TD 1 - Temporal point processes Poisson process

1 Basic exercises

Exercise 1. Let T be a positive continuous random variable. Show that T has the memoryless property, i.e.

$$
\forall t, s \geq 0, \quad \mathbb{P}(T>t+s \mid T>t)=\mathbb{P}(T>s),
$$

if and only if $T \sim \mathscr{E}(\lambda)$ for some $\lambda>0$.
Exercise 2. Let T be a positive random variable with density. Show that $T \sim \mathscr{E}(\boldsymbol{\lambda})$ if and only if its hazard rate function is $q(t)=\lambda$ for all $t>0$.

Exercise 3. In this exercise, we describe the times at which we receive a spam mail thanks to a non homogeneous Poisson process. We assume that :

- the average rate of spams received during the day ($8 \mathrm{am}-8 \mathrm{pm}$) is 2 per hour,
- the average rate of spams received during the night $(8 \mathrm{pm}-8 \mathrm{am})$ is 1 per hour.

1. What is the intensity function of the Poisson process?
2. What is the probability to receive 0 spam between midnight and 1am?
3. Given that we received 4 spams between 8 am and 9 am , what is the probability to receive 2 spams between 1 pm and 2 pm ?
4. Given that we received 4 spams between 8 am and 9 am , what is the probability to receive 5 spams between 8 am and 10 am ?
5. Given that we received 10 spams between 8 am and 8 pm , what is the probability to have received 0 spam between 1 pm and 2 pm ?
6. Given that we received 1 spam between 6 pm et 8 pm , what is the probability to receive 1 spam between 7 pm and 9 pm ?

Exercise 4. Let N be a non homogeneous Poisson process with intensity $\lambda(t)$. The two following questions are independent.

1. Show that $\lambda(t)=0$ on $[s, u]$ implies that $N([s, u])=0$ almost surely.
2. Let $t \geq 0$ and assume that λ is right continuous at t. Prove that

$$
\mathbb{P}(N([t, t+d t]) \geq 1) \sim_{d t \rightarrow 0^{+}} \lambda(t) d t
$$

2 Intermediate exercises

Exercise 5. Write an algorithm which gives the simulation of the n first points of a homogeneous Poisson process via its renewal structure :

Let $\left(S_{1}, \ldots, S_{n}\right)$ be a vector of i.i.d. random variables distributed according to $\mathscr{E}(\boldsymbol{\lambda})$. Define $T_{k}=\sum_{i=1}^{k} S_{i}$ for all $k=1, \ldots, n$. Then, the vector $\left(T_{1}, \ldots, T_{n}\right)$ is distributed as the n first point of a Poisson process with rate λ.

Moreover : make a modified version of your algorithm such that it gives the simulation of a homogeneous Poisson process on $[0, T]$ for a fixed time horizon T.

1. Compare the trajectories of Poisson processes of rate $\lambda=1 / 2, \lambda=1$ and $\lambda=2$. Remark : Two graphical representations of point processes are standard: 1) the graph of the associated counting process, 2) a raster plot, i.e. a series of points plotted on the x-axis (more interesting for a multidimensional point process where the y-axis can describe the several dimensions).
2. Let N denote a Poisson process with rate $\lambda=2$.
(a) Illustrate the fact that $\mathbb{E}\left[T_{2}\right]=1$ by computing the empirical mean over a large number of realizations of N.
(b) Illustrate the fact that $\mathbb{E}\left[N_{10}\right]=20$ by computing the empirical mean over a large number of realizations of N.

Exercise 6. Write an algorithm which gives the simulation of a non homogeneous Poisson process on $[0, T]$ via Lewis-Shedler thinning method.

Exercise 7. Write an algorithm which gives the simulation of a non homogeneous Poisson process on $[0, T]$ via its conditional structure :

Let $\lambda:[0, T] \rightarrow \mathbb{R}_{+}$be a measurable function and denote $\Lambda(t)=\int_{0}^{t} \lambda(s) d s$. Let N be a Poisson process with intensity $\lambda(t)$. The total number of points of N, denoted N_{T}, is distributed according to $\mathscr{P}(\Lambda(T))$. Given that $N_{T}=n$, the n points of the process are distributed according to a vector of n i.i.d. real random variables with density

$$
f(t)=\frac{\lambda(t)}{\Lambda(T)} \mathbf{1}_{[0, T]}(t) .
$$

Let $C, T, \alpha, \beta>0$ and denote

$$
\lambda(t)=C \cdot(t / T)^{\alpha}(1-t / T)^{\beta}
$$

1. Compare the trajectories of Poisson processes with intensity $\lambda(t)$ with several values of C, T, α and β. Remark : This form of intensity λ is linked with the Beta distribution.

