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TD 2 - Temporal point processes
Beyond Poisson processes - Correction

1 Basic exercises

Exercise 1. Let X1, . . . ,Xk be independent random variables with respective hazard rate functions qi,
i = 1, . . . ,k. Let Z = mini=1,...,k Xi.

Let t > 0 and compute, by independence between the X’s,

FZ(t) := P(Z > t) =
k

∏
i=1

P(Xi > t) =
k

∏
i=1

FXi(t).

Hence, lnFZ(t) = ∑
k
i=1 lnFXi(t) and differentiating this equality gives the fact that the hazard rate

function of Z is q(t) = ∑
k
i=1 qi(t).

Exercise 2 (Life time k-sample). Let (ξ1, . . . ,ξk) be i.i.d. positive random variables with common
hazard rate function q and density function f . Let N = {ξ1, . . . ,ξk} denote the point process made of
those k random variables. And let (T1, . . . ,Tk) denote the order statistics made from (ξ1, . . . ,ξk).

Here are below two ways to solve this exercise. The first one uses the densities of (T1, . . . ,Tn) for
all n ≤ k. The second one focuses on the computation of the conditional survival functions

F(s; t1, . . . , tn) = P(Sn+1 > s|T1 = t1, . . . ,Tn = tn) .

Possibility 1. Let σ ∈Sk denote the (random) permutation of {1, . . . ,k} such that Tk =(T1, . . . ,Tk)=
(ξσ(1), . . . ,ξσ(k)) is such that T1 < · · ·< Tk. The following statement is well-known and its proof can
be found easily on the internet:

• the distribution of σ is the uniform distribution on Sk,

• the density of (T1, . . . ,Tk) is

fTk(t1, . . . , tk) = k!
k

∏
i=1

f (ti)1t1<···<tk . (1)

Let us then prove by induction from n = k to n = 1 that the density of the vector Tn = (T1, . . . ,Tn) is

fTn(t1, . . . , tn) =
k!

(k−n)!

n

∏
i=1

f (ti)F(tn)k−n1t1<···<tn, (2)

where F is the survival function of the ξ ’s. The initial case corresponds exactly to Equation (1). Then,
assume that (2) is true for n such that 2 ≤ n ≤ k and prove that it is still true for n−1. By definition
of the marginal densities, we have

fTn−1(t1, . . . , tn−1) =
∫

∞

0
fTn(t1, . . . , tn)dtn =

k!
(k−n)!

n−1

∏
i=1

f (ti)
∫

∞

tn−1

f (tn)F(tn)k−ndtn.
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Yet, one recognizes that the integrand above is the derivative of 1
k−n+1F(t)k−n+1. Hence, Equation

(2) holds true for n−1.
Then, it is clear that, for all n = 0, . . . ,k−1, the conditional density of Tn+1 given Tn is

fTn+1|Tn(t; t1, . . . , tn) =
fTn+1(t1, . . . , tn, t)

fTn(t1, . . . , tn)
= (k−n)

f (t)F(t)k−n−1

F(tn)k−n
,

and its associated survival function is

F(t; t1, . . . , tn) =
k−n

F(tn)k−n

∫
∞

t
f (s)F(s)k−n−1ds = (k−n)

(
F(t)
F(tn)

)k−n

.

Finally, the derivative of − lnF(·; t1, . . . , tn) gives the associated hazard rate and so

λ (t; t1, . . . , tn) = (k−n)
d
dt
(− lnF)(t) = (k−n)q(t).

Finally, this gives the desired intensity λt = λ (t;N ∩ [0, t)) = (k−Nt−)q(t).
Of course, it implicitly assumes the convention that a null hazard rate function corresponds to a

random variable equal to +∞ almost surely. This is the case for Tk+1 in this exercise, so that λt = 0
as soon as Nt− = k.

Possibility 2. To compute the intensity of N, it suffices to compute Q(s;T1, . . . ,Tn) (namely the
hazard rate function of Sn+1 given T1, . . . ,Tn) for n = 0, . . . ,k.

Step n = 0. It is the (unconditional) hazard rate function of T1, that is the minimum of ξ1, . . . ,ξk.
By exercice 1, it is Q(s; /0) = ∑

k
i=1 q(s) = kq(s) = (k−n)q(s).

Step n = 1. Let t1 > 0 and s > 0. We first compute the conditional survival function

F(s; t1) = P(S2 > s|T1 = t1) .

Then, we will take the derivative of its log to recover the hazard rate function.
Since T1 is one of the ξ ’s, we have by the law of total probability

F(s; t1) =
k

∑
i=1

P(S2 > s,T1 = ξi|T1 = t1) .

