New instantiations of the CRYPTO 2017 masking schemes

Pierre Karpman \quad Daniel S. Roche*

Université Grenoble Alpes, France
United States Naval Academy, U.S.A.

$$
\begin{gathered}
\text { ASIACRYPT - Brisbane } \\
\text { 2018-12-05 }
\end{gathered}
$$

Masking schemes for finite field multiplication

Proving security

New instantiations of the schemes from CRYPTO 2017

Conclusion

Masking schemes for finite field multiplication

Proving security

New instantiations of the schemes from CRYPTO 2017

New CR'17 masking instances

The context

Context: Crypto implementation on observable devices
Objective: secure finite-field multiplication w/ leakage

- Implement $(a, b) \mapsto c=a \times b, a, b, c \in \mathbb{K}$
- Used in non-linear ops in sym. crypto (e.g. S-boxes)
- Input/outputs usually secret!
- Problem: computations leak information
- \leadsto Need a way to compute a product w/o leaking (too much) the operands \& the result
- Our focus: higher-order (many shares) software schemes (no glitches)

Basic idea

- Split a, b, c into shares (i.e. use a secret-sharing scheme)
- Typically simple and additive:

$$
\left.x=\sum_{i=0}^{d} x_{i}, x_{0}, \ldots, d-1\right) \stackrel{\mathbf{s}}{\leftarrow} \mathbb{K}, x_{d}=x-\sum_{i=0}^{d-1} x_{i}
$$

- Compute the operation over the shared operands; obtain a shared result
- Ensure that neither of a, b, c can be (easily) recovered

Prove security e.g. in:

- The probing model $\leadsto d$-privacy (Ishai, Sahai \& Wagner, 2003) / d-(S)NI (Belaïd et al., 2016)
- The noisy leakage model (Chari et al. '99, Prouff \& Rivain, 2013)
- (For relations between the two, see e.g. Dahmun's talk this afternoon)

First attempt

- We want to compute $c=\sum_{k} c_{k}=\sum_{i} a_{i} \times \sum_{j} b_{j}=\sum_{i, j} a_{i} b_{j}$
- So maybe define $c_{i}=a_{i} \sum_{j=0}^{d} b_{j}$?
- Problem: any single c_{i} reveals information about b
- One solution (ISW, 2003): rerandomize using fresh randomness
- For instance (for $d=3$):
- $c_{0}=a_{0} b_{0}+r_{0,1}+r_{0,2}+r_{0,3}$
$c_{1}=a_{1} b_{1}+\left(r_{0,1}+a_{0} b_{1}+a_{1} b_{0}\right)+r_{1,2}+r_{1,3}$
$c_{2}=a_{2} b_{2}+\left(r_{0,2}+a_{0} b_{2}+a_{2} b_{0}\right)+\left(r_{1,2}+a_{1} b_{2}+a_{2} b_{1}\right)+r_{2,3}$
- $c_{3}=$

$$
a_{3} b_{3}+\left(r_{0,3}+a_{0} b_{3}+a_{3} b_{0}\right)+\left(r_{1,3}+a_{1} b_{3}+a_{3} b_{1}\right)+\left(r_{2,3}+a_{2} b_{3}+a_{3} b_{2}\right)
$$

- Prove security in the probing model
- ? Scheduling of the operations is important (impacts the probes available to the adversary), hence the (\cdot) s

Masking complexity

- ISW provides a practical solution for masking a multiplication
- But the cost is quadratic in d : d-privacy requires:
- $2 d(d+1)$ sums
- $(d+1)^{2}$ products
- $d(d+1) / 2$ fresh random masks
- Decreasing the cost/overhead of masking is a major problem
- Use block ciphers that need few multiplications (e.g. ZORRO, Gérard et al., 2013 (broken))
- Amortize the cost of masking several mult. (e.g. Coron et al., 2016)
- Decrease the cost of masking a single mult. (e.g. Belaïd et al., 2016, 2017)

Schemes from CRYPTO 2017

Two schemes introduced by Belaïd et al. (2017):

