Practical Free-Start Collision Attacks on full SHA-1

Pierre Karpman

Inria and École polytechnique, France Nanyang Technological University, Singapore

Joint work with Thomas Peyrin and Marc Stevens

Séminaire Cryptologie & Sécurité, Caen 2016–02–17

Free-Start Collisions / Full 🕄-1 / Caen

2016-02-17 1/49 Pierre Karpman

Title deconstruction

Free-Start Collisions / Full 🖄-1 / Caen

2016–02–17 **2/49** Pierre Karpman Introduction

SHA-1 quickie

History of SHA-1 attacks

Our attack

Implementation

Results

Free-Start Collisions / Full 🖄-1 / Caen

2016–02–17 **3/49** Pierre Karpman

Introduction

SHA-1 quickie

History of SHA-1 attacks

Our attack

Implementation

Results

Free-Start Collisions / Full 🕄-1 / Caen

2016–02–17 **4/49** Pierre Karpman

Hash functions

Hash function

A (binary) hash function is a mapping $\mathcal{H}: \{0,1\}^* \rightarrow \{0,1\}^n$

- Many uses in crypto: hash n' sign, MAC constructions...
- It is a keyless primitive
- Sooo, what's a good hash function?

Free-Start Collisions / Full 🖾-1 / Caen

2016–02–17 5/49 Pierre Karpman

First preimage resistance

Given t, find m such that $\mathcal{H}(m) = t$ Best generic attack is in $\mathcal{O}(2^n)$

Second preimage resistance

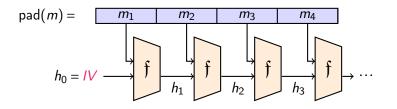
Given *m*, find $m' \neq m$ such that $\mathcal{H}(m) = \mathcal{H}(m')$ Best generic attack is in $\mathcal{O}(2^n)$

Collision resistance

Find $m, m' \neq m$ such that $\mathcal{H}(m) = \mathcal{H}(m')$ Best generic attack is in $\mathcal{O}(2^{\frac{n}{2}})$

Free-Start Collisions / Full 🚯-1 / Caen

2016–02–17 **6/49** Pierre Karpman A domain of $\{0,1\}^*$ is annoying, so...


- **1** Start from a compression function $f: \{0,1\}^n \times \{0,1\}^b \rightarrow \{0,1\}^n$
- 2 Use a domain extender \approx $\mathcal{H}(m_1||m_2||...||m_\ell) = \mathfrak{f}(\mathfrak{f}(...\mathfrak{f}(IV, m_1)...), m_\ell)$

3 Reduce the security of $\mathcal H$ to the one of $\mathfrak f$

- $A(\mathcal{H}) \Rightarrow A(\mathfrak{f})$
- ▶ $\neg A(f) \Rightarrow \neg A(H)$
- $(A(\mathfrak{f}) \Rightarrow ???)$
 - Invalidates the security reduction, tho

Free-Start Collisions / Full 🖾-1 / Caen

2016–02–17 **7/49** Pierre Karpman

Free-Start Collisions / Full 🕄-1 / Caen

2016–02–17 **8/49** Pierre Karpman

Additional security notions for MD

Semi-free-start collisions

The attacker may choose IV, but it must be the same for m and m'

Free-start preimages & collisions

No restrictions on IV whatsoever

Free-start preimages & collisions (variant)

Attack $\mathfrak f$ instead of $\mathcal H$

Free-Start Collisions / Full 🖄-1 / Caen

2016–02–17 **9/49** Pierre Karpman

What did we do?

- First try: collisions on 76/80 steps of the compression function of SHA-1 (95% of SHA-1)
- And it's practical
- ▶ Cost $\approx 2^{50.3}$ SHA-1, one inexpensive GPU is enough for fast results
- Second try: collisions on the full compression function of SHA-1 (100% of SHA-1)
- Still practical
- ▶ Cost $\approx 2^{57.5}$ SHA-1, 64 GPUs for a result in less than two weeks
- ▶ ?Not "the same attack as 1) with more computation power"

