Efficient and Provable White-Box Primitives

Pierre-Alain Fouque ${ }^{\curvearrowright}$ Pierre Karpman ${ }^{\boldsymbol{~}}$ Paul Kirchnere ${ }^{\text {es }}$ Brice Minaud ${ }^{\text {s }}$
ヶUniversité de Rennes 1 and Institut universitaire de France
- Inria, École polytechnique, NTU and CWI -ÉÉcole normale supérieure
${ }^{2}$ Université de Rennes 1 and Royal Holloway University of London

> ASIACRYPT, Hanoi 2016-12-05

Context

Provably secure white-box primitives

Implementation aspects

Motivation: incompressibility

Informally:

- Let $\mathcal{E}: \mathcal{K} \times \mathcal{P} \rightarrow \mathcal{C}$ be a block cipher
- Let $\mathbb{E} \longleftrightarrow \mathcal{E}$ be an incompressible implementation of \mathcal{E}
- Given only \mathbb{E}, it must be hard to find \mathbb{E}^{\prime} s.t.
$1 \forall k \in \mathcal{K}, \forall m \in \mathcal{P}, \mathbb{E}^{\prime}(k, m)=\mathbb{E}(k, m)$
$2 \#\left(\mathbb{E}^{\prime}\right) \ll \#(\mathbb{E})$

Explicit (relaxed) targets:

- $\mathbb{E}(k, m)=\mathbb{E}^{\prime}(k, m)$ for a proportion α of inputs
- $\#\left(\mathbb{E}^{\prime}\right)<c \cdot \#(\mathbb{E})$

White-box encryption schemes

White-box encryption scheme
A pair of two encryption schemes

$$
\begin{aligned}
& \mathcal{E}: \mathcal{K} \times \mathcal{K}^{\prime} \times \mathcal{R} \times \mathcal{P} \rightarrow \mathcal{C} \\
& \mathbb{E}: \mathcal{T} \times \mathcal{K}^{\prime} \times \mathcal{R} \times \mathcal{P} \rightarrow \mathcal{C}
\end{aligned}
$$

with a white-box compiler $\mathrm{C}: \mathcal{K} \rightarrow \mathcal{T}$ s.t.:

$$
\forall k \in \mathcal{K}, \mathcal{E}(k, \cdot, \cdot, \cdot) \equiv \mathbb{E}(\mathrm{C}(k), \cdot, \cdot, \cdot)
$$

- Take $\# \mathcal{K} \ll \# \mathcal{T}$
- $T \in \mathcal{T} \approx$ "pseudorandom tables" generated from $k \in \mathcal{K}$
- ASASA, SPACE, SPNbox, this work

Black and white adversaries

Black-box attacks:

- Pick k, attack $\mathcal{E}(k, \cdot, \cdot, \cdot)$ as a symmetric cryptosystem

White-box attacks:

- Given $\mathbb{E}(\mathrm{C}(k), \cdot, \cdot, \cdot)$, find equivalent smaller \mathbb{E}^{\prime}
- Compiler adversary: extract k from $C(k)$
- Implementation adversary: use less of $C(k)$ while maintaining functionality

White-box security

Protecting against compiler adversaries:

- Build the tables as secure small block ciphers
- ASASA (Biryukov et al., 2014), broken (Minaud et al., 2015), (Dinur et al., 2015)
- SPNbox (Bogdanov et al., 2016)
- Build on a normal-sized strong cipher (e.g. the AES)
- SPACE (Bogdanov and Isobe, 2015)
- Also this work

Protecting against implementation adversaries:

- Force many unpredictable table accesses when running \mathbb{E}

Context
 Provably secure white-box primitives

Implementation aspects

The objective

Design white-box encryption schemes:

- With provable arguments v. all black and white-box adversaries
- With easily tunable parameters (implementation size, security)

Focus on the necessary primitives:

- White-box block ciphers \Rightarrow the PuppyCipher family
- White-box key generators \Rightarrow the CoureurDesBois family

