TD 1 - Temporal point processes

Poisson process - Correction

1 Basic exercises

Exercise 1. Let *T* be a positive continuous random variable.

Step 1. Assume that $T \sim \mathscr{E}(\lambda)$. Its cumulative distribution function is $F(t) = 1 - e^{-\lambda t}$ and its survival function is $\overline{F}(t) = e^{-\lambda t}$. By definition of conditional probability, $\mathbb{P}(T > t + s \mid T > t) = \overline{F}(t+s)/\overline{F}(t)$. Hence, it suffices to check that

$$\frac{\overline{F}(t+s)}{\overline{F}(t)} = \frac{e^{-\lambda(t+s)}}{e^{-\lambda t}} = e^{-\lambda s} = \overline{F}(s).$$

Step 2. Assume that *T* has the memoryless property and denote \overline{F} its survival function. Using again the fact that $\mathbb{P}(T > t + s \mid T > t) = \overline{F}(t + s)/\overline{F}(t)$ we get that the memoryless property is equivalent to the exponentiation identity:

$$\forall t, s \ge 0, \quad \overline{F}(t+s) = \overline{F}(t)\overline{F}(s).$$

Then, it is basic functional analysis to know that all continuous functions satisfying the exponentiation identity are of the form $\overline{F}(t) = e^{\mu t}$, $\mu \in \mathbb{R}$. Since \overline{F} is a survival function, it satisfies $\overline{F}(t) \to 0$ as $t \to +\infty$ so that μ must be negative. Writing $\lambda = -\mu$, we have $\overline{F}(t) = e^{-\lambda t}$, that is the survival function of the distribution $\mathscr{E}(\lambda)$.

We conclude by using the fact that the survival function (like the cumulative distribution function) characterizes the distribution of a random variable.

Exercise 2. Let T be a positive random variable with density. Let f denote its density, \overline{F} its survival function and q its hazard rate.

Step 1. Assume that $T \sim \mathscr{E}(\lambda)$. Then, we have $f(t) = \lambda e^{-\lambda t}$, $\overline{F}(t) = e^{-\lambda t}$ and

$$q(t) = \frac{f(t)}{\overline{F(t)}} = \lambda,$$

for all t > 0.

Step 2. Assume that $q(t) = \lambda$ for all t > 0. Hence, the density satisfies $f(t) = \lambda \overline{F}(t)$ and is in particular continuous on \mathbb{R}^*_+ . In turn, the fundamental Theorem of calculus states that \overline{F} is \mathscr{C}^1 and that $\overline{F}'(t) = -f(t)$ for all t > 0. Then, for all t > 0, we have

$$-(\ln \overline{F})'(t) = -rac{\overline{F}'(t)}{\overline{F}(t)} = \lambda$$

Hence $\ln \overline{F}$ is the primitive of $-\lambda$ with the initial condition that $\ln \overline{F}(0) = 0$. Hence, $\overline{F}(t) = \exp(-\lambda t)$ and we conclude because the survival function characterizes the distribution.

Exercise 3. Without loss of generality, let us restrict the study to one day, that is the interval [0, 24) expressed in hours. Let us denote *N* the non homogeneous Poisson process studied in this exercise.

1. The intensity function is

$$\lambda(t) = \begin{cases} 1, & \text{if } t \in [0, 8] \cup [20, 24), \\ 2, & \text{else.} \end{cases}$$

- 2. It is the probability that $N_1 = 0$. Since $N_1 \sim \mathscr{P}(1)$, we have $\mathbb{P}(N_1 = 0) = e^{-1}$.
- 3. It is the probability

$$\mathbb{P}(N_{14} - N_{13} = 2 | N_9 - N_8 = 4)$$

Since [8,9) and [13,14) are disjoint, the two random variables above are independent so that

$$\mathbb{P}(N_{14} - N_{13} = 2 | N_9 - N_8 = 4) = \mathbb{P}(N_{14} - N_{13} = 2) = \frac{2^2}{2!}e^{-2} = 2e^{-2}.$$