Free-Start Collisions / Full 🖾-1 / Caen

The collision

	Message 1														
<i>IV</i> ₁	50 6b 01 78 ff 6d 18 90 20 22 91 fd 3a de 38 71 b2 c6 65 e														
<i>M</i> ₁	9d 44 38 28 a5 ea 3d f0 86 ea a0 fa 77 83 a7 36														
	33 24 48 4d af 70 2a aa a3 da b6 79 d8 a6 9e 2d														
	54 38 20 ed a7 ff fb 52 d3 ff 49 3f c3 ff 55 1e														
	fb ff d9 7f 55 fe ee f2 08 5a f3 12 08 86 88 a9														
$Compr(IV_1, M_1)$	f0 20 48 6f 07 1b f1 10 53 54 7a 86 f4 a7 15 3b 3c 95 0f 4b														
Compr(<i>IV</i> ₁ , <i>M</i> ₁)	f0 20 48 6f 07 1b f1 10 53 54 7a 86 f4 a7 15 3b 3c 95 0f 4b Message 2 50 6b 01 78 ff 6d 18 91 a0 22 91 fd 3a de 38 71 b2 c6 65 e														
	Message 2														
IV ₂	Message 2 50 6b 01 78 ff 6d 18 91 a0 22 91 fd 3a de 38 71 b2 c6 65 e														
_	Message 2 50 6b 01 78 ff 6d 18 91 a0 22 91 fd 3a de 38 71 b2 c6 65 e 3f 44 38 38 81 ea 3d ec a0 ea a0 ee 51 83 a7 2c														
IV ₂	Message 2 50 6b 01 78 ff 6d 18 91 a0 22 91 fd 3a de 38 71 b2 c6 65 e 3f 44 38 38 81 ea 3d ec a0 ea a0 ee 51 83 a7 2c 33 24 48 5d ab 70 2a b6 6f da b6 6d d4 a6 9e 2f														

Free-Start Collisions / Full 🙆-1 / Caen

2016-02-17 **11/49** Pierre Karpman

Introduction

SHA-1 quickie

History of SHA-1 attacks

Our attack

Implementation

Results

Free-Start Collisions / Full 🚯-1 / Caen

2016-02-17 **12/49** Pierre Karpman

- Designed by the NSA in 1995 as a quick fix to SHA-0
- Part of the MD4 family
- ▶ Hash size is 160 bits \Rightarrow collision security should be 80 bits
- Message blocks are 512-bit long
- Compression function in MD mode

Free-Start Collisions / Full 🖾-1 / Caen

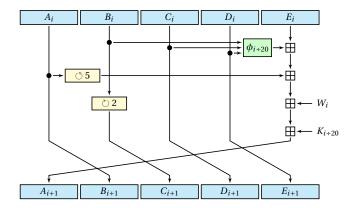
2016-02-17 **13/49** Pierre Karpman

Block cipher in Davies-Meyer mode

5-branch ARX Feistel

$$A_{i+1} = A_i^{\bigcirc 5} + \phi_{i+20}(A_{i-1}, A_{i-2}^{\bigcirc 2}, A_{i-3}^{\bigcirc 2}) + A_{i-4}^{\bigcirc 2} + W_i + K_{i+20}$$

with a linear message expansion:


$$W_{0...15} = M_{0...15}, W_{i \ge 16} = (W_{i-3} \oplus W_{i-8} \oplus W_{i-14} \oplus W_{i-16})^{\bigcirc 1} \stackrel{\leftarrow}{\longrightarrow}$$
 The only difference between SHA-0 and SHA-1

80 steps in total

Free-Start Collisions / Full 🖾-1 / Caen

2016-02-17 **14/49** Pierre Karpman

Round function in a picture

Free-Start Collisions / Full 🖄-1 / Caen

2016-02-17 **15/49** Pierre Karpman Introduction

SHA-1 quickie

History of SHA-1 attacks

Our attack

Implementation

Results

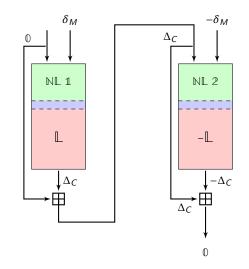
Free-Start Collisions / Full 🚯-1 / Caen

2016-02-17 **16/49** Pierre Karpman

Wang collisions

SHA-1 is not collision-resistant (Wang, Yin, Yu, 2005)

