Advanced cryptology (GBX9SY06)

Exercice

Pierre Karpman

2017-11

1 Meet-in-the-middle attack on a tweakable block cipher

The goal of this exercice is to describe Wang et al.'s attack [WGZ⁺16] on Mennink's original $\tilde{F}[2]$ tweakable block cipher construction [Men15a]. This scheme was claimed to have security up to 2^n queries (when instantiated with an n-bit block cipher), but it in fact suffers from a meetin-the-middle attack of complexity $2^{n/2}$. A patched version of $\tilde{F}[2]$ nonetheless achieves the resistance originally claimed [Men15b].

We first focus on the simple tweakable block cipher construction $\widetilde{E}:\{0,1\}^\kappa\times\{0,1\}^n\to\{0,1\}^n$ that from a block cipher $E:\{0,1\}^\kappa\times\{0,1\}^n\to\{0,1\}^n$ defines $\widetilde{E}(k,t,\cdot)=E(k\oplus t,\cdot)$. Consider adversaries who are given oracle access to $\widetilde{E}^\pm(k,\cdot,\cdot)$ with an unknown key k (i.e. the adversaries may obtain encryption (resp. decryption) of chosen plaintexts (resp. ciphertexts) with a chosen tweak), and who can as well compute E^\pm .

Q.1

Show that there is an adversary who runs in time t and makes q queries to its oracle that succeeds in recovering the key k with probability $\approx qt/2^{\kappa}$.

We now move to $\widetilde{F}[2]: \{0,1\}^{\kappa} \times \{0,1\}^{\kappa} \times \{0,1\}^{n} \to \{0,1\}^{n}$, where $\widetilde{F}[2]$ is defined from E in the following way:

- 1. $y_1 := E(k, t)$
- 2. $x_2 := y_1 \oplus p$
- 3. $y_2 := E(k \oplus t, x_2)$
- 4. $c := \widetilde{F}[2](k, t, p) = y_1 \oplus y_2$

Consider adversaries given oracle access to $\widetilde{F}[2]^{\pm}(k,\cdot,\cdot)$ and who can compute E^{\pm} , and wish to recover k.

Q.2

Show that $\tilde{F}[2]^{-1}(k, 0, 0) = E(k, 0)$.

Q.3

Show that knowing E(k,0), an adversary can further recover E(k,t) for any t, by making the query $\widetilde{F}[2](k,0,E_k(0)\oplus t)$

Q.4

Show that it is then possible to obtain $E(k \oplus t, const)$ for any value const by querying $\widetilde{F}[2](k, t, E(k, t) \oplus const)$

Q.5

Conclude by describing an attack that succeeds with probability $\approx qt/2^{\kappa}$, where q denotes the number of oracle queries to $\widetilde{F}[2]^{\pm}$.

2 The XKCD S-box

What is seriously wrong with the S-box depicted in this comic?

Figure 1: If you got a big keyspace, let me search it

References

- [Men15a] Bart Mennink. Optimally secure tweakable blockciphers. In Gregor Leander, editor, *FSE 2015*, volume 9054 of *Lecture Notes in Computer Science*, pages 428–448. Springer, 2015.
- [Men15b] Bart Mennink. Optimally secure tweakable blockciphers. *IACR Cryptology ePrint Archive*, 2015:363, 2015.
- [WGZ⁺16] Lei Wang, Jian Guo, Guoyan Zhang, Jingyuan Zhao, and Dawu Gu. How to build fully secure tweakable blockciphers from classical blockciphers. In Jung Hee Cheon and Tsuyoshi Takagi, editors, *ASIACRYPT 2016*, volume 10031 of *Lecture Notes in Computer Science*, pages 455–483, 2016.