Efficient and Provable White-Box Primitives

*Université de Rennes 1 and Institut universitaire de France
 "Inria, École polytechnique, NTU and CWI
 "École normale supérieure
 Université de Rennes 1 and Royal Holloway University of London

ASIACRYPT, Hanoi 2016–12–05

Efficient and Provable White-Box Primitives

2016–12–05 **1**/ Pierre Karpman

1/30

Context

Provably secure white-box primitives

Implementation aspects

Efficient and Provable White-Box Primitives

2016–12–05 2/30 Pierre Karpman

Motivation: incompressibility

Informally:

- Let $\mathcal{E} : \mathcal{K} \times \mathcal{P} \to \mathcal{C}$ be a block cipher
- Let $\mathbb{E} \leftrightarrow \mathcal{E}$ be an incompressible implementation of \mathcal{E}
- ▶ Given only E, it must be hard to find E' s.t.
 1 ∀k ∈ K, ∀m ∈ P, E'(k, m) = E(k, m)
 2 #(E') ≪ #(E)

Explicit (relaxed) targets:

• $\mathbb{E}(k,m) = \mathbb{E}'(k,m)$ for a proportion lpha of inputs

•
$$\#(\mathbb{E}') < c \cdot \#(\mathbb{E})$$

White-box encryption schemes

White-box encryption scheme

A pair of two encryption schemes

 $\begin{array}{l} \mathcal{E}:\mathcal{K}\times\mathcal{K}'\times\mathcal{R}\times\mathcal{P}\rightarrow\mathcal{C}\\ \mathbb{E}:\mathcal{T}\times\mathcal{K}'\times\mathcal{R}\times\mathcal{P}\rightarrow\mathcal{C} \end{array}$

with a *white-box compiler* $C : \mathcal{K} \to \mathcal{T}$ s.t.:

$$\forall k \in \mathcal{K}, \mathcal{E}(k, \cdot, \cdot, \cdot) \equiv \mathbb{E}(\mathsf{C}(k), \cdot, \cdot, \cdot)$$

• Take $\#\mathcal{K} \ll \#\mathcal{T}$

T ∈ *T* ≈ "pseudorandom tables" generated from *k* ∈ *K*ASASA, SPACE, SPNbox, this work

Efficient and Provable White-Box Primitives

Black-box attacks:

▶ Pick k, attack $\mathcal{E}(k, \cdot, \cdot, \cdot)$ as a symmetric cryptosystem

White-box attacks:

- Given $\mathbb{E}(\mathsf{C}(k),\cdot,\cdot,\cdot)$, find equivalent smaller \mathbb{E}'
 - Compiler adversary: extract k from C(k)
 - Implementation adversary: use less of C(k) while maintaining functionality

White-box security

Protecting against compiler adversaries:

- Build the tables as secure small block ciphers
 - ASASA (Biryukov et al., 2014), broken (Minaud et al., 2015), (Dinur et al., 2015)
 - SPNbox (Bogdanov et al., 2016)
- Build on a normal-sized strong cipher (e.g. the AES)
 - SPACE (Bogdanov and Isobe, 2015)
 - Also this work

Protecting against implementation adversaries:

 \blacktriangleright Force many unpredictable table accesses when running $\mathbb E$

Context

Provably secure white-box primitives

Implementation aspects

Efficient and Provable White-Box Primitives

2016–12–05 **7/30** Pierre Karpman

The objective

Design white-box encryption schemes:

- With provable arguments v. all black and white-box adversaries
- With easily tunable parameters (implementation size, security)

Focus on the necessary primitives:

- ► White-box block ciphers ⇒ the PuppyCipher family
- ▶ White-box key generators ⇒ the CoureurDesBois family

Global strategy

1 Rely on the AES to defeat black-box adversaries

- 2 " to defeat compiler adversaries
- **3** Define a security model w.r.t. implementation adversaries
- 4 Use it to prove security bounds for the constructions

Black-box adversaries:

- Use "black-box calls" to the AES as part of the scheme
 - Example: $\hat{\mathbb{E}} = AES_{k''} \circ \mathbb{E} \circ AES_{k'}$
 - ► Happens naturally for our constructions, e.g. PuppyCipher

Compiler adversaries:

- Define C(k) from the AES with key k
 - Example: $C(k) = [AES_k(0^{112}||i)], 0 \le i < 2^{16}$

For a table-based scheme $\mathbb{E} : \mathcal{T} \times \mathcal{K}' \times \mathcal{R} \times \mathcal{P} \rightarrow \mathcal{C}$:

ENC-TCOM (weak incompressibility)

Security parameters: s, λ , δ

B picks T from T uniformly at random **A** adaptively queries $T[q_i]$, $0 \le i < s$ **B** picks (K', R, P) from $\mathcal{K}' \times \mathcal{R} \times \mathcal{P}$ uniformly at random **A** wins by providing $C = \mathbb{E}(T, \mathcal{K}', R, P)$

 $\mathbb E$ is $(s,\lambda,\delta)\text{-secure}$ if with $\Pr=1-2^{-\lambda}$ over the choice of $\mathcal T$, $\mathbf A$ wins with $\Pr<\delta$

Efficient and Provable White-Box Primitives

2016–12–05 11/30 Pierre Karpman

Remarks on ENC-TCOM

Source of "weakness":

Assumption on the adversarial strategy

Strong variant (sketch):

▶ A chooses a leak function f guaranteeing

 \min -entropy $(x|f(x)) > \mu$

- **B** picks T, sends f(T) to **A**
- A tries to encrypt a random message

2016–12–05 **12/30** Pierre Karpman Objective: A family $\mathsf{CDB} - t : \mathcal{R} \to \mathcal{K}$

- Can be used for key generation in a hybrid system
- Tunable implementation size parameter t
- Provably secure w.r.t. ENC-TCOM

A simple structure

Compilation phase:

- ▶ $T = C(k) = [AES_k(0^{128-t}||i)], 0 \le i < 2^t$
- ► T has size 2^{t+4} bytes

Use the random input r to CDB -t to:

- Generate a pseudorandom sequence (S_i) of n t-bit values (use AES-CTR)
- 2 Access T at indices S_0, \ldots, S_{n-1}
- **3** Arrange the outputs in a matrix $Q \in \mathcal{M}_d(\mathbb{F}_{2^{128}})$, $d = \lceil \sqrt{n} \rceil$
- 4 Generate $a, b \in \mathbb{F}_{2^{128}}^d$ (use AES-CTR)
- **5** The result is $\mathbf{k} = \sum_{i,j} Q_{i,j} \cdot a_i \cdot b_j$ (extractor from Coron et al., 2011)

Efficient and Provable White-Box Primitives

CoureurDesBois-16 in a picture

Efficient and Provable White-Box Primitives

2016–12–05 **15/30** Pierre Karpman Idea: A cannot predict k if it doesn't know T[x] for some x

- Let **A** keep *s* table outputs (ratio $\alpha := s/\#T$)
- What should be n for A to miss at least one T input w.h.p.?

Security target: $\delta = 128 - \log(s) \approx 128 - t$ bits

A could store s random values k instead

A generic lower bound:

• We need at least r rounds with $\alpha^r \leq 2^{-\delta}$

2016–12–05 **16/30** Pierre Karpman

The result

- One more round than the generic lower bound is enough
- See the paper for details

Example: $\alpha = 2^{-2}$

- CDB -16: 57 table accesses ($\delta = 112$)
- CDB -20: 55 table accesses ($\delta = 108$)
- CDB –24: 53 table accesses ($\delta = 104$)

2016–12–05 **17/30** Pierre Karpman

There is more

CoureurDesBois can also be proven secure in the strong model

- Exploit similarity of incompressibility and bounded-storage models
- ▶ Use results from Vadhan on local extractors (2004)

Objective: A family $\mathsf{PC} - t : \mathcal{K}' \times \mathcal{P} \to \mathcal{C}$