4. It is the probability

$$\mathbb{P}(N_{10} - N_8 = 5 | N_9 - N_8 = 4) = \mathbb{P}(N_{10} - N_9 = 1 | N_9 - N_8 = 4).$$

Since [8,9) and [9,10) are disjoint, the two random variables above are independent so that

$$\mathbb{P}(N_{10} - N_9 = 1 | N_9 - N_8 = 4) = \mathbb{P}(N_{10} - N_9 = 1) = \frac{2}{1!}e^{-2} = 2e^{-2}.$$

5. It is the probability

$$\mathbb{P}(N_{14} - N_{13} = 0 | N_{20} - N_8 = 10) = \frac{\mathbb{P}(N_{14} - N_{13} = 0, N_{20} - N_8 = 10)}{\mathbb{P}(N_{20} - N_8 = 10)}.$$

Let us denote $A = [8, 13) \cup [14, 20)$.

On the one hand,

$$\mathbb{P}(N_{14} - N_{13} = 0, N_{20} - N_8 = 10) = \mathbb{P}(N_{14} - N_{13} = 0, N(A) = 10).$$

Since [13, 14) and *A* are disjoint, the two random variables above are independent so that (remark that the cumulative intensity on the set *A* is $2 \times 11 = 22$)

$$\mathbb{P}(N_{14} - N_{13} = 0, N(A) = 10) = \mathbb{P}(N_{14} - N_{13} = 0) \mathbb{P}(N(A) = 10) = e^{-2} \times \frac{22^{10}}{10!} e^{-22} = \frac{22^{10}}{10!} e^{-24}$$

On the other hand, $\mathbb{P}(N_{20} - N_8 = 10) = \frac{24^{10}}{10!}e^{-24}$.

Finally, one gets $\mathbb{P}(N_{14} - N_{13} = 0 | N_{20} - N_8 = 10) = (22/24)^{10} = (11/12)^{10}$. Remark that it is the probability that a binomial $\mathscr{B}(10, 1/12)$ random variable has value 0. This is consistent with the fact that conditionally on $N_{20} - N_8 = 10$, those ten points are uniformly distributed inside the time interval [8,20).

6. It is the probability

$$\mathbb{P}(N_9 - N_7 = 1 | N_8 - N_6 = 1) = \frac{\sum_{k=0}^{1} \mathbb{P}(N_7 - N_6 = k, N_8 - N_7 = 1 - k, N_9 - N_8 = k)}{\mathbb{P}(N_8 - N_6 = 1)}$$

On the one hand, for k = 0, 1, we have

$$\mathbb{P}(N_7 - N_6 = k, N_8 - N_7 = 1 - k, N_9 - N_8 = k) = \frac{2^k}{k!} \frac{2^{1-k}}{(1-k)!} \frac{2^k}{k!} e^{-6} = \begin{cases} 2e^{-6}, & k = 0\\ 4e^{-6}, & k = 1. \end{cases}$$

On the other hand, $\mathbb{P}(N_8 - N_6 = 1) = 4e^{-4}$. Finally, one gets $\mathbb{P}(N_9 - N_7 = 2 | N_8 - N_6 = 1) = \frac{3}{2}e^{-2}$.

Exercise 4. Let *N* be a non homogeneous Poisson process with intensity $\lambda(t)$.

- 1. Assume that $\lambda(t) = 0$ on [s, u]. In particular, $\int_{s}^{u} \lambda(t) dt = 0$. Hence, by definition of the Poisson process, $N([s, u]) \sim \mathscr{P}(0)$. Yet, the Poisson distribution with parameter 0 is the Dirac mass at 0 by convention. In turn, it means that N([s, u]) = 0 almost surely.
- 2. Let $t \ge 0$ such that λ is right continuous at t. Let h > 0 and denote $\mu_h = \int_t^{t+h} \lambda(u) du$. Since λ is right continuous at t, it is easy to prove that $\mu_h \sim_{h \to 0^+} \lambda(t)h$. Then, by definition of the Poisson process,

$$\mathbb{P}(N([t,t+h]) \ge 1) = 1 - e^{-\mu_h} = \mu_h + o(\mu_h) \sim_{h \to 0^+} \lambda(t)h.$$

Remark: we also have $\mathbb{P}(N([t,t+h])=1) = \mu_h e^{-\mu_h} \sim_{h\to 0^+} \lambda(t)h.$

2 Intermediate exercises

Exercise 5. See the Julia notebook.

