. These are the keys whose consistency
with P and E was “checked”. After the last query is made, if the actual key is marked as bad,
we assume that the adversary won. Otherwise, one can show that all good (i.e. not bad) keys
have the same probability of being the actual key, and their number determines the success
probability of the adversary. More precisely:

• A key k is bad if the adversary made a query relating x and y through P (i.e. queried
P on x or P −1 on y) and a query relating x ′ and y ′ through E such that at least one of
x ⊕ x ′ and y ⊕ y ′ is equal to k. Indeed, if k were the correct key used in E , we would have
y ′ = E (k, x ′) =P (x ′⊕k)⊕k, so x = x ′⊕k ⇔ y ′ = y ⊕k, which is a property that can easily
be checked from the queries.

• A key is good if it is not bad.

One can then see that the number of bad keys is at most approximately equal to the number of
queries to P times the number of queries to E , and the theorem mostly follows.
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2.2 Generic attacks

An important and common question that arises in the context of security proofs such as the one
above is the question of tightness. That is, we are interested in knowing if the actual security
of a construction might be better than what the proof provides, or if there exists an attack with
a complexity matching the provable bound. Ideally, we would like all proofs to be tight. If the
status of a proof is not known, it is a natural research problem to either find an attack matching
the bound of the proof or a better proof matching less efficient attacks.

In the case of the Even-Mansour construction, it was quickly found out by Daemen that the
proof is indeed tight [Dae91]. In fact, it is quite straightforward to extract an “optimal” attack
strategy from the proof sketch as given above. Several variants of what is generically called slide
attacks exist (see e.g. [DKS12]), and we sketch two of them. The first one works as follows:

1. Pick N distinct random values xi , query E (xi ) and P (xi ), and insert their sums yi :=
E (xi )⊕P (xi ) along with xi in a table.

2. For all i , j such that yi = y j , return xi ⊕x j as a key candidate.

First, let us show that if the unknown key k is equal to xi ⊕ x j for some (i , j ), the test in step 2)
will indeed return k as a candidate. This is straightforward, as by definition we have:

yi =P (xi ⊕k)⊕k ⊕P (xi ) =P (x j )⊕k ⊕P (x j ⊕k) = y j .

Now what is the probability (in function of N ) that this event happens? As the xi s are chosen
randomly, their differences form N · (N −1)/2 (non-necessarily distinct) random values, hence
the probability that one of these is equal to k is roughly N 2/2n . This already matches the bound
of the security proof, however, we can go further and show that the attack can still be efficiently
implemented if one additionally considers its time3 and memory complexity (which are not
accounted for in the theorem). First, by using a suitable data structure (e.g. a hash table), one
only needs O(N ) memory to store the N (xi , yi ) pairs, and every collision can be detected in
constant time. Thus, we only need to look at the expected number of collisions and show that
it is not more than N . If we make the reasonable assumption that x 7→ E (x)⊕P (x) behaves as a
random function, then the expected number of collisions is O(N 2/2n), which is much smaller
than N for N ¿ 2n . We thus only expect a few “false positive” suggestions for k before finding
the correct value and stopping the attack. Putting everything together, this attack has a time,
memory, and data complexity of N , and a success probability upper-bounded by O(N 2/2n).

We only describe, and do not analyse the second attack. Unlike the first, it actually requires
the keys k1 and k2 to be identical (the previous did not, even though it was presented in this
simplified case), but it allows to trade queries to E for queries to P . That is, it succeeds with
probability upper-bounded by DT /2n with D and T free to take any value, whereas the previous
attack required D = T . This attack works as follows:

1. Pick D distinct random values xi , query E (xi ), and insert yi := E (xi )⊕xi along with xi in
a table.

2. Pick T distinct random values x ′
i , query P (x ′

i ), and insert y ′
i := P (x ′

i )⊕ x ′
i along with x ′

i
in a table.

3. For all i , j such that yi = y ′
j , return xi ⊕x ′

j as a key candidate.

3We referred to the black-box queries to P as the “time complexity”. While it is indeed reasonable to consider
this as a lower-bound on the time complexity of an attack that does not exploit structural properties of P , an actual
attack algorithm such as the one above might imply additional processing beyond computations of P .
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2.3 Generalisations

There are several ways to generalise the Even-Mansour constructions, beyond the simple vari-
ant taking k1 = k2 that we already considered. One direction is to consider a block cipher
E ′ : {0,1}κ× {0,1}n → {0,1}n instead of a public permutation P . This gives the “FX” construc-
tion E (k||k1||k2,m) := E ′(k,m ⊕k1)⊕k2, which was first suggested by Rivest and then analysed
by Kilian and Rogaway [KR01]. Using a method similar to the one of Even and Mansour, they
proved that the PRP advantage (this time exactly in the sense of Definition 3) of an adversary
attacking E is upper-bounded by D ·T /2κ+n−1, where D represents the number of queries to
the unknown oracle O and T represents the “time complexity” of black-box accesses to the un-
keyed E ′. One can see in particular that by taking κ= 0, i.e. fixing E ′ to be a public permutation,
this upper-bound essentially matches the one of the Even-Mansour scheme.