- "Alg. 4", with linear bilinear multiplication complexity, requiring:
- $9 d^{2}+d$ sums
- $2 d^{2}$ linear products
- $2 d+1$ products
- $2 d^{2}+d(d-1) / 2$ fresh random masks
- "Alg. 5", with linear randomness complexity, requiring:
- $2 d(d+1)$ sums
- $d(d+1)$ linear products
- $(d+1)^{2}$ products
- d fresh random masks

Focus on Alg. 4

This scheme uses shares of three kinds:

- $c_{0}:=\left(a_{0}+\sum_{i=1}^{d}\left(r_{i}+a_{i}\right)\right) \cdot\left(b_{0}+\sum_{i=1}^{d}\left(s_{i}+b_{i}\right)\right)$;
- $c_{i}:=-r_{i} \cdot\left(b_{0}+\sum_{j=1}^{d}\left(\delta_{i, j} s_{j}+b_{j}\right)\right), 1 \leq i \leq d ;$
- $c_{i+d}:=-s_{i} \cdot\left(a_{0}+\sum_{j=1}^{d}\left(\gamma_{i, j} r_{j}+a_{j}\right)\right), 1 \leq i \leq d$.

With:

- $\gamma=\left(\gamma_{i, j}\right) \in \mathbb{K}^{d \times d}$
- $\delta=\left(\delta_{i, j}\right) \in \mathbb{K}^{d \times d}$ s.t. $\gamma+\delta$ is the all-one matrix
(Plus an additional post-processing, not studied here)

Instantiation issues

Problem: finding γ so that the scheme is secure is hard. Belaïd et al.:

- Found an explicit γ for $d=2$ over $\mathbb{F}_{2^{2}}$ (and other larger fields)
- Proved (non-constructively) the existence of good γ at order d over \mathbb{F}_{q} when $q>\mathcal{O}(d)^{d+1}$
Our results: we give constructions/examples for:
- $d=3$ over $\mathbb{F}_{2^{k}}, k \geq 3$
- $d=4$ over $\mathbb{F}_{2^{k}}, 5 \leq k \leq 16$
- $d=5$ over $\mathbb{F}_{2^{k}}, 10 \leq k \leq 16$
- $d=6$ over $\mathbb{F}_{2^{k}}, 15 \leq k \leq 16$

Masking schemes for finite field multiplication

Proving security

New instantiations of the schemes from CRYPTO 2017

What's a good γ anyways?

To attack Alg. 4, one typically wants to:
1 Select d probes p_{0}, \ldots, p_{d-1} of intermediate values
2 Find \mathcal{F} s.t. the distribution of $\mathcal{F}\left(p_{0}, \ldots, p_{d-1}\right)$ depends on a (say)
In Alg. 4, the possible probes (relating to a) are:

- $a_{i}, r_{i}, a_{i}+r_{i}, \gamma_{j, i} r_{i}, a_{i}+\gamma_{j, i} r_{i}$, for $0 \leq i \leq d, 1 \leq j \leq d$
- $a_{0}+\sum_{i=1}^{k}\left(a_{i}+r_{i}\right), 1 \leq k \leq d$
- $a_{0}+\sum_{i=1}^{k}\left(a_{i}+\gamma_{j, i} r_{i}\right), 1 \leq k \leq d, 1 \leq j \leq d$

Proposition: it is sufficient to only consider \mathcal{F} s that are linear
combinations of the $p_{i} s$ (cf. Belaïd et al., 2017)

Attack sets

One sub-objective: decide if a set of probes P leads to an attack

- For each probe, consider indicator vectors of \mathbf{I} of its $a_{i} s$ and \mathbf{m} of its $r_{i} s$
- E.g. $a_{0}+a_{1}+\gamma_{1,1} r_{1}(d=2) \leadsto$

$$
\mathbf{I}=\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right), \quad \mathbf{m}=\left(\begin{array}{c}
0 \\
\gamma_{1,1} \\
0
\end{array}\right)
$$

- Gather all such vectors in larger matrices \mathbf{L}_{P} and $\mathbf{M}{ }_{P}^{\gamma}$
- Attack: find x_{i} s s.t. $\pi:=\sum x_{i} p_{i}=\sum y_{i} a_{i}+\sum z_{i} r_{i}$ with $y_{i} \neq 0$, $z_{i}=0$ for all i
- If π "includes an r_{i} " or "misses an a_{i} ", then it is uniform
- So there is an attack iff. $\exists u \in \operatorname{ker} \mathbf{M}_{p}^{\gamma}$ s.t. $\mathbf{L}_{P} u$ is of full weight