Differential collision attack


- Find a message difference that entails a good *linear* diff. path
- Construct a *non-linear* diff. path to bridge the *IV* with the linear path
- Use message modification to speed-up the attack
- Requires a pair of two-block messages

Attack complexity $\equiv 2^{69}$ Eventually improved to $\equiv 2^{61}$ (Stevens, 2013)

Free-Start Collisions / Full 🖾-1 / Caen

2016-02-17 **17/49** Pierre Karpman

Two-block attack in a picture

Free-Start Collisions / Full 🚯-1 / Caen

2016-02-17 **18/49** Pierre Karpman SHA-1 is much more resistant to preimage attacks

- No attack on the full function
- ▶ Practical attacks up to \$\$\approx\$ 30 steps (\$\$\approx\$ 37.5% of SHA-1) (De Cannière & Rechberger, 2008)
- Theoretical attacks up to 62 steps (77.5% of SHA-1) (Espitau, Fouque, Karpman, 2015)

Free-Start Collisions / Full 🖾-1 / Caen

2016-02-17 **19/49** Pierre Karpman Introduction

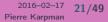
SHA-1 quickie

History of SHA-1 attacks

Our attack

Implementation

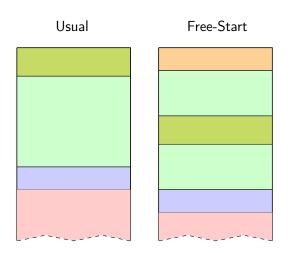
Results


Free-Start Collisions / Full 🚯-1 / Caen

2016-02-17 **20/49** Pierre Karpman

Let's break stuff!

Free-Start Collisions / Full 🖄-1 / Caen



- Main reason is starting from a "middle" state + shift the message
- $\blacktriangleright \Rightarrow$ Can use freedom in the message up to a later step
- \Rightarrow But no control on the *IV* value
- $ightarrow \Rightarrow$ Must ensure proper backward propagation

Free-Start Collisions / Full 🖾-1 / Caen

2016–02–17 **22/49** Pierre Karpman

The point of free-start (in a picture)

Free-Start Collisions / Full 🖄-1 / Caen

2016–02–17 **23/49** Pierre Karpman

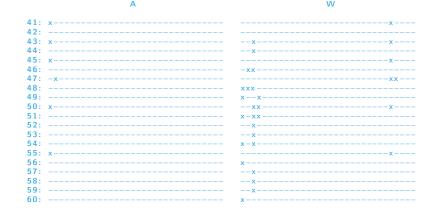
- **1** Find a good linear part
- 2 Construct a good shifted non-linear part
- **3** Find accelerating techniques

Let's do this for 80 steps!

Free-Start Collisions / Full 🚯-1 / Caen

2016-02-17 **24/49** Pierre Karpman

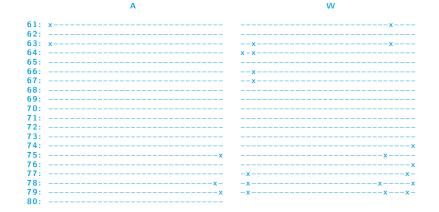
Criteria:


- High overall probability
- No (or few) differences in last five steps (= differences in IV)
- Few differences in early message words
- ⇒ Not many candidates

We picked II(59,0) (Manuel notation, 2011) (This is just a shifted version of II(55,0) used for 76 steps)

Free-Start Collisions / Full 🖄-1 / Caen

2016-02-17 25/49 Pierre Karpman


Linear path in a picture (part 1/2)

Free-Start Collisions / Full 🖾-1 / Caen

2016–02–17 26/49 Pierre Karpman

Linear path in a picture (part 2/2)

Free-Start Collisions / Full 🖾-1 / Caen

2016-02-17 27/49 Pierre Karpman

- Start with prefix of high backward probability for the first 4 steps
- Use improved JLCA for the rest
- ▶ \Rightarrow Good overall path with "few" conditions (246 up to #30)

Free-Start Collisions / Full 🚯-1 / Caen

2016–02–17 **28/49** Pierre Karpman

Non-linear path in a picture

Α -4: -3. -2: -1: 1....0 + 01..0..... 00: 01: 11+^..+..... $02: \ldots -11 - 1 \cdot 1 \cdot \ldots \cdot 1 + 110 \cdot 1 \cdot 0 \ldots$ $03: .0.0 - 0011.^{1}.0.0 + 01.01111^{0}.1.1$ 04: .1.11+-1+^^^+1^^^011^^-.-+++++-.+ 06: .0.0.1.011.111.11110 - 0100 - 1.10 - +07: 1 - . + .1.01010001000000111 + . - .0. +08: 0+.0.0....0.+.-.0.110: + + 0 11: 14: + -.... 15: 1.1 - 16: +.10.1....