Exercise 6. See the Julia notebook.

Exercise 7. See the Julia notebook.

Exercise 8. Let $N = \{T_1 < \cdots < T_k < \dots\}$ be a Poisson process with intensity $\lambda > 0$. Let $n \in \mathbb{N}^*$, $0 < t_1 < \cdots < t_n < t_{n+1} = T$ and $h_1, \dots, h_n > 0$ such that $t_k + h_k < t_{k+1}$.

1. We have

$$\{t_1 < T_1 \le t_1 + h_1 < t_2 < \dots < t_n < T_n \le t_n + h_n\}$$

= $\{N_{t_1} = 0, N_{t_1+h_1} - N_{t_1} = 1, \dots, N_{t_n} - N_{t_{n-1}+h_{n-1}} = 0, N_{t_n+h_n} - N_{t_n} = 1\}.$

2. Thanks to the previous question and using the independence property of the Poisson process, we compute $\mathbb{P}(t_1 < T_1 \leq t_1 + h_1 < t_2 < \dots T_n \leq t_n + h_n)$ as

$$\mathbb{P} \left(N_{t_1} = 0, N_{t_1+h_1} - N_{t_1} = 1, \dots, N_{t_n} - N_{t_{n-1}+h_{n-1}} = 0, N_{t_n+h_n} - N_{t_n} = 1 \right)$$

= $\mathbb{P} \left(N_{t_1} = 0 \right) \times \dots \times \mathbb{P} \left(N_{t_n+h_n} - N_{t_n} = 1 \right)$
= $e^{-\lambda t_1} \times \lambda h_1 e^{-\lambda h_1} \times \dots \times \lambda h_n e^{-\lambda h_n} = \lambda^n h_1 \dots h_n e^{-\lambda (t_n+h_n)}.$

Hence,

$$\frac{\mathbb{P}\left(t_1 < T_1 \leq t_1 + h_1 < t_2 < \dots T_n \leq t_n + h_n\right)}{h_1 \dots h_n} \xrightarrow{h_1, \dots, h_n \to 0} \lambda^n e^{-\lambda t_n}$$

3. As claimed in the exercise, we assume that the previous question implies that (T_1, \ldots, T_n) admits the density $f(t_1, \ldots, t_n) = \lambda^n e^{-\lambda t_n}$. By definition of the inter event intervals, we have $(S_1, \ldots, S_n) = (T_1, T_2 - T_1, \ldots, T_n - T_{n-1})$. In other words, they are obtained through the bijective change of variables $g(t_1, \ldots, t_n) = (t_1, t_2 - t_1, \ldots, t_n - t_{n-1})$. The Jacobian matrix of g is

$$\begin{pmatrix} 1 & 0 & \dots & \dots & 0 \\ -1 & 1 & 0 & \dots & 0 \\ 0 & -1 & 1 & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & \dots & 0 & -1 & 1 \end{pmatrix},$$

and so its determinant equals 1. In turn, it means that the density of (S_1, \ldots, S_n) is

$$f_{(S_1,\ldots,S_n)}(s_1,\ldots,s_n)=\lambda^n e^{-\sum_{i=1}^n s_i}.$$

We recognize the product of the density of the $\mathscr{E}(\lambda)$ distribution and so the desired result follows.

Exercise 9. Let $(S_n)_{n\geq 1}$ be a sequence of i.i.d. r.v. distributed according to $\mathscr{E}(\lambda)$. Denote $T_n = \sum_{i=1}^N S_i$ and $N = \{T_n, n \in \mathbb{N}\}$ the associated point process.

1. By assumption, we know that the density of (S_1, \ldots, S_n) is

$$f_{(S_1,\ldots,S_n)}(s_1,\ldots,s_n)=\lambda^n e^{-\sum_{i=1}^n s_i}.$$

It suffices then to follow the same lines as Exercise 8 Question 3 using the inverse of g as a change of variable.

