Advanced cryptology (GBX9SY06)

Optional homework: invariant subspace attack on PONEY

2017-12

The goal of this homework is to find and analyse an attack for the fictional PONEY block cipher. PONEY was designed to be resistant against standard differential and linear cryptanalysis; unfortunately, it suffers from a serious distinguisher that succeeds with a very high probability, *independent of the number of rounds* used in the cipher. However, the success of the attack is conditioned on the key belonging to a certain subset of *weak keys*.

1 Poney specifications

PONEY is a lightweight cipher, with 64-bit keys and 64-bit blocks. Its round function is the composition of the parallel application of sixteen 4-bit S-boxes, a bit permutation, and a round-key addition.

1.1 The S-box of Poney

The S-box PS of PONEY is the first entry of [Saa11, Table 1], which has the lowest possible differential uniformity and linearity for a 4-bit S-box (respectively 4 and 8). As such, it is expected to offer "optimal" resistance against differential and linear cryptanalysis. This S-box is given in Table 1.

Table 1: The S-box of PONEY

$$x$$
 0 1 2 3 4 5 6 7 8 9 A B C D E F PS(x) 0 1 2 3 4 6 8 A 5 B C F 7 9 D E

The algebraic normal form of the S-box is given in Table 2, where x_i (resp. y_i) denotes the ith most-significant bit of the input (resp. output) of PS. The designers were satisfied with the fact that it is of maximal degree on every output bit.

Table 2: The ANF of the S-box of PONEY

$$y_0 = x_0 x_1 x_3 + x_0 x_2 x_3 + x_0 x_2 + x_0 x_3 + x_0 + x_1 x_2 x_3 + x_1 x_3 + x_3$$

$$y_1 = x_0 x_2 x_3 + x_0 x_2 + x_0 x_3 + x_1 x_2 + x_1 x_3 + x_1 + x_2 x_3$$

$$y_2 = x_0 x_1 x_3 + x_0 x_3 + x_1 x_2 x_3 + x_1 x_2 + x_2 x_3 + x_2 + x_3$$

$$y_3 = x_0 x_1 x_3 + x_0 x_3 + x_1 x_2 x_3 + x_1 x_2 + x_1 x_3$$

1.2 The bit permutation of PONEY

The bit permutation used in PONEY is given in Table 3 to Table 6.

Table 3: The bit permutation of PONEY (0–15)

\boldsymbol{x}	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
PP(x)	56	53	14	59	20	57	38	35	24	25	54	3	32	33	18	19

Table 4: The bit permutation of PONEY (16–31)

\boldsymbol{x}	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
PP(x)	44	29	46	15	8	9	26	43	28	17	2	51	4	13	10	11

Table 5: The bit permutation of PONEY (32–47)

X	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47
PP(x)	36	1	6	47	40	41	62	23	16	5	50	55	48	49	34	7

Table 6: The bit permutation of PONEY (48-63)

$\boldsymbol{\mathcal{X}}$	48	49	50	51	52	53	54	55	56	57	58	59	60	61	62	63
PP(x)	60	21	42	27	12	61	22	31	0	37	30	39	52	45	58	63

1.3 The key schedule of PONEY

The key schedule of Poney is quite simple. The i^{th} round key k_i is given by i successive applications of the permutation given in Table 7 performed on the 4-bit nibbles of the master key k_0 . Or equivalently, $k_i = \text{PKS}(k_{i-1})$. This permutation has order 140, which means that all round keys will be distinct up to at most that many rounds.

Table 7: The key schedule nibble permutation of PONEY

```
0
           1
               2
                   3
                       4
                           5
                                    8
                              6
                                7
                                        9
                                            10
                                               11
                                                    12
                                                        13
                                                                15
PKS(x)
       12 5
                       13 6
                              8
                                    4
                                                         7
                                                                 2
              11
                   14
                                 1
                                       15
                                            9
                                                10
                                                    3
                                                             0
```

1.4 Summary

A depiction of Poney's round function is given in Figure 1. The designers claim that Poney with 128 rounds should be a secure cipher.

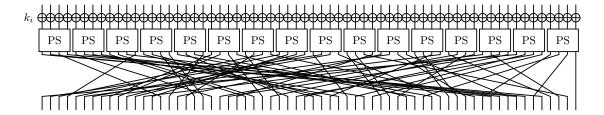


Figure 1: One round of PONEY

2 Questions

Q1

What surprising behaviour can you observe in the S-box when the two most-significant bits of its input are set to zero? How does the ANF explain this? What is the degree of the S-box when restricted to such inputs?

$\mathbf{Q2}$

Why is it important for the round keys to be distinct? Give an attack with time and data complexity $\approx 2^{32}$ that recovers the key when this is not the case. Does the complexity of this attack depend on the number of rounds in this modified PONEY?

Q3

Carefully inspect the bit permutation of Poney. What can you say about the image of the bits modulo four (equivalently, what can you say about the image of i if it is the jth output bit of an S-box).

Q4

What happens after one round of Poney if all inputs to the S-boxes have their two highest bits equal to zero? Under what condition for the round keys does this property hold for an arbitrary number of rounds?

Q5

Is the round key property identified in the previous question preserved by the actual key schedule of Poney? (That is, if if the property holds for k_i , does it hold for k_{i+1} , and under what conditions?) How many master keys exist such that all of their derived round keys have this property? What is the probability that this happens for a uniformly random master key?

Q6

Give a distinguisher for Poney of unit time and data complexity that provides an advantage ≈ 1 when the master key has the property identified above. Does the success of this distinguisher depend on the number of rounds?

Q7

Give a lower-bound for $\mathbf{Adv}^{PRP}_{PONEY}(1,1)$. Would you recommend PONEY to your friends?

Comments

Although PONEY was specifically designed to be weak against the attack described above, some actual cipher proposals such as PRINTCIPHER have been attacked in a similar way [LAAZ11].

Hand-in instructions

This homework is optional. If you choose to take it, you must send an *individual* report to pierre.karpman@univ-grenoble-alpes.fr by the end of Friday, Dec. 22 (2017-12-22T23:59+0100). Despite this work being optional, a detailed report will still be required to obtain a good mark; all answers to the questions also need to be precise and well justified for maximal credit.

This homework mark's m_h will be part of the final *contrôle continu* mark m_f using the formula $m_f = \max(m_c, (2m_c + m_h)/3)$, with m_c the mark for the in-class exam of Dec. 18.

References

- [LAAZ11] Gregor Leander, Mohamed Ahmed Abdelraheem, Hoda AlKhzaimi, and Erik Zenner. A cryptanalysis of printcipher: The invariant subspace attack. In Phillip Rogaway, editor, *Advances in Cryptology CRYPTO 2011 31st Annual Cryptology Conference, Santa Barbara, CA, USA, August 14-18, 2011. Proceedings*, volume 6841 of *Lecture Notes in Computer Science*, pages 206–221. Springer, 2011.
- [Saa11] Markku-Juhani O. Saarinen. Cryptographic analysis of all 4 × 4-bit s-boxes. In Ali Miri and Serge Vaudenay, editors, *Selected Areas in Cryptography 18th International Workshop, SAC 2011, Toronto, ON, Canada, August 11-12, 2011, Revised Selected Papers*, volume 7118 of *Lecture Notes in Computer Science*, pages 118–133. Springer, 2011.