- Take $\mathcal{K}' = \mathcal{P} = \mathcal{C} = \{0, 1\}^{128}$ (typical block cipher sizes)
- Tunable implementation size parameter t
- Provably secure w.r.t. ENC-TCOM
- ► Can be seen as a sequential variant of CoureurDesBois

Compilation phase:

- ► $T_{u=0,...,64/t-1} = C(k) = [[AES_k(K_u||i)]_{64}], 0 \le i < 2^t$
- ▶ ${T_u}$ has size $(64/t 1) \times 2^{t+3}$ bytes

Encryption phase:

- Round function: one Feistel step + one AES call
- $\blacktriangleright (m_L||(m_{R1}||m_{R2})) \mapsto \mathsf{AES}((m_L \oplus T_0(m_{R1}) \oplus T_1(m_{R2})||m_R))$

Efficient and Provable White-Box Primitives

2016–12–05 **20/30** Pierre Karpman

PuppyCipher-24 in a picture (top)

Efficient and Provable White-Box Primitives

2016–12–05 **21/30** Pierre Karpman

PuppyCipher-24 in a picture (bottom)

Efficient and Provable White-Box Primitives

2016–12–05 **22/30** Pierre Karpman

How many table accesses are necessary?

- Proof idea similar to CoureurDesBois (weak model)
- More intricate because of non-independence of inputs
- See the paper for details

Example: $\alpha = 2^{-2}$

- ▶ PC −16: 18 rounds / 72 table accesses ($\delta = 112$)
- ▶ PC -20: 23 rounds / 69 table accesses ($\delta = 108$)

▶ PC -24: 34 rounds / 68 table accesses (
$$\delta = 104$$
)

2016–12–05 23/30 Pierre Karpman

Context

Provably secure white-box primitives

Implementation aspects

Efficient and Provable White-Box Primitives

2016–12–05 24/30 Pierre Karpman

Features of CDB and PC

- All individual components are efficient
- ▶ # Table access is near-minimal for a given security
- CoureurDesBois is highly parallelizable
- Some table accesses also parallel in PuppyCipher
- More aggressive variant of PuppyCipher: Hound
 - Use only 5-round AES after each Feistel step

2016–12–05 **25/30** Pierre Karpman

Execution time in cycles / one block / Xeon E5-1603v3

	Size (bytes)	Avg.	Std. Dev.
PC-16 (white-box)	2 ²¹	2800	70
PC-16 (secret)	negl.	3940	10
PC-24 (white-box)	2 ²⁸	23390	1340
PC-24 (secret)	negl.	6600	60
HD-24 (white-box)	2 ²⁸	21740	1230
HD-24 (secret)	negl.	5360	60

175 to 1460 cycles/byte

Efficient and Provable White-Box Primitives

Execution time in cycles / one call / Xeon E5-1603v3

	Size (bytes)	Avg.	Std. Dev.
CDB-16 (white-box)	2 ²⁰	2020	20 30
CDB-20 (white-box)	2 ²⁴	4700	600
CDB-20 (secret)	negl.	2900	20
CDB-24 (white-box) CDB-24 (secret)	2 ²⁸ negl.	11900 3050	610 30

 $\blacktriangleright \approx 1.4 - 2.4 \times$ faster than PuppyCipher/Hound

Efficient and Provable White-Box Primitives

A single table access for PC-24 costs 490 cycles in our tests (beware of the variance!)

▶ PC-24: \equiv 48 sequential accesses (v. 68 real)

• CDB-24: \equiv 25 sequential accesses (v. 53 real)

A single table access for PC-16 costs 59 cycles in our tests

- ▶ PC-16: \equiv 47 sequential accesses (v. 72 real)
- CDB-16: \equiv 35 sequential accesses (v. 57 real)

(Lack of) comparison with SPACE & SPNbox

PuppyCipher v. Hound v. CoureurDesBois v. SPACE v. SPNbox

- Meaningful comparison from existing data is hard
 - Unequal security level, different message sizes, different systems
- ightarrow
 ightarrow
 m No attempts to summarize a comparison here

Efficient and Provable White-Box Primitives

2016–12–05 **30/30** Pierre Karpman