Then, by property of the conditional probabilities, we have

P(S2 > s,T1 = ξi|T1 = t1) = P(S2 > s|T1 = t1,T1 = ξi)P(T1 = ξi|T1 = t1)

The result above is classic when all the conditioning is of non zero probability, but it also holds true
when the conditioning is of zero probability.

The conditioning event {T1 = t1,T1 = ξi} is equal to {ξi = t1, ξ̂i > t1}, where

ξ̂i = min
j=1,...,k

j ̸=i

ξ j,

and S2 = ξ̂i −ξi on that event. Hence,

P(S2 > s|T1 = t1,T1 = ξi) = P
(

S2 > s|ξi = t1, ξ̂i > t1
)
= P

(
ξ̂i > s+ t1|ξi = t1, ξ̂i > t1

)
.
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By independence of the ξ ’s, we have independence between ξ̂i and ξi so that

P(S2 > s|T1 = t1,T1 = ξi) = P
(

ξ̂i > s+ t1|ξ̂i > t1
)
=

Fξ (s+ t1)k−1

Fξ (t1)k−1 ,

where Fξ is the common survival function of the ξ ’s.
Coming back to F(s; t1), we have

F(s; t1) =
k

∑
i=1

Fξ (s+ t1)k−1

Fξ (t1)k−1 P(T1 = ξi|T1 = t1) =
Fξ (s+ t1)k−1

Fξ (t1)k−1 .

Hence, lnF(s; t1) = (k − 1)
(
lnFξ (s+ t1)− lnFξ (t1)

)
. By differentiating with respect to s, we get

Q(s; t1) = (k− 1)q(s+ t1) which is what we want (remind that t1 is the last observation here so that
we perform the change of variable t = s+ t1 and the number of observed events is Nt− = 1).

Step n ≥ 2. In summary, the idea of the previous step is to restrict to the case where we “fix” the
index i ∈ {1, . . . ,k} of the minimum of the ξ ’s. Then, we can use the mutual independence of the ξ ’s.
One can adapt this argument to n ≥ 2 by “fixing” the indices of the n lowest ξ ’s. It suffices then to
compute this kind of conditional probabilities:

P(Sn+1 > s|T1 = ξ1, . . . ,Tn = ξn and T1 = t1, . . . ,Tn = tn)

The conditioning event {T1 = ξ1, . . . ,Tn = ξn and T1 = t1, . . . ,Tn = tn} is equal to {ξ1 = t1, . . . ,ξn =

tn and ξ̂ > tn}, where
ξ̂ = min

j=n+1,...,k
ξ j,

and Sn+1 = ξ̂ −ξn on that event. Hence,

P(Sn+1 > s|T1 = ξ1, . . . ,Tn = ξn and T1 = t1, . . . ,Tn = tn)=P
(

ξ̂ > s+ tn|ξ1 = t1, . . . ,ξn = tn and ξ̂ > tn
)
.

By independence of the ξ ’s, we have independence between ξ̂ and ξ1, . . . ,ξn so that

P(Sn+1 > s|T1 = ξ1, . . . ,Tn = ξn and T1 = t1, . . . ,Tn = tn) =
Fξ (s+ tn)k−n

Fξ (tn)k−n
,

where Fξ is the common survival function of the ξ ’s.
Coming back to F(s; t1, . . . , tn), we have

F(s; t1, . . . , tn) =
Fξ (s+ tn)k−n

Fξ (tn)k−n
.

Hence, lnF(s; t1, . . . , tn) = (k−n)
(
lnFξ (s+ tn)− lnFξ (tn)

)
. By differentiating with respect to s, we

get Q(s; t1, . . . , tn) = (k−n)q(s+ tn) which is what we want (remind that tn is the last observation here
so that we perform the change of variable t = s+ tn and the number of observed events is Nt− = n).

Exercise 3 (Poisson contamination). Let h : R+ → R+ and (Ni)i∈N be a sequence of i.i.d. Poisson
processes with intensity h(t). Let Nt = ∑

∞
i=0 Ni

t−i.
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1. The translated processes N̂i defined by N̂i
t = Ni

t−i, or equivalently by N̂i = {T + i,T ∈ Ni},
are independent Poisson processes on R+ (the independence property of Poisson is clearly
preserved by translation) with intensities λ i(t) = h(t − i) with the convention that h(s) = 0
for all s < 0 (the intensity is translated in the same way and completed by 0). Hence, the
superposition Theorem for Poisson processes (stated for two processes but clearly valid for
more than two processes by induction) yields that Nt = ∑

∞
i=0 N̂i

t defines a Poisson process with
intensity λ (t) = ∑

∞
i=0 λ i(t) = ∑

∞
i=0 h(t − i).

