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Introduction — Least squares approximation

• Method of least squares → standard approach to approximate solution of
over-determined systems (systems of equations in which there are more equations
than unknowns).
• “Least squares”→ means that the overall solution minimizes the sum of the
squares of the errors made in the results of every single equation.
• A major application consists in data fitting.
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Introduction —

What is a good approximation?
As an example, assume we want to approximate the function f (x) = x2 over the interval
[0, 1] by a simple function, e.g. by a polynomial of degree one : p(x) = ax + b.
Of course we need a tool to measure this approximation, i.e. the distance (the error) between
f and p on [0, 1]. Consider the following three cases.

Continuous least squares — The minimization of∫ 1

0

(
f (x)− p(x)

)2
dx =

∫ 1

0

(
x2 − (ax + b)

)2
dx leads to p(x) = x− 1

6

Discrete least squares — Considering the 3 points x0 = 0, x1 = 1/2, x2 = 1, the
minimization of

2∑
i=0

(
f (xi)− p(xi)

)2
=

2∑
i=0

(
x2

i − (axi + b)
)2

leads to p(x) = x− 1
12

Absolute values — Considering the 3 points x0 = 0, x1 = 1/2, x2 = 1, the
minimization of

2∑
i=0

∣∣∣f (xi)− p(xi)
∣∣∣ =

2∑
i=0

∣∣∣x2
i − (axi + b)

∣∣∣ leads to p(x) = x

Consequently, one can see that the choice of the tool (the norm) for measuring the error (the
approximation level) is therefore essential.
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Introduction —

Analysis & implementation

Then, after choosing an approximation criterion, we must consider the following
questions.

Is there a solution? i.e., does such a polynomial p exist ?

Uniqueness?

How can we characterize this solution p?

How can we calculate this solution p ?
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Introduction — An example

Problem 1 : Linear system.

Consider the linear system1 1
4 1
7 1

(α
β

)
=

2
2
5


that can be written in the
matrix form Ax = b.
This linear system does not
admit an exact solution.

We propose to mini-
mize the quantity
||A x − b||2 which can be
written as the quadratic
form

xT(AT A)x−2 (AT b)T x+bT b.

Problem 2 : Projection in an
Euclidean space.
Consider the vector
v = (2, 2, 5) ∈ R3

and the 2D linear space Π
of R3 spanned by the two
vectors u1 = (1, 4, 7) and
u2 = (1, 1, 1).
We are looking for a vector
v̂ = α u1 + β u2 ∈ Π which
minimizes the distance
between v and Π.

The solution consists
in the orthogonal projection
of v in the plane Π charac-
terized by v − v̂ ⊥ u1 and
v− v̂ ⊥ u2, i.e.,
〈v− v̂, u1〉 = 0 and
〈v− v̂, u2〉 = 0.

Problem 3 : Curve fitting.

Given the three points
(1, 2), (4, 2) , (7, 5),
we are looking for a straight
line Y = αX + β which
passes (as close as possible)
through these 3 points.
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For this purpose, we
minimize the sum of the
square of the errors εi, i.e.,
the quantity

∑
ε2

i .
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The best approximation problem —

In a normed vector space
Let (V, ||.||) a normed vector space and T ⊂ V an
arbitrary subset. Given an element v ∈ V we look
for an element u ∈ T which is as close as possible
of v. Precisely, û ∈ T is called a best approximation
of v in T if

||v− û|| = inf
u∈ T
||v− u||

Proposition 6.1

Let T ⊂ V be a compact subset, then for every v ∈ V there exists a best approximation
û ∈ T of v.

Proposition 6.2 (Uniqueness)

Let T ⊂ V be a compact and strictly convex subset of a normed vector space V. Then for
every v ∈ V, there exists a unique best approximation û ∈ T of v.

Proposition 6.3

Let U be a finite dimensional vector subspace of a normed vector space V. Then for every
v ∈ V, there exists at least one best approximation û ∈ U of v.
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The best approximation problem —

In a pre-Hilbert space
Let V be a vector space equipped with the inner product f , g ∈ V 7→ 〈f , g〉 and let
||f || = 〈f , f 〉1/2 be the induced norm. In addition, let U be a finite dimensional vector
subspace of this pre-Hilbert space.
For any given element f ∈ V , there exists a unique best approximation f̂ ∈ U of f .
We now consider a useful characterization of this best approximation.