Global strategy

1 Rely on the AES to defeat black-box adversaries
2 " to defeat compiler adversaries
3 Define a security model w.r.t. implementation adversaries
4 Use it to prove security bounds for the constructions

Getting rid of the easy adversaries

Black-box adversaries:

- Use "black-box calls" to the AES as part of the scheme
- Example: $\hat{\mathbb{E}}=\mathrm{AES}_{k^{\prime \prime}} \circ \mathbb{E} \circ \mathrm{AES}_{k^{\prime}}$
- Happens naturally for our constructions, e.g. PuppyCipher

Compiler adversaries:

- Define $C(k)$ from the AES with key k
- Example: $\mathrm{C}(k)=\left[\operatorname{AES}_{k}\left(0^{112} \| i\right)\right], 0 \leq i<2^{16}$

A model for (weak) incompressibility

For a table-based scheme $\mathbb{E}: \mathcal{T} \times \mathcal{K}^{\prime} \times \mathcal{R} \times \mathcal{P} \rightarrow \mathcal{C}$:
ENC-TCOM (weak incompressibility)
Security parameters: s, λ, δ
B picks T from \mathcal{T} uniformly at random
A adaptively queries $T\left[q_{i}\right], 0 \leq i<s$
B picks $\left(K^{\prime}, R, P\right)$ from $\mathcal{K}^{\prime} \times \mathcal{R} \times \mathcal{P}$ uniformly at random
A wins by providing $C=\mathbb{E}\left(T, K^{\prime}, R, P\right)$
\mathbb{E} is (s, λ, δ)-secure if with $\operatorname{Pr}=1-2^{-\lambda}$ over the choice of T, \mathbf{A} wins with $\operatorname{Pr}<\delta$

Remarks on ENC-TCOM

Source of "weakness":

- Assumption on the adversarial strategy

Strong variant (sketch):

- A chooses a leak function f guaranteeing

$$
\min \text {-entropy }(x \mid f(x))>\mu
$$

- B picks T, sends $f(T)$ to \mathbf{A}
- A tries to encrypt a random message

The CoureurDesBois family

Objective: A family $\mathrm{CDB}-t: \mathcal{R} \rightarrow \mathcal{K}$

- Can be used for key generation in a hybrid system
- Tunable implementation size parameter t
- Provably secure w.r.t. ENC-TCOM

A simple structure

Compilation phase:

- $T=\mathrm{C}(k)=\left[\operatorname{AES}_{k}\left(0^{128-t} \| i\right)\right], 0 \leq i<2^{t}$
- T has size 2^{t+4} bytes

Use the random input r to $C D B-t$ to:
1 Generate a pseudorandom sequence $\left(S_{i}\right)$ of $n t$-bit values (use AES-CTR)
2 Access T at indices S_{0}, \ldots, S_{n-1}
3 Arrange the outputs in a matrix $Q \in \mathcal{M}_{d}\left(\mathbb{F}_{2^{128}}\right), d=\lceil\sqrt{n}\rceil$
4 Generate $a, b \in \mathbb{F}_{2^{128}}^{d}$ (use AES-CTR)
5 The result is $\mathbf{k}=\sum_{i, j} Q_{i, j} \cdot a_{i} \cdot b_{j}$ (extractor from Coron et al., 2011)

CoureurDesBois-16 in a picture

How many table accesses are necessary?

Idea: A cannot predict \mathbf{k} if it doesn't know $T[x]$ for some x

- Let A keep s table outputs (ratio $\alpha:=s / \# T$)
- What should be n for \mathbf{A} to miss at least one T input w.h.p.?