2. Let Ñ = {T̃i, i ∈ N} be a point process independent of (Ni)i∈N. Define N by Nt = ∑
∞
i=0 Ni

t−T̃i
.

By independence assumption, if we work conditionally on Ñ, the processes (Ni)i∈N are still
independent Poisson processes with intensity h(t). The same arguments as in the previous
question yield that N̂i = {T + T̃i,T ∈ Ni} are independent Poisson processes on R+ with inten-
sities λ i(t) = h(t − T̃i). Hence, given Ñ, Nt = ∑

∞
i=0 N̂i

t defines a Poisson process with intensity
λ (t) = ∑

∞
i=0 λ i(t) = ∑

∞
i=0 h(t − T̃i). In particular, N is a doubly stochastic Poisson process.

Exercise 4 (Thinning simulation). See the Julia notebook.

Exercise 5 (Change-time simulation). See the Julia notebook.

2 Intermediate exercises

Exercise 6 (Generalization of exercises 2 and 3). Most of the arguments are similar to those of Exer-
cise 2

Let N1 and N2 be two independent point processes with intensities λ 1
t = λ 1(t;N1 ∩ [0, t)) and

λ 2
t = λ 2(t;N2 ∩ [0, t)). Denote N = N1 ∪N2 the superposition of the two processes. Assume that

there exists a measurable function λ such that λ 1
t + λ 2

t = λ (t;N ∩ [0, t)). Then, let us prove that
λt = λ (t;N ∩ [0, t)) is the intensity of N.

Let us denote N1 = {T 1
1 <T 1

2 < .. .}, N2 = {T 2
1 <T 2

2 < .. .} and N = {T1 <T2 < .. .}. Let us prove
that for all n = 0, . . . ,∞, λ (·; t1, . . . , tn) is the hazard rate function of Tn+1 given T1 = t1, . . . ,Tn = tn.
Moreover, let us denote F ,F1 and F2 the generalized survival functions associated with the general-
ized hazard rate functions λ , λ 1 and λ 2 respectively.

Step n = 0. Since T 1
1 and T 2

1 are independent, the (unconditional) hazard rate function of T1 =
min(T 1

1 ,T
1

2 ) is λ 1(t, /0)+λ 2(t, /0) (see Exercise 1). This quantity is equal to λ (t; /0) by assumption.

Step n ≥ 1. Let t1 < · · ·< tn and t > tn. Let us compute the conditional survival function

F(t; t1, . . . , tn) = P(Tn+1 > t|T1 = t1, . . . ,Tn = tn) .

Next we specify for each time T1, . . . ,Tn if it belongs to N1 or N2. More precisely, by the law of total
probability, we have

F(t; t1, . . . , tn) = ∑
ε∈{1,2}n

P(Tn+1 > t,T1 ∈ Nε1, . . . ,Tn ∈ Nεn|T1 = t1, . . . ,Tn = tn) .

Now, fix ε ∈ {1,2}n and denote for k = 1,2, nk = ∑
n
i=1 1εi=k the number of events that belong to Nk

and tk
1 < · · · < tk

nk
such that {tk

1, . . . , t
k
nk
} = {ti, i ∈ {1, . . . ,n} s.t. εi = k}, namely the event times that

belong to Nk. Let us consider the following conditional survival function

Aε(t) = P(Tn+1 > t|T1 ∈ Nε1, . . . ,Tn ∈ Nεn and T1 = t1, . . . ,Tn = tn) .
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The conditioning event {T1 ∈ Nε1, . . . ,Tn ∈ Nεn and T1 = t1, . . . ,Tn = tn} is equal to

Bε =
{

T 1
1 = t1

1 , . . . ,T
1

n1
= t1

n1
and T 2

1 = t2
1 , . . . ,T

2
n2
= t2

n2

}
,

and, on this event, Tn+1 = min
(

T 1
n1+1,T

2
n2+1

)
, so that

Aε(t) = P
(
T 1

n1+1 > t,T 2
n2+1 > t|Bε

)
.

By independence between N1 and N2, we can factorize Aε(t) = A1
ε(t)×A2

ε(t), where

Ak
ε(t) = P

(
T k

nk+1 > t|T k
1 = tk

1, . . . ,T
k

nk
= tk

nk

)
= Fk

(t; tk
1, . . . , t

k
nk
).

