Practical Free-Start Collision Attacks
on full SHA-1

Pierre Karpman

Inria and Ecole polytechnique, France
Nanyang Technological University, Singapore

Joint work with Thomas Peyrin and Marc Stevens

Séminaire Cryptologie & Sécurité, Caen
2016-02-17

Title deconstruction

Practical Free-Start Collision
—_—— —_—— —_——

We can compute it Not unlike a false start As in f(x)=f(x")

Attacks on full SHA-1
(S — —
We're the baddies The real thing this time! @
Not a cat

Introduction

SHA-1 quickie

History of SHA-1 attacks
Our attack
Implementation

Results

Introduction

Hash functions

Hash function
A (binary) hash function is a mapping H : {0,1}* — {0,1}"

» Many uses in crypto: hash n' sign, MAC constructions...
» It is a keyless primitive

» So00, what's a good hash function?

Three security notions (informal)

First preimage resistance

Given t, find m such that H(m) =t
Best generic attack is in O(2")

Second preimage resistance

Given m, find m" # m such that H(m) = H(m')
Best generic attack is in O(2")

Collision resistance

Find m,m’ # m such that H(m) = H(m')
Best generic attack is in 0(23)

Merkle-Damgard construction

A domain of {0,1}* is annoying, so...

Start from a compression function §:{0,1}" x 0,132 - {0, 11"

Use a domain extender =
J-C(m1||m2||...||mg) =f(f(...f(lV,m1)...),mg)
Reduce the security of H to the one of §
= A(F) = A(F)
> 2A(F) = 2A(H)
- (A(f)= 777

> Invalidates the security reduction, tho

MD in a picture

pad(m)= |

mp my m3 ma
ho=1V
hy ha hs

Additional security notions for MD

Semi-free-start collisions

The attacker may choose /V, but it must be the same for m and m’

Free-start preimages & collisions

No restrictions on [V whatsoever

Free-start preimages & collisions (variant)

Attack f instead of H

What did we do?

> First try: collisions on 76/80 steps of the compression function
of SHA-1 (95% of SHA-1)

» And it's practical

» Cost = 2593 SHA-1, one inexpensive GPU is enough for fast
results

» Second try: collisions on the full compression function of
SHA-1 (100% of SHA-1)

» Still practical

» Cost ~ 2575 SHA-1, 64 GPUs for a result in less than two
weeks

» PNot “the same attack as 1) with more computation power”

The collision

Message 1
vy 50 6b 01 78 £f 6d 18 22 91 £d 3a de 38 71 b2 c6 65 ea
My [9d| a4 38 [28 a5] ea 3a [£0 86 | ea a0 [ta 77| 83 a7 [36 |

33 24 48 | 4d af | 70 2a | aa a3 | da b6 | 79 d8 | a6 9e
38 20 | ed a7 | ££ £b | 52 d3 | ££ 49 | 3f c3 | £f 55
£ a9 | 7¢ 55 | fe ee | £2 08 | 5a £3 | 12 08 | 86 88 | a9 |

Compr(/V7,M7) £0 20 48 6f 07 1b f1 10 53 54 7a 86 f4 a7 15 3b 3c 95 Of 4b

Message 2
IV2 50 6b 01 78 ff 6d 18 22 91 fd 3a de 38 71 b2 c6 65 ea
Moy 44 38 | 38 81 | ea 3d | ec a0 | ea a0 | ee 51 | 83 a7

33 2448 [5d ab |70 2a | b6 67 | da b6 | 6d d4 | a6 9e
38 20 | fd 13 | £f £b | 4e ef | ££ 49 | 3b 7f | £f 55
b | £ a9 |62 71] fe ee | ce o4 | 5a £3 | 06 04 | 86 88

Compr(/Vy,M3) £0 20 48 6f 07 1b f1 10 53 54 7a 86 f4 a7 15 3b 3c 95

SHA-1 quickie

The SHA-1 hash function

v

Designed by the NSA in 1995 as a quick fix to SHA-0
» Part of the M D4 family

» Hash size is 160 bits = collision security should be 80 bits

v

Message blocks are 512-bit long

» Compression function in MD mode

SHA-1 round function

Block cipher in Davies-Meyer mode

5-branch ARX Feistel

Ais1 = AD® + piano(Ai-1,ATS, AP 3+ A2+ Wi+ Kiso
with a linear message expansion:

Wo..15 = Mo..15, Wiz16=(Wi-s@ Wi_ge Wi_14 &
16)01 ~ The only difference between SHA-0 and SHA-1
Wi

80 steps in total

Round function in a picture

i
s
.
'
H

[0z] B—w

HH<~— Ki:20

Ain ” Bi ” Cin ” Dij1 ” Einy

History of SHA-1 attacks

Wang collisions

SHA-1 is not collision-resistant (Wang, Yin, Yu, 2005)

Differential collision attack

» Find a message difference that entails a good linear diff. path

» Construct a non-linear diff. path to bridge the /V with the
linear path

» Use message modification to speed-up the attack

» Requires a pair of two-block messages

Attack complexity = 2%°
Eventually improved to =2°! (Stevens, 2013)

Two-block attack in a picture

om M
NL 1 NL 2

Preimage detour

SHA-1 is much more resistant to preimage attacks

» No attack on the full function

> Practical attacks up to < 30 steps (< 37.5% of SHA-1)
(De Canniére & Rechberger, 2008)

> Theoretical attacks up to 62 steps (77.5% of SHA-1)
(Espitau, Fouque, Karpman, 2015)

Our attack

Let's break stuff!