Proposition 6.4 (Characterization)

f̂ ∈ U is the best approximation of f ∈ V if and only if

〈f − f̂ , g〉 = 0 for all g ∈ U.
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The best approximation problem —

Polynomial of best uniform approximation

Proposition 6.5

Consider a function f ∈ C[a, b]. Then for each integer n ∈ N, there exists a unique
polynomial qn of degree less than or equal to n such that

||f − qn|| = min
p∈Rn[x]

||f − p||.

This polynomial qn is called the polynomial of best uniform approximation of f of order n.

Proposition 6.6 (Weierstrass)

The space of polynomials R[x] is dense in the space C[a, b] endowed with the uniform norm.
As a result, for any ε > 0 there exists an integer n ∈ N and a polynomial p ∈ Rn[x] such
that ||f − p|| < ε.
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Minimization of a positive definite quadratic form —

Positive definite matrices
A symmetric n square real matrix A is said to be positive semi-definite if and only if

∀x ∈ Rn, xT A x ≥ 0.

A symmetric n square real matrix A is said to be positive definite if and only if

∀x ∈ Rn, x 6= 0, xT A x > 0.

Proposition 6.7

In this proposition, matrices A and B are assumed to be real symmetric n square matrices.

– Matrix A is positive semi-definite if and only if all its eigenvalues are positive.
Matrix A is positive definite if and only if all its eigenvalues are strictly positive.

– If A is positive semi-definite and invertible, then A is positive definite.

– If A is positive definite, then A−1 is positive definite.

– Matrix A is positive definite if and only if there exists an invertible n square matrix G such that A = GT G.

– For any real matrix H of size (p, n), the matrix HT H is (a n square) symmetric positive semi-definite.

– If A is positive definite, then α A is positive definite for any real α > 0.

– If A and B are positive semi-definite and if one of the two matrices A or B is invertible, then A + B is definite positive.

– From the Gerschgorin-Hadamard theorem we deduce immediately the two following results.

a) A symmetric diagonally dominant real matrix A with non negative diagonal entries is positive semi-definite.

b) A symmetric strictly diagonally dominant real matrix A with non negative diagonal entries is positive definite.

11/37



Minimization of a positive definite quadratic form —

Minimization : main result
We consider the problem of minimizing a positive definite quadratic form q : Rn → R
defined by

q(x) = xT A x− 2 bT x + c (1)
where A is a symmetric n square real positive definite matrix, b ∈ Rn and c ∈ R.

Proposition 6.8

The positive definite quadratic form (1) is strictly convex, which means that

∀x, y ∈ Rn, ∀t ∈]0, 1[, q
(
(1− t) x + t y

)
< (1− t) q(x) + t q(y)

and the minimization problem

find x̃ ∈ Rn such that q(x̃) = min
x∈Rn

q(x)

admits a unique global solution x̄ on Rn defined as the unique solution of the linear system

A x = b.
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Over-determined linear systems —

Problem
We are concerned here by the resolution of the linear system

A x = b, A ∈Mn,p(R), x ∈ Rp, b ∈ Rn, n > p.

Usually n is much greater than p.
In general, such a linear system does not admit an exact solution. We are therefore
looking for an approximated solution. Precisely, we replace the resolution of this
linear system by the following optimization problem

min
x∈Rp

||A x− b|| (2)

where ||.|| is the classical Euclidean norm of Rn.

In the following, a vector of Rk is identified with the column matrix of its
components in the canonical basis. As an example, the inner product of two vectors
x and y is written in the matrix form xT y.
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Over-determined linear systems —

Weighted inner product
Consider the vector space Rn equipped with the inner product

(u, v) ∈ Rn ×Rn 7→ 〈u, v〉Ω = uT Ω v =
n∑

i=1

wi ui vi

where Ω is the diagonal matrix

Ω =


w1

w2

. . .
wn

 with wi > 0, i = 1, . . . , n,

which induces the norm

u ∈ Rn 7→ ‖ u ‖Ω=
(
〈u, u〉Ω

) 1
2 =

( n∑
i=1

wi u2
i

) 1
2
.

We now consider the following optimization problem

min
x∈Rp

||A x− b||Ω (3)

which allows to weight separately equations of the initial linear system with weights wi.

→Minimizing the norm ||A x−b||Ω is equivalent to minimize the squared norm ||A x−b||2
Ω

.
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Over-determined linear systems —

Least squares approximation
The following proposition is the main result about least squares approximation.