Another natural way to generalise the scheme is to compose it with independent instanti-
ations of itself, i.e. defining E (k1||k2|| . . . ||kr+1,m) as P r (. . .P 1(m ⊕k1)⊕k2) . . .)⊕kr+1. Chen
and Steinberger showed that this achieved a PRP security up to O(2

r n
r+1 ) queries [CS14], while

Lampe and Seurin showed an indifferentiability property for the twelve-round iterated scheme
that uses distinct permutations P 1, . . . ,P 12 but equal keys k1 = . . . = k13 [LS13]. However, in-
terestingly, the simplest and most economical way to compose an Even-Mansour scheme, i.e.
taking r identical permutations and r +1 equal keys does not work, in the sense that it does not
provide much more security than the original non-iterated scheme. Let us show why.

Consider E (k,m) := P (. . .P (m ⊕ k) . . .) ⊕ k for an arbitrary large number of applications
of P . We first observe that if two values x and x ′ are related by x ′ = x ⊕ k, then E (P (x ′)) =
P (E (x))⊕k, and by symmetry E (P (x)) =P (E (x ′))⊕k. It follows that:

E (P (x))⊕P (E (x)) =P (E (x ′))⊕k ⊕P (E (x)) = E (P (x ′))⊕P (E (x ′)).

Thus, we can attack E with probability ≈ 1 by picking 2n/2 random values x and looking for
collisions for the function x 7→ E (P (x))⊕P (E (x)), each of them suggesting a candidate value
for k. Note that unlike the attacks on the non-iterated Even-Mansour scheme, this one requires
chosen plaintexts (but variants requiring only known plaintexts also exist, for instance by con-
sidering collisions between the lists {P (E (x))⊕x} and {E (x)⊕P −1(x)}).

3 Related-key attacks

So far, we only focused on attacks from adversaries who could only access a single oracle, for
instance corresponding to E (k, ·) for an unknown key k. A way to increase an adversary’s power
is then to allow access to a family of oracles, for instance corresponding to {E (ϕ(k), ·), ϕ ∈Φ},
still for an unknown key k, and Φ a set of related-key functions {0,1}κ → {0,1}κ. That is to say,
the adversary is given access to E with several unknown keys that are related one to another
through the elements ofΦ. We call related-key attack an attack that corresponds to this model.

The security requirements associated with related-key attacks are the same as for the single-
key case. For instance, we can informally state that it should be hard to recover the unknown
k for a cipher to which we are given related-key oracle access. It is also possible to define a
related-key (S)PRP notion that generalises the one of Definition 3, as was done by Bellare and

Kohno [BK03]. We let againE denote an ideal cipher, such that for all k, E(k, ·) $←−Πn . We write

E
$←−Πκn the uniform sampling of such a cipher. We define a related-key oracle E RK(·,K )(·) for a

block cipher E : {0,1}κ× {0,1}n → {0,1}n that takes a first input ϕ : {0,1}κ → {0,1}κ and a second
input m ∈ {0,1}n , and returns E (ϕ(K ),m). We then have the following.

Definition 4 (Related-key PRP advantage restricted to Φ). The related-key PRP advantage of E

with respect to the related-key classΦ is defined as:

AdvPRP-RKA
Φ,E (q, t ) := max

Aq,t

∣∣∣Pr
[

A
ERK(·,K )(·)
q,t = 1 : K

$←− {0,1}κ,E
$←−Πκn

]
−Pr

[
A

E RK(·,K )(·)
q,t = 1 : K

$←− {0,1}κ
]∣∣∣ .
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One can see that this definition is parameterized by the allowed related-key classΦ. In fact,
this parameterization plays a major role in how secure a cipher can be according Definition 4:
there are classes Φ with respect to which no cipher (even an ideal one) attains any meaningful
level of security. For instance, assume that Φ includes a constant function ϕ : x 7→ c; then an
adversary may simply query its related-key oracle on ϕ and an arbitrary c ′ and compare the
result with E (c,c ′); it succeeds with advantage close to one by answering 1 if the two values
match and 0 otherwise.

There are less trivial related-key classes for which similar problems occur. One of the per-
haps less intuitive examples is to consider Φ=ϕ⊕∪ϕ+, where ϕ⊕ = {x 7→ x ⊕∆, ∆ ∈ {0,1}κ} and
ϕ+ = {x 7→ x +∆, ∆ ∈ {0,1}κ} (with + denoting here the addition modulo 2κ). Remarkably, non-
trivial security is achievable w.r.t. ϕ⊕ orϕ+ in isolation. We will not explore this formally, rather
focusing on the intuition.