W

κ.	+	. + .	 	 	. +
			 	 	-++
					+
					-+
					. +
					+ + +
					+
					+ .
					· · · · · + ·
					-++
					···· -··
					-+.+.
					-++
					+
					+.
k i	+		 	 	. –

Free-Start Collisions / Full 🖾-1 / Caen

2016–02–17 **29/49** Pierre Karpman

- Message modification: correct bad instances
- Neutral bits: generate more good instances when one's found
- We choose NBs because:
 - Easy to find
 - Easy to implement
 - Good parallelization potential (more of that later)
 - Includes both "single" NBs and boomerangs

Free-Start Collisions / Full 🖄-1 / Caen

2016-02-17 **30/49** Pierre Karpman

- We start with an offset (remember?)
- \Rightarrow Use neutral bits with an offset too
- In our attack, offset = 5
 - Free message words = W5...20 instead of W0...15
- $ightarrow \Rightarrow$ Must also consider backward propagation

Free-Start Collisions / Full 🚯-1 / Caen

^{2016–02–17} **31/49** Pierre Karpman

Our 60 "single" neutral bits

A18:	
W14 xxxx	
W15 xxxx	
A19:	
W14 x.x	
W15 xxxxx	
W16 xxxxx	
A20:	
W15 xx	
W16 xxxx	
W17 xxxxxx	
A21:	
W17 xxxx	
W18	
A22 :	
W18 xxxxxx	•
W19x	•
A23 :	
W18 xxx.x	•
W19 xx.x	•
W20 x x	•
A24 :	
W19 xxx	•
W20 xxx	•
A25 :	
W20	

Free-Start Collisions / Full 🖄-1 / Caen

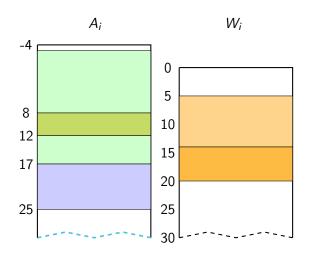
2016-02-17 **Pierre Karpman**

Our 4 boomerangs

W10:															В	A	۱.					÷	÷	
W11:	۰.						÷		÷		b	a				C	C	١.				÷		
W12:	۰.											d	c											
W13:	۰.												÷				÷	÷	÷	÷	÷		÷	
W14:																								
W15:																								
W16:																	÷	d	с					

Free-Start Collisions / Full -1 / Caen

2016-02-17 **33/49** Pierre Karpman


Let's sum up

- Initialize the state with an offset
- Initialize message words with an offset
- Use neutral bits with an offset
- ▶ \Rightarrow many neutral bits up to late steps (yay)
- $\blacktriangleright \Rightarrow$ don't know the *IV* in advance (duh)
- Linear path \Rightarrow differences in the *IV*
- Everything done in one block
- $\blacktriangleright \Rightarrow$ Attack on the compression function

Free-Start Collisions / Full 🚯-1 / Caen

2016-02-17 **34/49** Pierre Karpman

Same thing in a picture

Free-Start Collisions / Full 🖄-1 / Caen

2016-02-17 **35/49** Pierre Karpman Introduction

SHA-1 quickie

History of SHA-1 attacks

Our attack

Implementation

Results

Free-Start Collisions / Full 🚯-1 / Caen

2016-02-17 **36/49** Pierre Karpman

- Attack expected to be practical, but still expensive
- Why not using GPUs?
- One main challenge: how to deal with the branching?