We will give two proofs of this result.
- An algebraic proof.
- A simpler proof, using projection in an Euclidean space and proposition 6.4

Proposition 6.9

If matrix A has maximal rank p (which means that its columns are linearly
independent), then the optimization problem

min
x∈Rp

||A x− b||2
Ω

admits a unique solution x∗ defined by

AT Ω A x∗ = AT Ω b . (4)

Equations (4) are called the normal equations.
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Over-determined linear systems —

Algebraic proof of proposition 6.9

We first prove that the symmetric matrix Â = ATΩA of order p is positive definite

∀z ∈ Rp, z 6= 0, zT Â z = zT(ATΩA) z = (Az)TΩ(A z) = ||A z||2Ω > 0

since ker(A) = {0} as A is of rank p.

Finally, we just need to remark that the application x 7→ ||A x− b||2
Ω

is a positive definite
quadratic form. Precisely, for x ∈ Rp we have

‖ A x− b ‖2
Ω

= (A x− b)TΩ (A x− b)

= xT(ATΩA
)
x− 2 (ATΩ b)T x + bTΩ b

= xT Â x− 2 vT x + c

with v = ATΩb ∈ Rp and c = bTΩ b ∈ R, which concludes the proof by proposition 6.8.
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Over-determined linear systems —

Proof using projections in the Euclidean space (Rn, 〈. , .〉
Ω

)

We introduce the vector subspace U defined by

U = {A x, x ∈ Rp} = Im (A).

so that, our optimization problem can be rewritten as follows

min
y∈U
||y− b||Ω .

By proposition 6.4, the vector ŷ ∈ U which minimizes the norm ||y− b||Ω is the orthogonal
projection of b on U, and is characterized by

〈ŷ− b, y〉Ω = 0, ∀y ∈ U,

〈Ax̂− b,Ax〉Ω = 0, ∀x ∈ Rp, with ŷ = Ax̂ and y = Ax

(Ax)T Ω (Ax̂− b) = 0, ∀x ∈ Rp,

xT[ATΩ(Ax̂− b)
]

= 0, ∀x ∈ Rp,

AT Ω A x̂ = AT Ω b ,

which shows that an optimal solution x̂ of the optimization problem verify the normal
equations (4).

The projection ŷ of vector b on the subspace U is unique.
The unicity of the solution then depends on the rank of the matrix A, i.e., is a consequence of
the injectivity of the linear map x 7→ A x. 18/37
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Numerical implementation and QR factorization —

Objective
We consider the numerical resolution of the normal equations

AT A x = AT b ,

with A ∈Mn,p(R), x ∈ Rp and b ∈ Rn, where n ≥ p, which requires a specific
treatment in order to avoid the propagation of numerical rounding errors.

If the matrix A has maximal rank p, the symmetric matrix ATA is positive definite,
so that the normal equations ATA x = AT b can be solved through the Cholesky
factorization :

ATA = L LT

where L is a lower triangular matrix with positive diagonal.
However, such a factorization has the major drawback of propagating the rounding
errors. For this reason, the QR factorization is preferred.

The QR factorization reduces the minimization of the norm

||A x− b||2

to the resolution of a triangular linear system.
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Numerical implementation and QR factorization —

QR minimization

Proposition 6.10 (rectangular case)

Given a matrix A ∈Mn,p(R), n ≥ p, with maximal rank p, there exists an
orthogonal matrix Q ∈Mn(R) and a unique upper triangular matrix R ∈Mn,p(R)
with positive diagonal elements, such that

A = Q R.

We return to the optimization problem

min
x∈Rp

||A x− b||2 (5)

with b ∈ Rn and where A ∈Mn,p(R), n ≥ p, is of maximal rank p.

We consider the factorization A = QR and we introduce the following notations :

R =

(
R1

0

)
, where R1 is an upper p-square triangular matrix with positive diagonal,

QT b =

((
QT b

)
1(

QT b
)

2

)
, with

(
QT b

)
1
∈ Rp and

(
QT b

)
2
∈ Rn−p,

||.||2,r is the usual Euclidean norm in Rr (by default ||.||2 = ||.||2,n).
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Numerical implementation and QR factorization —

QR minimization
Then, for any vector x ∈ Rp, we have

||A x− b||22 = ||QR x− b||22
= ||QT(QR x− b

)
||22 since QT is orthogonal

= ||R x− QT b||22

= ||
(

R1x
0

)
−
(

(QT b)1

(QT b)2

)
||22

= ||R1 x− (QT b)1||22,p + ||(QT b)2||22,n−p since R1 x− (QT b)1 ⊥ (QT b)2

Finally, the norm ||A x− b||2, x ∈ Rp, is minimal for ||R1 x− (QT b)1||2,p = 0, from which
we deduce the following proposition.