Exercise 8. Let $N=\left\{T_{1}<\cdots<T_{k}<\ldots\right\}$ be a Poisson process with intensity $\lambda>0$. The objective is to prove that N is a renewal process with inter event time distribution $\mathscr{E}(\boldsymbol{\lambda})$.

Let $n \in \mathbb{N}^{*}, 0<t_{1}<\cdots<t_{n}<t_{n+1}=T$ and $h_{1}, \ldots, h_{n}>0$ such that $t_{k}+h_{k}<t_{k+1}$.

1. Express the event

$$
\left\{t_{1}<T_{1} \leq t_{1}+h_{1}<t_{2}<\cdots<t_{n}<T_{n} \leq t_{n}+h_{n}\right\}
$$

thanks to the counting process $\left(N_{t}\right)_{t \in[0, T]}$.
2. Prove that

$$
\begin{equation*}
\frac{\mathbb{P}\left(t_{1}<T_{1} \leq t_{1}+h_{1}<t_{2}<\ldots T_{n} \leq t_{n}+h_{n}\right)}{h_{1} \ldots h_{n}} \xrightarrow[h_{1}, \ldots, h_{n} \rightarrow 0]{ } \lambda^{n} e^{-\lambda t_{n}} . \tag{1}
\end{equation*}
$$

Remark: Since $0<t_{1}<\cdots<t_{n}$ and $h_{1}, \ldots, h_{n}>0$ are generic, Equation (1) proves ${ }^{11}$ that $\left(T_{1}, \ldots, T_{n}\right)$ follows the density $f\left(t_{1}, \ldots, t_{n}\right)=\lambda^{n} e^{-\lambda t_{n}} \mathbf{1}_{0<t_{1}<\cdots<t_{n}}$.
3. Prove that the inter event intervals $\left(S_{n}\right)_{n \geq 1}$ are independent and distributed as $\mathscr{E}(\boldsymbol{\lambda})$. Hint: Change of variable

Exercise 9. Let $\left(S_{n}\right)_{n \geq 1}$ be a sequence of i.i.d. r.v. distributed according to $\mathscr{E}(\boldsymbol{\lambda})$. Denote $T_{n}=\sum_{i=1}^{N} S_{i}$ and $N=\left\{T_{n}, n \in \mathbb{N}\right\}$ the associated point process. The objective is to prove that N is a Poisson process with intensity λ.

1. Prove that $\left(T_{1}, \ldots, T_{n}\right)$ has density $f\left(t_{1}, \ldots, t_{n}\right)=\lambda^{n} e^{-\lambda t_{n}} \mathbf{1}_{0<t_{1}<\cdots<t_{n}}$.
2. Let $0 \leq s \leq t$ and $k, \ell \in \mathbb{N}$. Express the event $\left\{N_{s}=k, N_{t}-N_{s}=\ell\right\}$ thanks to the random variables $\left(T_{n}\right)_{n \geq 1}$.
3. Deduce that N_{s} and $N_{t}-N_{s}$ are independent and that $N_{t}-N_{s} \sim \mathscr{P}(\lambda(t-s))$.

Remark: This argument can be generalized from 2 inter event intervals to a generic number. Hence, it follows that N is a Poisson process with intensity λ.

Exercise 10. Let N be a non homogeneous Poisson process with right continuous intensity $\lambda(t)$ on $[0, T]$. Denote $\Lambda(t)=\int_{0}^{t} \lambda(s) d s$.

1. Following the lines of Exercise 8, prove that for all $0<t_{1}<\cdots<t_{n}<T$,

$$
\begin{equation*}
\frac{\mathbb{P}\left(N_{T}=n, t_{1}<T_{1} \leq t_{1}+h_{1}<t_{2}<\ldots T_{n} \leq t_{n}+h_{n}\right)}{h_{1} \ldots h_{n}} \underset{h_{1}, \ldots, h_{n} \rightarrow 0}{ } \prod_{i=1}^{n} \lambda\left(t_{i}\right) e^{-\Lambda(T)} . \tag{2}
\end{equation*}
$$