This survival function corresponds to the hazard rate λ k(t; tk
1, . . . , t

k
nk
). Hence, by differentiating

− lnAε we get that the hazard rate associated with the survival function Aε is

λ
1(t; t1

1 , . . . , t
1
n1
)+λ

2(t; t2
1 , . . . , t

2
n2
).

By assumption, this quantity is equal to λ (t; t1, . . . , tn) whatever ε is. In particular, the survival func-
tion A = Aε does not depend on ε so that the survival function we seek is

F(t; t1, . . . , tn) = ∑
ε∈{1,2}n

A(t)P(T1 ∈ Nε1, . . . ,Tn ∈ Nεn |T1 = t1, . . . ,Tn = tn) = A(t),

and its hazard rate function is λ (·; t1, . . . , tn).
All in all, it means that N admits λt = λ (t;N ∩ [0, t)) as an intensity.

Exercise 7 (Thinning coupling). See the homework

Exercise 8 (Change-time coupling). Let λ 1,λ 2 : R+ → R+ be two measurable functions. Let Π be a
unit rate Poisson process on R+. By the change-time representation, we know that, for k = 1,2, the
point process Nk defined by, for all t ≥ 0,

Nk
t = ΠΛk(t), where Λ

k(t) =
∫ t

0
λ

k(s)ds,

is a Poisson process with intensity λ k.
In particular, we have Nk

t =
∫

∞

0 gk
t (s)Π(ds) with the measurable test function gk

t (s) = 1s≤Λk(t), and,
since the function g1

t −g2
t does not change its sign as s vary, we have

E
[
|N1

t −N2
t |
]
= E

[∫
∞

0
|g1

t (s)−g2
t (s)|Π(ds)

]
= E

[∫
∞

0
|g1

t (s)−g2
t (s)|ds

]
=

∫
∞

0
|g1

t (s)−g2
t (s)|ds,

by Campbell Theorem for the unit rate Poisson process Π (remark that there is nothing random in the
test functions g). Using again the fact that g1

t −g2
t does not change its sign, we get

E
[
|N1

t −N2
t |
]
=

∣∣∣∣∫ ∞

0
g1

t (s)−g2
t (s)ds

∣∣∣∣= ∣∣∣∣∫ t

0
λ

1(s)−λ
2(s)ds

∣∣∣∣ . (3)

Moreover, assume without loss of generality that Λ1(t)≤ Λ2(t). Then,

P
(
N1

t ̸= N2
t
)
= P

(
ΠΛ2(t)−ΠΛ1(t) ̸= 0

)
= P

(
Π( [Λ1(t),Λ2(t))) ̸= 0

)
.

Yet, Π( [Λ1(t),Λ2(t))) is a Poisson random variable with parameter Π(Λ2(t)−Λ1(t)) so that

P
(
N1

t ̸= N2
t
)
= 1− exp

(
−
∣∣∣∣∫ t

0
λ

1(s)−λ
2(s)ds

∣∣∣∣) . (4)
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1. Assume that λ 2 is such that |λ 1
t − λ 2

t | ≤ ε for all t ≥ 0 and some ε > 0. Applying the last
formula, we get

P
(
N1

t ̸= N2
t
)
≤ 1− exp

(
−
∫ t

0

∣∣λ 1(s)−λ
2(s)

∣∣ds
)
≤ 1− e−tε −−→

ε→0
0.

We have here a convergence result for the one time marginals N1
t and N2

t . This is way weaker
than the convergence result in total variation obtained in Exercise 7.

2. Let λ 1(t) = ∑
+∞

k=0 1[2k,2k+1)(t) and λ 2(t) = ∑
+∞

k=0 1[2k+1,2k+2)(t). The associated cumulative in-
tensities are

Λ
1(t) =

∫ t

0
λ

1(s)ds =

{
k+(t −2k), t ∈ [2k,2k+1),
k+1, t ∈ [2k+1,2k+2).

and

Λ
2(t) =

∫ t

0
λ

2(s)ds =

{
k, t ∈ [2k,2k+1),
k+(t −2k−1), t ∈ [2k+1,2k+2).

It is clear that 0 ≤
∫ t

0 λ 1(s)−λ 2(s)ds ≤ 1 for all t and so

E
[
|N1

t −N2
t |
]
≤ 1 and P

(
N1

t ̸= N2
t
)
≤ 1− e−1 ≈ 0,63,

follow from Equations (3) and (4).

The generalized inverse functions of Λ1 and Λ2 are

(Λ1)−1(y) = y+
∞

∑
k=0

k1(k,k+1](y) = y+ ⌊y⌋ and (Λ2)−1(y) = y+ ⌊y⌋+1.