Free-Start Collisions / Full 🖄-1 / Caen

2016-02-17 37/49 Pierre Karpman

Target platform

- Nvidia GTX-970
- Recent, high-end, good price/performance
- $13 \times 128 = 1664$ cores @ $\propto 1$ GHz
- High-level programming with CUDA
- ► Throughput for 32-bit arithmetic: all 1/cycle/core except ♂
- ► ≈ SGD 500

Free-Start Collisions / Full 🖾-1 / Caen

2016-02-17 **38/49** Pierre Karpman

- Execution is bundled in warps of 32 threads
- Single Instruction Multiple Threads:
 Control-flow divergence is serialized ⇒ minimize branching
- Hide latency by grouping threads into larger blocks
- But careful about register / memory usage

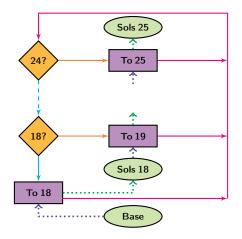
Free-Start Collisions / Full 🖾-1 / Caen

2016-02-17 **39/49** Pierre Karpman

Our snippet-based approach

- **1** Store partial solutions up to some step in shared buffers
- 2 Every thread of a block loads one solution
- 3 ... tries all neutral bits for this step
- 4 ... stores successful candidates in next step buffer

Free-Start Collisions / Full 🕑-1 / Caen


2016-02-17 **40/49** Pierre Karpman

- **1** Base solutions up to #17 generated on CPU
- **2** Use single neutral bits up to #25 on GPU
- 3 Use boomerangs on #28 and #30 on GPU
- 4 Further checks up to #60 on GPU
- 5 Final collision check on CPU

Free-Start Collisions / Full 🖾-1 / Caen

2016-02-17 **41/49** Pierre Karpman

Snippets in a picture (w/o boomerangs)

Free-Start Collisions / Full S-1 / Caen

2016–02–17 **42/49** Pierre Karpman Introduction

SHA-1 quickie

History of SHA-1 attacks

Our attack

Implementation

Results

Free-Start Collisions / Full 🖄-1 / Caen

2016–02–17 **43/49** Pierre Karpman

- Hardware: one GTX-970
- ▶ One partial solution up to #56 per minute on average
- ▶ ⇒ Expected time to find a collision \leq 5 days
- Complexity $\equiv 2^{50.3}$ SHA-1 compression function

Free-Start Collisions / Full 🚯-1 / Caen

2016–02–17 **44/49** Pierre Karpman

GPU v. CPU

- ▶ On one CPU core @ 3.2 GHz, the attack takes \approx 606 days
- ► \Rightarrow One GPU \equiv 140 cores
- (To compare with \equiv 40 (Grechnikov & Adinetz, 2011))
- ► For raw SHA-1 computations, ratio is 320
- $\blacktriangleright \Rightarrow$ Lose only ×2.3 from the branching (not bad)

Free-Start Collisions / Full 🖾-1 / Caen

^{2016–02–17} **45/49** Pierre Karpman

- Hardware: 64 GTX-970
- \blacktriangleright \Rightarrow Expected time to find a collision \lessapprox 10 days
- Complexity $\equiv 2^{57.5}$ SHA-1 compression function
- ► On Amazon Elastic C2 cost ~ USD 2K (with older GPUs)

Free-Start Collisions / Full 🚯-1 / Caen

2016–02–17 **46/49** Pierre Karpman

- \blacktriangleright Estimated complexity: $\lessapprox~2^{61}$
- GPU framework translates swimmingly to this case
- ▶ 64-GTX970 cluster $\Rightarrow \approx 110\text{-}220 \text{ days} (\approx 4\text{-}8 \text{ months})$
- ▶ On Amazon Elastic C2 $\Rightarrow \approx$ USD 22-44K

Free-Start Collisions / Full 🚯-1 / Caen

2016–02–17 **47/49** Pierre Karpman Pierre Karpman, Thomas Peyrin, and Marc Stevens: Practical Free-Start Collision Attacks on 76-step SHA-1, CRYPTO 2015 Eprint 2015/530

Marc Stevens, Pierre Karpman, and Thomas Peyrin: Freestart collision for full SHA-1, EUROCRYPT 2016 Eprint 2015/967

Free-Start Collisions / Full 🖄-1 / Caen

^{2016–02–17} **48/49** Pierre Karpman

C'est fini !

Free-Start Collisions / Full 🖾-1 / Caen

2016–02–17 **49/49** Pierre Karpman