2. Deduce that

$$
\frac{\mathbb{P}\left(t_{1}<T_{1} \leq t_{1}+h_{1}<t_{2}<\ldots T_{n} \leq t_{n}+h_{n} \mid N_{T}=n\right)}{h_{1} \ldots h_{n}} \underset{h_{1}, \ldots, h_{n} \rightarrow 0}{ } n!\prod_{i=1}^{n} f\left(t_{i}\right),
$$

where $f(t)=\frac{\lambda(t)}{\Lambda(T)}$.
Remark: Since $0<t_{1}<\cdots<t_{n}$ and $h_{1}, \ldots, h_{n}>0$ are generic, it proves that, conditionally on $\left\{N_{T}=\right.$ $n\}$, the density of $\left(T_{1}, \ldots, T_{n}\right)$ with respect to the Lebesgue measure on \mathbb{R}^{n} is given by

$$
\left(t_{1}, \ldots, t_{n}\right) \mapsto n!\prod_{i=1}^{n} f\left(t_{i}\right) \mathbf{1}_{t_{1}<\cdots<t_{n}<T} .
$$

This is the density of the order statistics of n i.i.d. variables distributed according to the density f.
Exercise 11. Let N^{1} and N^{2} be two independent Poisson processes with intensities $\lambda^{1}(t)$ and $\lambda^{2}(t)$. The objective is to prove that $N_{t}=N_{t}^{1}+N_{t}^{2}$ defines a Poisson process with intensity $\lambda(t)=\lambda^{1}(t)+$ $\lambda^{2}(t)$. Let us define $\Lambda(t)=\int_{0}^{t} \lambda(s) d s$.

1. Let $0<s<t$ and $k, \ell \in \mathbb{N}$. Compute the probability $\mathbb{P}\left(N_{s}=k, N_{t}-N_{s}=\ell\right)$.

[^0]2. Deduce that N_{s} and $N_{t}-N_{s}$ are independent with respective distributions $\mathscr{P}(\Lambda(s))$ and $\mathscr{P}(\Lambda(t)-$ $\Lambda(s))$.

Remark: This argument can be generalized from 2 inter event intervals to a generic number. Hence, it follows that N is a Poisson process with the prescribed intensity.

Exercise 12. Let N be a Poisson process with rate λ and $p \in] 0,1\left[\right.$. Let $\left(\varepsilon_{n}\right)_{n}$ be a sequence of i.i.d. random variables distributed as $\mathscr{B}(p)$ which is furthermore independent of N. Let

$$
N^{0}=\left\{T_{i} \in N, \varepsilon_{i}=0\right\} \text { and } N^{1}=\left\{T_{i} \in N, \varepsilon_{i}=1\right\} .
$$

1. Let $t \geq 0$. Prove that N_{t}^{0} and N_{t}^{1} are two independent random variables distributed as $\mathscr{P}((1-$ $p) \lambda t)$ and $\mathscr{P}(p \lambda t)$ respectively.

Remark: More generally, one can use the time independence of the Poisson processes to prove that N^{0} and N^{1} are two independent Poisson processes with rates $(1-p) \lambda$ and $p \lambda$ respectively.

3 Advanced exercises

Exercise 13. Let us define the Poisson mixture as follows. Let $\tilde{\lambda}$ be a positive random variable and denote \tilde{P} its distribution. The Poisson process mixture N with rate $\tilde{\lambda}$ satisfies for instance

$$
\mathbb{P}\left(N_{t}=k\right)=\int_{\lambda} \frac{(\lambda t)^{k}}{k!} e^{-\lambda t} d \tilde{P}(\lambda)
$$

Prove that:

1. $\mathbb{E}\left[N_{t}\right]=\mathbb{E}[\tilde{\lambda}] t$,
2. $\operatorname{Var}\left(N_{t}\right)=\mathbb{E}[\tilde{\lambda}] t+\operatorname{Var}(\tilde{\lambda}) t^{2} \geq \mathbb{E}\left[N_{t}\right]$ with strict inequality unless $\tilde{\lambda}$ is a.s. constant.

Exercise 14. Let us define the compound Poisson process as follows. Let Y, Y_{1}, Y_{2}, \ldots be i.i.d. nonnegative integer-valued random variables with probability generating function $g(z)=\mathbb{E}\left[z^{Y}\right](|z| \leq 1)$ and let them be independent of a Poisson process N of rate λ. Then, define the compound counting process as

$$
X_{t}=\sum_{i=1}^{N_{t}} Y_{i} .
$$

Prove that :

1. $\mathbb{E}\left[z^{X_{t}}\right]=\exp (\lambda t(g(z)-1))$,
2. $\mathbb{E}\left[X_{t}\right]=\lambda t \mathbb{E}[Y]$,
3. $\operatorname{Var}\left(X_{t}\right)=\lambda_{t} \mathbb{E}\left[Y^{2}\right] \geq \mathbb{E}\left[X_{t}\right]$ with strict inequality unless $Y=0$ or 1 a.s.

[^0]: ${ }^{1}$ The proof relies on the monotone class Theorem

