
Pierre Karpman
Efficient and Provable White-Box Primitives 2016–12–05 1/30

Efficient and Provable White-Box Primitives

Pierre-Alain Fouque] Pierre Karpmanf Paul Kirchner[

Brice Minaudb

]Université de Rennes 1 and Institut universitaire de France
fInria, École polytechnique, NTU and CWI

[École normale supérieure
bUniversité de Rennes 1 and Royal Holloway University of London

ASIACRYPT, Hanoi
2016–12–05

Pierre Karpman
Efficient and Provable White-Box Primitives 2016–12–05 2/30

Context

Provably secure white-box primitives

Implementation aspects

Pierre Karpman
Efficient and Provable White-Box Primitives 2016–12–05 3/30

Motivation: incompressibility

Informally:

I Let E : K × P → C be a block cipher

I Let E←[E be an incompressible implementation of E
I Given only E, it must be hard to find E′ s.t.

1 ∀k ∈ K,∀m ∈ P,E′(k ,m) = E(k ,m)
2 #(E′)� #(E)

Explicit (relaxed) targets:

I E(k ,m) = E′(k,m) for a proportion α of inputs

I #(E′) < c ·#(E)

Pierre Karpman
Efficient and Provable White-Box Primitives 2016–12–05 4/30

White-box encryption schemes

White-box encryption scheme

A pair of two encryption schemes

E : K ×K′ ×R×P → C
E : T × K′ ×R×P → C

with a white-box compiler C : K → T s.t.:

∀k ∈ K, E(k, ·, ·, ·) ≡ E(C(k), ·, ·, ·)

I Take #K � #T
I T ∈ T ≈ “pseudorandom tables” generated from k ∈ K

I ASASA, SPACE, SPNbox, this work

Pierre Karpman
Efficient and Provable White-Box Primitives 2016–12–05 5/30

Black and white adversaries

Black-box attacks:

I Pick k, attack E(k, ·, ·, ·) as a symmetric cryptosystem

White-box attacks:
I Given E(C(k), ·, ·, ·), find equivalent smaller E′

I Compiler adversary: extract k from C(k)
I Implementation adversary: use less of C(k) while maintaining

functionality

Pierre Karpman
Efficient and Provable White-Box Primitives 2016–12–05 6/30

White-box security

Protecting against compiler adversaries:
I Build the tables as secure small block ciphers

I ASASA (Biryukov et al., 2014), broken (Minaud et al., 2015),
(Dinur et al., 2015)

I SPNbox (Bogdanov et al., 2016)

I Build on a normal-sized strong cipher (e.g. the AES)
I SPACE (Bogdanov and Isobe, 2015)
I Also this work

Protecting against implementation adversaries:

I Force many unpredictable table accesses when running E

Pierre Karpman
Efficient and Provable White-Box Primitives 2016–12–05 7/30

Context

Provably secure white-box primitives

Implementation aspects

Pierre Karpman
Efficient and Provable White-Box Primitives 2016–12–05 8/30

The objective

Design white-box encryption schemes:

I With provable arguments v. all black and white-box
adversaries

I With easily tunable parameters (implementation size, security)

Focus on the necessary primitives:

I White-box block ciphers ⇒ the PuppyCipher family

I White-box key generators ⇒ the CoureurDesBois family

Pierre Karpman
Efficient and Provable White-Box Primitives 2016–12–05 9/30

Global strategy

1 Rely on the AES to defeat black-box adversaries

2 ” to defeat compiler adversaries

3 Define a security model w.r.t. implementation adversaries

4 Use it to prove security bounds for the constructions

Pierre Karpman
Efficient and Provable White-Box Primitives 2016–12–05 10/30

Getting rid of the easy adversaries

Black-box adversaries:
I Use “black-box calls” to the AES as part of the scheme

I Example: Ê = AESk′′ ◦E ◦AESk′

I Happens naturally for our constructions, e.g. PuppyCipher

Compiler adversaries:
I Define C(k) from the AES with key k

I Example: C(k) = [AESk(0112||i)], 0 ≤ i < 216

Pierre Karpman
Efficient and Provable White-Box Primitives 2016–12–05 11/30

A model for (weak) incompressibility

For a table-based scheme E : T × K′ ×R×P → C:

ENC-TCOM (weak incompressibility)

Security parameters: s, λ, δ

B picks T from T uniformly at random
A adaptively queries T [qi], 0 ≤ i < s
B picks (K ′,R,P) from K′ ×R×P uniformly at random
A wins by providing C = E(T ,K ′,R,P)

E is (s, λ, δ)-secure if with Pr = 1− 2−λ over the choice of T , A
wins with Pr < δ

Pierre Karpman
Efficient and Provable White-Box Primitives 2016–12–05 12/30

Remarks on ENC-TCOM

Source of “weakness”:

I Assumption on the adversarial strategy

Strong variant (sketch):

I A chooses a leak function f guaranteeing

min-entropy(x |f (x)) > µ

I B picks T , sends f (T) to A

I A tries to encrypt a random message

Pierre Karpman
Efficient and Provable White-Box Primitives 2016–12–05 13/30

The CoureurDesBois family

Objective: A family CDB−t : R → K
I Can be used for key generation in a hybrid system

I Tunable implementation size parameter t

I Provably secure w.r.t. ENC-TCOM

Pierre Karpman
Efficient and Provable White-Box Primitives 2016–12–05 14/30

A simple structure

Compilation phase:

I T = C(k) = [AESk(0128−t ||i)], 0 ≤ i < 2t

I T has size 2t+4 bytes

Use the random input r to CDB−t to:

1 Generate a pseudorandom sequence (Si) of n t-bit values (use
AES-CTR)

2 Access T at indices S0, . . . ,Sn−1

3 Arrange the outputs in a matrix Q ∈Md(F2128), d = d√ne
4 Generate a, b ∈ Fd

2128 (use AES-CTR)

5 The result is k =
∑

i ,j Qi ,j · ai · bj (extractor from Coron et al.,
2011)

Pierre Karpman
Efficient and Provable White-Box Primitives 2016–12–05 15/30

CoureurDesBois-16 in a picture

c0

ER

/ 128

T T

/ 16 / 16· · ·

· · ·

· · · ER

c7

/ 128

T T

/ 16 / 16· · ·

· · ·

· · · ER

c23

/ 128

HH

/ 128 / 128 / 128 / 128 / 128

k

Pierre Karpman
Efficient and Provable White-Box Primitives 2016–12–05 16/30

How many table accesses are necessary?

Idea: A cannot predict k if it doesn’t know T [x] for some x

I Let A keep s table outputs (ratio α := s/#T)

I What should be n for A to miss at least one T input w.h.p.?

Security target: δ = 128− log(s) ≈ 128− t bits

I A could store s random values k instead

A generic lower bound:

I We need at least r rounds with αr ≤ 2−δ

Pierre Karpman
Efficient and Provable White-Box Primitives 2016–12–05 17/30

The result

I One more round than the generic lower bound is enough

I See the paper for details

Example: α = 2−2

I CDB−16: 57 table accesses (δ = 112)

I CDB−20: 55 table accesses (δ = 108)

I CDB−24: 53 table accesses (δ = 104)

Pierre Karpman
Efficient and Provable White-Box Primitives 2016–12–05 18/30

There is more

CoureurDesBois can also be proven secure in the strong model

I Exploit similarity of incompressibility and bounded-storage
models

I Use results from Vadhan on local extractors (2004)

Pierre Karpman
Efficient and Provable White-Box Primitives 2016–12–05 19/30

The PuppyCipher family

Objective: A family PC−t : K′ × P → C
I Take K′ = P = C = {0, 1}128 (typical block cipher sizes)

I Tunable implementation size parameter t

I Provably secure w.r.t. ENC-TCOM

I Can be seen as a sequential variant of CoureurDesBois

Pierre Karpman
Efficient and Provable White-Box Primitives 2016–12–05 20/30

A simple structure (again)

Compilation phase:

I Tu=0,...,64/t−1 = C(k) = [bAESk(Ku||i)c64], 0 ≤ i < 2t

I {Tu} has size (64/t − 1)× 2t+3 bytes

Encryption phase:

I Round function: one Feistel step + one AES call

I (mL||(mR1||mR2)) 7→ AES((mL ⊕ T0(mR1)⊕ T1(mR2)||mR))

Pierre Karpman
Efficient and Provable White-Box Primitives 2016–12–05 21/30

PuppyCipher-24 in a picture (top)

m

E

/ 128

K0

/ 64 / 64

/ 16 / 24 / 24/ 64

•T0/
64

•T1/
64

EK1

/ 64 / 64

Pierre Karpman
Efficient and Provable White-Box Primitives 2016–12–05 22/30

PuppyCipher-24 in a picture (bottom)

EK1

/ 64 / 64

/ 16 / 24 / 24/ 64

•T0/
64

•T1/
64

EK34

/ 64 / 64

c

/ 128

Pierre Karpman
Efficient and Provable White-Box Primitives 2016–12–05 23/30

How many table accesses are necessary?

I Proof idea similar to CoureurDesBois (weak model)

I More intricate because of non-independence of inputs

I See the paper for details

Example: α = 2−2

I PC−16: 18 rounds / 72 table accesses (δ = 112)

I PC−20: 23 rounds / 69 table accesses (δ = 108)

I PC−24: 34 rounds / 68 table accesses (δ = 104)

Pierre Karpman
Efficient and Provable White-Box Primitives 2016–12–05 24/30

Context

Provably secure white-box primitives

Implementation aspects

Pierre Karpman
Efficient and Provable White-Box Primitives 2016–12–05 25/30

Features of CDB and PC

I All individual components are efficient

I # Table access is near-minimal for a given security

I CoureurDesBois is highly parallelizable

I Some table accesses also parallel in PuppyCipher

I More aggressive variant of PuppyCipher: Hound
I Use only 5-round AES after each Feistel step

Pierre Karpman
Efficient and Provable White-Box Primitives 2016–12–05 26/30

Selected implementation figures: PC

Execution time in cycles / one block / Xeon E5-1603v3

Size (bytes) Avg. Std. Dev.

PC-16 (white-box) 221 2800 70
PC-16 (secret) negl. 3940 10

PC-24 (white-box) 228 23390 1340
PC-24 (secret) negl. 6600 60

HD-24 (white-box) 228 21740 1230
HD-24 (secret) negl. 5360 60

I 175 to 1460 cycles/byte

Pierre Karpman
Efficient and Provable White-Box Primitives 2016–12–05 27/30

Selected implementation figures: CDB

Execution time in cycles / one call / Xeon E5-1603v3

Size (bytes) Avg. Std. Dev.

CDB-16 (white-box) 220 2020 20
CDB-16 (secret) negl. 2150 30

CDB-20 (white-box) 224 4700 600
CDB-20 (secret) negl. 2900 20

CDB-24 (white-box) 228 11900 610
CDB-24 (secret) negl. 3050 30

I ≈ 1.4− 2.4× faster than PuppyCipher/Hound

Pierre Karpman
Efficient and Provable White-Box Primitives 2016–12–05 28/30

Performance as # ≡ sequential table calls

A single table access for PC-24 costs 490 cycles in our tests
(beware of the variance!)

I PC-24: ≡ 48 sequential accesses (v. 68 real)

I CDB-24: ≡ 25 sequential accesses (v. 53 real)

A single table access for PC-16 costs 59 cycles in our tests

I PC-16: ≡ 47 sequential accesses (v. 72 real)

I CDB-16: ≡ 35 sequential accesses (v. 57 real)

Pierre Karpman
Efficient and Provable White-Box Primitives 2016–12–05 29/30

(Lack of) comparison with SPACE & SPNbox

PuppyCipher v. Hound v. CoureurDesBois v. SPACE v. SPNbox
I Meaningful comparison from existing data is hard

I Unequal security level, different message sizes, different
systems

I ⇒ No attempts to summarize a comparison here

Pierre Karpman
Efficient and Provable White-Box Primitives 2016–12–05 30/30

Fin!

	Context
	Provably secure white-box primitives
	Implementation aspects