Let (Tn)n≥1 denote the points of the Poisson process Π. By definition, we then have N1 =
{(Λ1)−1(Tn),n ∈ N∗} and N2 = {(Λ2)−1(Tn),n ∈ N∗}. The image of (Λ1)−1 is clearly the
support of λ 1, that is ∪∞

k=0[2k,2k+ 1). And the image of (Λ2)−1 is clearly the support of λ 2,
that is ∪∞

k=0[2k+1,2k+2). In particular, these are disjoints and so N1 and N2 are disjoints.

Moreover, since (Λ2)−1(y) = 1+(Λ1)−1(y) for all y, it is then obvious that N2 = {T +1,T ∈
N1}.

3 Advanced exercises

Exercise 9 (Thinning and renewal). Let q1,q2 : R+ → R+ be two left-continuous functions.
For k = 1,2, let us define Nk by, for all t ≥ 0,

Nk
t =

∫ t

0

∫
1[0,qk(Ak

s)]
(z)Π(ds,dz),

where Ak is the age process associated with Nk. One could find measurable functions f 1 and f 2 such
that for all t ≥ 0, Ak

t = f k(t;Π∩ ([0, t)×R+)).
Now, let us fix t ≥ 0 and denote p(t) = P

((
N1∆N2)∩ [0, t] ̸= /0

)
. The test function (of s and z)

1[0,t](s)
∣∣∣1[0,q1(A1

s )]
(z)−1[0,q2(A2

s )]
(z)

∣∣∣1∀r≤s,A1
r=A2

r

6



can be expressed as a measurable function g(s,z;Π∩ ([0,s)×R+)). Hence, we can use it in Camp-
bell’s formula, that is E1 = E2 where

E1 = E
[∫ ∫

1[0,t](s)
∣∣∣1[0,q1(A1

s )]
(z)−1[0,q2(A2

s )]
(z)

∣∣∣1∀r≤s,A1
r=A2

r
Π(ds,dz)

]
= p(t),

and

E2 = E
[∫ ∫

1[0,t](s)
∣∣∣1[0,q1(A1

s )]
(z)−1[0,q2(A2

s )]
(z)

∣∣∣1∀r≤s,A1
r=A2

r
dsdz

]
.

Remark that
∫ ∣∣∣1[0,q1(A1

s )]
(z)−1[0,q2(A2

s )]
(z)

∣∣∣dz = |q1(A1
s )−q2(A2

s )|. The rest of the proof is divided in
two steps: 1) proof that the function p is right differentiable, 2) upper-bound of p(t) using some kind
of Grönwall lemma argument.

Right differentiability. Let h ≥ 0. By Campbell and the remark below the definition of E2, we have

p(t +h)− p(t) = E
[∫ t+h

t
|q1(A1

s )−q2(A2
s )|1∀r≤s,A1

r=A2
r
ds
]

As h goes to 0, the left-continuity of q1 and q2 and the fact that the probability to get a point in [t, t+h]
goes to 0, we can approximate the integrand above by its value for s = t so that

p(t +h)− p(t) ∼
h→0+

hE
[
|q1(A1

t )−q2(A2
t )|1∀r≤t,A1

r=A2
r

]
,

which gives the fact that p is right differentiable. Let us denote p′ its right derivative.

Conclusion. Let us upper-bound p(t) using Campbell formula and the assumption on the hazard
rates q1 and q2. We have

p(t) = E
[∫ t

0
|q1(A1

s )−q2(A2
s )|1∀r≤s,A1

r=A2
r
ds
]

≤ εE
[∫ t

0
1∀r≤s,A1

r=A2
r
ds
]

≤ ε

∫ t

0
E
[
1∀r≤s,A1

r=A2
r

]
ds.

Yet, the event {∀r ≤ s,A1
r = A2

r} is exactly the event {(N1∆N2)∩ [0,s) = /0}. Hence, the inequality
above writes as p(t)≤ ε

∫ t
0 1− p(s)ds. In particular, it implies that p′(t)≤ ε(1− p(t)).

What follows is inspired from the proof of Grönwall lemma (in its differentiable form). Let us
define v(t) = eεt(1− p(t)). The function v is clearly right differentiable and its right derivative is
v′(t) = eεt(ε(1− p(t))− p′(t)). Hence, the inequality above implies that v′(t)≥ 0. Like for the usual
derivative, the fact that v′(t)≥ 0 implies that v is non decreasing.

Since v(0) = 1, we get that v(t)≥ 1, which exactly means that p(t)≤ 1− e−εt .

Exercise 10 (Lebesgue-Stieltjes integral). No correction given yet.

Exercise 11 (Optimal stopping time). No correction given yet.
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