Security target: $\delta=128-\log (s) \approx 128-t$ bits

- A could store s random values \mathbf{k} instead

A generic lower bound:

- We need at least r rounds with $\alpha^{r} \leq 2^{-\delta}$

The result

- One more round than the generic lower bound is enough
- See the paper for details

Example: $\alpha=2^{-2}$

- CDB -16: 57 table accesses $(\delta=112)$
- CDB -20: 55 table accesses $(\delta=108)$
- CDB -24: 53 table accesses $(\delta=104)$

There is more

CoureurDesBois can also be proven secure in the strong model

- Exploit similarity of incompressibility and bounded-storage models
- Use results from Vadhan on local extractors (2004)

The PuppyCipher family

Objective: A family $\mathrm{PC}-t: \mathcal{K}^{\prime} \times \mathcal{P} \rightarrow \mathcal{C}$

- Take $\mathcal{K}^{\prime}=\mathcal{P}=\mathcal{C}=\{0,1\}^{128}$ (typical block cipher sizes)
- Tunable implementation size parameter t
- Provably secure w.r.t. ENC-TCOM
- Can be seen as a sequential variant of CoureurDesBois

A simple structure (again)

Compilation phase:

- $\left.T_{u=0, \ldots, 64 / t-1}=\mathrm{C}(k)=\left[\operatorname{AES}_{k}\left(K_{u} \| i\right)\right]_{64}\right], 0 \leq i<2^{t}$
- $\left\{T_{u}\right\}$ has size $(64 / t-1) \times 2^{t+3}$ bytes

Encryption phase:

- Round function: one Feistel step + one AES call
- $\left(m_{L} \|\left(m_{R 1} \| m_{R 2}\right)\right) \mapsto \operatorname{AES}\left(\left(m_{L} \oplus T_{0}\left(m_{R 1}\right) \oplus T_{1}\left(m_{R 2}\right) \| m_{R}\right)\right)$

PuppyCipher-24 in a picture (top)

How many table accesses are necessary?

- Proof idea similar to CoureurDesBois (weak model)
- More intricate because of non-independence of inputs
- See the paper for details

Example: $\alpha=2^{-2}$

- PC $-16: 18$ rounds $/ 72$ table accesses $(\delta=112)$
- PC -20: 23 rounds / 69 table accesses $(\delta=108)$
- PC -24: 34 rounds / 68 table accesses $(\delta=104)$

Provably secure white-box primitives

Implementation aspects

Efficient and Provable White-Box Primitives

Features of CDB and PC

- All individual components are efficient
- \# Table access is near-minimal for a given security
- CoureurDesBois is highly parallelizable
- Some table accesses also parallel in PuppyCipher
- More aggressive variant of PuppyCipher: Hound
- Use only 5-round AES after each Feistel step

Selected implementation figures: PC

Execution time in cycles / one block / Xeon E5-1603v3
Size (bytes) Avg. Std. Dev.

PC-16 (white-box)	2^{21}	2800	70
PC-16 (secret)	negl.	3940	10
PC-24 (white-box)	2^{28}	23390	1340
PC-24 (secret)	negl.	6600	60
HD-24 (white-box)	2^{28}	21740	1230
HD-24 (secret)	negl.	5360	60

- 175 to 1460 cycles/byte

Selected implementation figures: CDB

Execution time in cycles / one call / Xeon E5-1603v3

	Size (bytes)	Avg.	Std. Dev.
CDB-16 (white-box)	2^{20}	2020	20
CDB-16 (secret)	negl.	2150	30
CDB-20 (white-box)	2^{24}	4700	600
CDB-20 (secret)	negl.	2900	20
CDB-24 (white-box)	2^{28}	11900	610
CDB-24 (secret)	negl.	3050	30

- $\approx 1.4-2.4 \times$ faster than PuppyCipher/Hound

Performance as $\# \equiv$ sequential table calls

A single table access for PC-24 costs 490 cycles in our tests (beware of the variance!)

- PC-24: $\equiv 48$ sequential accesses (v. 68 real)
- CDB-24: $\equiv 25$ sequential accesses (v. 53 real)

A single table access for PC-16 costs 59 cycles in our tests

- PC-16: $\equiv 47$ sequential accesses (v. 72 real)
- CDB-16: $\equiv 35$ sequential accesses (v. 57 real)

(Lack of) comparison with SPACE \& SPNbox

PuppyCipher v. Hound v. CoureurDesBois v. SPACE v. SPNbox

- Meaningful comparison from existing data is hard
- Unequal security level, different message sizes, different systems
- \Rightarrow No attempts to summarize a comparison here