Immediate algorithm

To prove security for a given γ :

- Look at all matrices \mathbf{L}_{P} and \mathbf{M}_{P}^{γ} for d probes P
- For each:

1 Compute a basis \mathbf{B} of the (right) kernel of \mathbf{M}_{P}^{γ}
2 There is an attack with P iff. $\mathbf{N}_{P}:=\mathbf{L}_{P} \mathbf{B}$ has no all-zero row
\Leftarrow If \mathbf{N}_{P} has a zero row, then no linear combination of probes depends on all a_{i} s and cancels all r_{i} s
\Rightarrow If \mathbf{N}_{P} has no zero row, there is at least one linear combination of probes that depends on all $a_{i} s$ and cancels all $r_{i} s$

- By a combinatorial argument, as long as $\# \mathbb{K}>d$ (e.g. use Schwartz-Zippel-DeMillo-Lipton)

Testing optimizations

The previous algorithm allows to test the security of an instance by checking $\approx\binom{d^{2}}{d}$ (!) matrices $\mathbf{L}_{P}, \mathbf{M}_{P}^{\gamma}$. Some optims:

- Do early-abort
- Check "critical cases" first
- Don't check stupid choices for P
- Use batch kernel computations

Masking schemes for finite field multiplication

Proving security

New instantiations of the schemes from CRYPTO 2017

Finding secure instantiations

The testing algorithm can be used to find secure instantiations:
1 Draw $\gamma(\delta)$ at random
2 Check that there is no attack
It works, but we can do better by picking super-regular/MDS γs
$(\delta$ s) \leftarrow All square submatrices invertible
Observations:

- If dim $\operatorname{ker} \mathbf{M}_{P}^{\gamma}=0$, then no attack is possible $\mathbf{w} /$ probes P
- Try to pick γ s.t. \mathbf{M}_{P}^{γ} is invertible for many Ps
- Many \mathbf{M}_{P}^{γ} 's are made of submatrices of γ
- All invertible, if γ is MDS
- (Additionally: ensure invertibility w/ added columns of $1 \rightarrow$ "XMDS" matrices)

MDS precondition: small cases

- For $d=1,2$, it is sufficient for γ, δ to be XMDS for the scheme to be secure
- For $d=3$, one must additionally check that no matrix of the form

$$
\left(\begin{array}{ccc}
\gamma_{i, 1} & \gamma_{j, 1} & \gamma_{k, 1} \\
\gamma_{i, 2} & \gamma_{j, 2} & \gamma_{k, 2} \\
\gamma_{i, 3} & \gamma_{j, 3} & 0
\end{array}\right), i \neq j \neq k
$$

is singular

- Not systematically ensured by the XMDS property
- Can be solved symbolically
- For $d \geq 4$, not feasible (?) to enforce invertibility of all \mathbf{M}_{P}^{γ}
- But XMDS $\gamma \mathrm{s}$ are still more likely to be secure than non-XMDS ones
- E.g. w/ $\operatorname{Pr} 0.063$ instead of 0.030 for $d=4$ over $\mathbb{F}_{2^{8}}$
- Problem: how to ensure that both γ and δ are XMDS?
- Use a (generalized) Cauchy construction $x_{i, j}=c_{i} d_{j} /\left(x_{i}-y_{j}\right)$, viz. $\gamma_{i, j}=x_{i} /\left(x_{i}-y_{j}\right)$
- Then $\delta_{i, j}=1-x_{i} /\left(x_{i}-y_{j}\right)=-y_{j} /\left(x_{i}-y_{j}\right)$, so δ is Cauchy and then (X)MDS

Masking schemes for finite field multiplication

Proving security

New instantiations of the schemes from CRYPTO 2017

Conclusion

New CR'17 masking instances

The end?

- We found more instances of the (two) masking schemes of CRYPTO 2017, at larger orders
- Still only reaching $d=4$ over "useful" fields such as $\mathbb{F}_{2^{8}}$
- \Rightarrow Still room for improvements