2

Why doing free-start again?

» Main reason is starting from a “middle” state + shift the
message

» = Can use freedom in the message up to a later step
» = But no control on the /V value

» = Must ensure proper backward propagation

The point of free-start (in a picture)

Usual Free-Start

But then we need to...

Find a good linear part
Construct a good shifted non-linear part

Find accelerating techniques

Let's do this for 80 stepsl!

Linear part selection

Criteria:

» High overall probability
> No (or few) differences in last five steps (= differences in /V)
» Few differences in early message words

Not many candidates

We picked 11(59,0) (Manuel notation, 2011)
(This is just a shifted version of 11(55,0) used for 76 steps)

Linear path in a picture (part 1/2)

Linear path in a picture (part 2/2)

Non-linear part construction

» Start with prefix of high backward probability for the first 4
steps

» Use improved JLCA for the rest

» = Good overall path with “few” conditions (246 up to #30)

15:
16:

Non-linear path in a picture

.0.0-0011.7.10...401.01111"70.1.1

21141472 4172011 -t
Attt 011

.0.0.1.011.111.11110-0100-1.10 -+
1-.4.1.010100010000000111+4.-.0.+

wW

X .4 + it i e +....
T e T e -4 +..
T -.4..
T T T e -4.-.
........................... +....
..... E S s it oI
X4+ ..o+ 4. -.4+..
i o T +.
X o e e e e 4+ ...
Xo —F 0 =it it -+ 4

N -
S -+ .+
e e -+ +
XAt od — e -+
N R R R R R T +
S -

Accelerating techniques

» Message modification: correct bad instances

» Neutral bits: generate more good instances when one's found

» We choose NBs because:
» Easy to find
> Easy to implement

» Good parallelization potential (more of that later)
> Includes both “single” NBs and

Neutral bits (with an offset)

> We start with an offset (remember?)

» = Use neutral bits with an offset too

v

In our attack, offset =5

» free message words = W5...20 instead of WO...15

» = Must also consider backward propagation

Our 60 “single” neutral bits

Our 4 boomerangs

Let's sum up

> Initialize the state
> Initialize message words

Use neutral bits

v

> = many neutral bits up to late steps (yay)

» = don't know the /V in advance (duh)

v

Linear path = differences in the /V

v

Everything done in one block

» = Attack on the compression function

12
17

25

Same thing in a picture

-
—————

-

10
15
20

25
30

Implementation

If it's practical you must run it

» Attack expected to be practical, but still expensive
> Why not using GPUs?

> One main challenge: how to deal with the branching?

Target platform

> Nvidia GTX-970

v

Recent, high-end, good price/performance

» 13x 128 =1664 cores @ x 1 GHz

v

High-level programming with CUDA

v

Throughput for 32-bit arithmetic: all 1/cycle/core except O

L~

Architecture imperatives

» Execution is bundled in warps of 32 threads

» Single Instruction Multiple Threads:
Control-flow divergence is serialized = minimize branching

» Hide latency by grouping threads into larger blocks

> But careful about register / memory usage

Our snippet-based approach

Store partial solutions up to some step in shared buffers
Every thread of a block loads one solution
... tries all neutral bits for this step

... stores successful candidates in next step buffer

Our snippet-based approach (cont.)

Base solutions up to #17 generated on CPU
Use single neutral bits up to #25 on GPU
Use boomerangs on #28 and #30 on GPU
Further checks up to #60 on GPU

Final collision check on CPU

Snippets in a picture (w/o boomerangs)

Results

GPU results (76 steps)

» Hardware: one GTX-970
> One partial solution up to #56 per minute on average
» = Expected time to find a collision 5 5 days

» Complexity = 2993 SHA-1 compression function

GPU v. CPU

v

On one CPU core @ 3.2 GHz, the attack takes =~ 606 days
= One GPU = 140 cores

v

> (To compare with = 40 (Grechnikov & Adinetz, 2011))
» For raw SHA-1 computations, ratio is 320

» = Lose only »2.3 from the branching (not bad)

GPU results (80 steps)

» Hardware: 64 GTX-970
» = Expected time to find a collision 5 10 days
» Complexity = 2°7® SHA-1 compression function

> On Amazon Elastic C2 cost = USD 2K (with older GPUs)

What about a full hash function collision?

> Estimated complexity: < 26!

~

v

GPU framework translates swimmingly to this case

v

64-GTX970 cluster = = 110-220 days (= 4-8 months)
» On Amazon Elastic C2 = =~ USD 22-44K

For more details

Pierre Karpman, Thomas Peyrin, and Marc Stevens:
Practical Free-Start Collision Attacks on 76-step SHA-1,
CRYPTO 2015

Eprint 2015/530

Marc Stevens, Pierre Karpman, and Thomas Peyrin:
Freestart collision for full SHA-1,

EUROCRYPT 2016

Eprint 2015/967

	Introduction
	SHA-1 quickie
	History of SHA-1 attacks
	Our attack
	Implementation
	Results