Proposition 6.11

With the previous hypotheses, the norm ||A x− b||2 is minimal for

x̂ = R−1
1 (QTb)1

and the minimal value of the norm ||A x− b||2 is ||(QTb)2||2,n−p.
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Curve fitting —

Objective
Curve fitting is the process of constructing a curve (a mathematical function) that has the best
fit to a series of data points.

Example :
We consider the problem of modeling the link between two variables X and Y for which we
have a sample of n measurements

(x1, y1), (x2, y2), . . . , (xn, yn)

Precisely, we desire to model the dependance between X and Y by the following relation

Y = a1 f1(X) + a2 f2(X) + · · ·+ ap fp(X) (6)

with p elementary functions fk (e.g., xα, ln x, exp x, sin x, cos x, . . . ) (p < n) assumed to be
linearly independent. Coefficients ak are the unknown parameters of the model and will have
to be estimated.
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Curve fitting —

Objective
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Curve fitting —

Problem modelling
Fitting the previous model (6)

Y = a1 f1(X) + a2 f2(X) + · · ·+ ap fp(X)

to the measurement data leads to the n relations (n > p)

a1f1(x1) + a2f2(x1) + · · ·+ apfp(x1) = y1 + ε1

a1f1(x2) + a2f2(x2) + · · ·+ apfp(x2) = y2 + ε2

...
a1f1(xi) + a2f2(xi) + · · ·+ apfp(xi) = yi + εi

...
a1f1(xn) + a2f2(xn) + · · ·+ apfp(xn) = yn + εn

(7)

where each εi represents the error of the model on the measurement (xi, yi).
We then express these n linear equations in matrix form

f1(x1) f2(x1) · · · fp(x1)
f1(x2) f2(x2) · · · fp(x2)

...
...

f1(xi) f2(xi) · · · fp(xi)
...

...
f1(xn) f2(xn) · · · fp(xn)





a1

a2

...

...
ap

 =



y1

y2

...

yn


+



ε1

ε2

...

εn


⇔ A u = b + ε (8)
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Curve fitting —

Problem modelling
In order to estimate parameters aj of the model (6) we introduce a global error E defined by

E(a1, . . . , ap) =
n∑

i=1

ε2
i =

n∑
i=1

[
a1f1(xi) + a2f2(xi) + · · ·+ apfp(xi)− yi

]2

= ||ε||2 = ||A u− b||2,
where ||.|| denotes the classical Euclidean norm.

Finally, we need to consider the minimization problem

mina1,...,ap E(a1, . . . , ap) = minu ||A u− b||2

The function

E :
Rp → R

(a1, . . . , ap) 7→ E(a1, . . . , ap)

is polynomial, quadratic and therefore of class C2. Therefore, this minimization problem can
be considered in two equivalent ways :

as an over-determined linear system : minimization of a quadratic form
as the minimization of a function of several variables (the coefficients ak) with tools of
section 4 of chapter on Prerequisitesin Maths. We will consider this last approach.

27/37



Curve fitting —

Minimization : min
a1,...,ap

E(a1, . . . , ap)

Determination of the critical points⇒ system of p linear equations

∂E
∂a1

(a1, . . . , ap) = 2
n∑

i=1

f1(xi)
[
a1f1(xi) + · · · + apfp(xi)− yi

]
= 0

...
∂E
∂ap

(a1, . . . , ap) = 2
n∑

i=1

fp(xi)
[
a1f1(xi) + · · · + apfp(xi)− yi

]
= 0

⇔



n∑
i=1

f 2
1 (xi)

n∑
i=1

f1(xi)f2(xi) · · ·
n∑

i=1

f1(xi)fp(xi)

n∑
i=1

f2(xi)f1(xi)

n∑
i=1

f 2
2 (xi) · · ·

n∑
i=1

f2(xi)fp(xi)

...
. . .

...
n∑

i=1

fp(xi)f1(xi)
n∑

i=1

fp(xi)f2(xi) · · ·
n∑

i=1

f 2
p (xi)





a1

a2

...