There are two key properties forΦ to allow non-trivial security. The first is that it be collision-
resistant, and the second that it be output-unpredictable. Collision resistance means that it is
hard to find two functions ϕ, ϕ′ such that ϕ(K ) = ϕ′(K ) for a uniform K . This is the property
that does not hold forϕ⊕∪ϕ+ and that can be exploited to mount easy attacks using this class.
However, it does hold trivially for, say ϕ⊕, as ∆ 7→ K ⊕∆ is a permutation for any K . The output
unpredictability property means that it is hard to guess ϕ(K ) for a uniform K ; more generally,
it should be hard to guess any of the elements of {ϕ(K ),ϕ ∈ X ⊆Φ} relatively to the size of X . It
is easy to see that this property does not hold ifΦ includes constant mappings, but that it does
forΦ=ϕ⊕.

We now illustrate the fact that if many related-key queries with different functions ϕ are
allowed, the security of any cipher degrades significantly. Consider a simplified attack setting
where the adversary interacts with a known cipher E with unknown key k and tries to recover
k. To do so, he is allowed oracle access to E (ϕ(k), ·), ϕ ∈ ϕ⊕. A good (in fact basically optimal)
attack that does not exploit any properties of E consists in querying E (k⊕∆,0) for 2κ/2 randomly
selected ∆ and putting the results in a list L along with the value ∆. Then the adversary tries
2κ/2 candidates k ′ for the key, each time computing E (k ′,0). Any match with an element of L

suggests a value for k, and one expects such a match with high probability.

3.1 Provably-secure constructions

Even when Φ is restricted to meaningful functions, the related-key model gives significantly
more power to the adversary. The collision attack sketched above is an example; another one is
to consider some very simple attacks on the Even-Mansour scheme. Let Φ include at least one
function of the form x 7→ x ⊕∆, then an adversary can distinguish an Even-Mansour scheme
from an ideal cipher by querying E (k ⊕∆,∆), E (k,0), and checking if the two values only differ
by ∆.

This attack does not contradict the security proof of Even and Mansour, as it requires related-
key queries that are not covered by the single-key proof. It does show however that a good
cipher in the single-key setting might be terribly broken in a related-key setting, even w.r.t.
“meaningful” related-key classes.

It is quite easy to see that the above attack also applies to iterated Even-Mansour schemes
when independent keys are used at every round. A slightly more involved but also very efficient
attack exists on the two-round scheme that uses identical keys. However, it was proven (in an
ideal permutation model similar to the one of the single-key proof) that using three rounds or
more with identical keys leads to a construction that is related-key secure w.r.t. ϕ⊕ [CS15, FP15].

3.2 Tweakable block ciphers

The fact that single-key and related-key security may be widely disconnected is part of the
reason why not all concrete block ciphers are designed to be related-key secure. This comes
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usually with the argument that resisting related-key attacks (for some a priori defined classes)
would add some computational overhead and that the model is altogether unrealistic, as no
properly designed protocol would allow an attacker to make related-key queries. We will not
delve into this debate whose implications are rather complex, instead giving an example of a
constructive use of related-key secure ciphers.

First, let us define tweakable block ciphers. These are simply block ciphers that take a sec-
ond parameter called a tweak, such that all distinct pairs of keys and tweaks define (ideally)
independent permutations. The difference between the key and the tweak is that the latter
is public and may be freely chosen by the adversary. Using simplified expressions for the do-
mains, we have the following.

Definition 5 (Tweakable block ciphers). A tweakable block cipher is a family of mappings Ẽ :
{0,1}κ× {0,1}θ× {0,1}n → {0,1}n such that for all k ∈ {0,1}κ, t ∈ {0,1}θ, E (k, t , ·) is a permutation.

Tweakable block ciphers are useful in that they allow to “diversify” a fixed-key instance
without selecting a new, independent key. In other words, two communicating parties may
first secretely share a secret key k with which to use Ẽ , and then publicly agree on a new tweak
for each message to be exchanged. The concept of tweakable ciphers was formalised by Liskov
et al. [LRW11], but already implicitly used for instance by Rogaway et al. to define an efficient
mode of operation [RBBK01].

A simple way to build a tweakable block cipher Ẽ from a “regular” cipher E is to define
Ẽ (k, t , ·) as E (k ⊕ t , ·). The security of this construction fully reduces to the related-key security
of E w.r.t. ϕ⊕, which may be non-trivial. For instance, this construction provably achieves a
meaningful level of security in the ideal permutation model if E is a three-round iterated Even-
Mansour scheme with identical keys. Note however that because of generic collision attacks,
the security is limited w.r.t. the number of different tweaks for which Ẽ is queried. The design
of similar generic constructions that are secure beyond the birthday-bound is a rather active
research topic.
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