...
ap

 =



n∑
i=1

yif1(xi)

n∑
i=1

yif2(xi)

...
n∑

i=1

yifp(xi)


⇔

(
AT A

)
u = AT b
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Curve fitting —

Minimization

We thus get the normal equations (
AT A

)
u = AT b

If the rank of matrix A is maximum, that is equal to p, this linear system possesses a
unique solution : the critical point â = (â1, . . . , âp), which defines a strict global
minimum of the error function E.

For the critical point â = (â1, . . . , âp), the global error E(â1, . . . , âp) is called residual
error and the value [1

n
E(â)

] 1
2

=
[1

n

n∑
i=1

ε2
i

] 1
2

is named the residual standard deviation.
Two regression models can be compared for a same data set by means of their residual
standard deviations.
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Curve fitting —

Example : residual standard deviation

Given a set of data points, we apply the least squares method so as to determine the best
polynomial approximation for degree d = 1, 2, . . . , 6.
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In each case, we evaluate the residual standard deviation RSD(d).
Of course, the function RSD(d) is decreasing with the degree, but we can see a gap for a
certain degree in each case.
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Linear regression —

Fitting a straight line
We desire to fit a straight line (the model) with equation Y = α X + β to the data (xi, yi),
which leads to the linear system

x1 1
x2 1
...

...
xn 1


(
α
β

)
=


y1

y2

...
yn

+


ε1

ε2

...
εn

 ⇔ A u = b + ε.

The normal equations AT A u = AT b admits a unique solution, α̂, β̂ given by

α̂ =

1
n

n∑
i=1

xiyi − x̄ȳ

1
n

n∑
i=1

(xi − x̄)2

and β̂ = ȳ− α̂ x̄ with x̄ =
1
n

n∑
i=1

xi and ȳ =
1
n

n∑
i=1

yi

The straight line Y = α̂ X + β̂ is the line of linear regression of (or associated with) data
points (xi, yi).

Note that the line of linear regression goes through the barycenter (x̄, ȳ) of data points (xi, yi)
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Linear regression —

Linear correlation
With data points (xi, yi) we define

var(X) =
1
n

n∑
i=1

(xi − x̄)2 the empirical variance of X

var(Y) =
1
n

n∑
i=1

(yi − ȳ)2 the empirical variance of Y

cov(X,Y) =
1
n

n∑
i=1

(xi − x̄)(yi − ȳ) the empirical covariance between X and Y

so that the line of linear regression Y = α̂ X + β̂ is defined by

α̂ =
cov(X,Y)

var(X)
and β̂ = ȳ− α̂ x̄.

Pearson’s correlation coefficient :

r = corr(X,Y) =
cov(X,Y)√

var(X)
√

var(Y)
, −1 ≤ r ≤ 1

→ informally, correlation is synonymous with dependence
→ sensitive only to a linear relationship between two variables
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Linear regression —

Linear correlation
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(a) r = −0.99 (b) r = −0.011 (c) r = 0.98
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(d) r = −0.56 (e) r = −10−16 (f) r = 0.82
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Parametric approximation —

1 Introduction

2 The best approximation problem

3 Minimization of a positive definite quadratic form

4 Over-determined linear systems

5 Numerical implementation and QR factorization

6 Curve fitting

7 Linear regression

8 Parametric approximation
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Parametric approximation —

Objective
Given a sequence of points Mi = (xi, yi), 1 ≤ i ≤ N, we look for a parametric polynomial
curve of prescribed degree which approximates these data points, that is which passes as
close as possible to each point (xi, yi) for some prescribed parameter ti.

Precisely, we look for a parametric polynomial curve

s :
[a, b] ∈ R −→ R2

t 7−→ s(t) =

(
sx(t)
sy(t)

)
such that

s(ti) ' Mi ⇔
{

sx(ti) ' xi

sy(ti) ' yi
, 1 ≤ i ≤ N

with a sequence of nodes a = t1 < t2 < · · · < tN = b, and where sx(t) and sy(t) are
polynomials of prescribed degree.

→ we are therefore reduced to solve two separate least squares approximation problems.

→ we consider the uniform and the chordal parameterizations.
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Parametric approximation —

Examples
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Least squares approximation of a polygon by parametric polynomial curves of degree 5
and 8, with uniform and chordal parameterization.
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