2. Let $0 \le s \le t$ and $k, \ell \in \mathbb{N}$. We have

$$\{N_s = k, N_t - N_s = \ell\} = \{T_1 < \dots < T_k \le s < T_{k+1} < \dots < T_{k+\ell} \le t\}.$$

3. Thanks to the previous question, we have

$$\begin{split} \mathbb{P}(N_{s} = k, N_{t} - N_{s} = \ell) &= \mathbb{P}(T_{1} < \cdots < T_{k} \leq s < T_{k+1} < \cdots < T_{k+\ell} \leq t < T_{k+\ell+1}) \\ &= \int \lambda^{k+\ell+1} e^{-\lambda t_{k+\ell+1}} \mathbf{1}_{0 < t_{1} < \cdots < t_{k} \leq s < t_{k+1} < \cdots < t_{k+\ell} \leq t < t_{k+\ell+1}} dt_{1} \dots dt_{k+\ell+1} \\ &= \int \lambda^{k+\ell} e^{-\lambda t} \mathbf{1}_{0 < t_{1} < \cdots < t_{k} \leq s < t_{k+1} < \cdots < t_{k+\ell} \leq t} dt_{1} \dots dt_{k+\ell} \\ &= e^{-\lambda t} \left(\lambda^{k} \frac{s^{k}}{k!}\right) \left(\lambda^{\ell} \frac{(t-s)^{\ell}}{\ell!}\right). \end{split}$$

We recognize the product of the probability mass functions of $\mathscr{P}(\lambda s)$ and $\mathscr{P}(\lambda(t-s))$ and so the desired result follows.

Exercise 10. Let *N* be a non homogeneous Poisson process with right continuous intensity $\lambda(t)$ on [0,T]. Denote $\Lambda(t) = \int_0^t \lambda(s) ds$.

1. Following the lines of Exercise 8, we have

$$\mathbb{P}(N_T = n, t_1 < T_1 \le t_1 + h_1 < t_2 < \dots T_n \le t_n + h_n)$$

$$= \mathbb{P}(N_{t_1} = 0, N_{t_1+h_1} - N_{t_1} = 1, \dots, N_{t_n} - N_{t_{n-1}+h_{n-1}} = 0, N_{t_n+h_n} - N_{t_n} = 1, N_T - N_{t_n+h_n} = 0)$$

$$= e^{-\Lambda(t_1)} \times (\Lambda(t_1 + h_1) - \Lambda(t_1))e^{-(\Lambda(t_1+h_1) - \Lambda(t_1))} \times \dots \times e^{-(\Lambda(T) - \Lambda(t_n+h_n))}$$

$$= \prod_{i=1}^n (\Lambda(t_i + h_i) - \Lambda(t_i))e^{-\Lambda(T)}.$$

Using the fact that λ is right continuous, it is easy to check that for all i = 1, ..., n, $(\Lambda(t_i + h_i) - \Lambda(t_i))/h_i \rightarrow \lambda(t_i)$ as $h_i \rightarrow 0$. In turn, it implies that

$$\frac{\mathbb{P}(N_T = n, t_1 < T_1 \le t_1 + h_1 < t_2 < \dots T_n \le t_n + h_n)}{h_1 \dots h_n} \xrightarrow[h_1, \dots, h_n \to 0]{} \prod_{i=1}^n \lambda(t_i) e^{-\Lambda(T)}.$$
(1)

2. Since *N* is a Poisson process, we have $\mathbb{P}(N_T = n) = \Lambda(T)^n / n! e^{-\Lambda(T)}$. Then, by the definition of the conditional probability, we get

$$\frac{\mathbb{P}(t_1 < T_1 \leq t_1 + h_1 < t_2 < \dots < T_n \leq t_n + h_n | N_T = n)}{h_1 \dots h_n} \xrightarrow[h_1, \dots, h_n \to 0]{} \frac{\prod_{i=1}^n \lambda(t_i) e^{-\Lambda(T)}}{\Lambda(T)^n / n! e^{-\Lambda(T)}} = n! \prod_{i=1}^n f(t_i).$$

Exercise 11. Let N^1 and N^2 be two independent Poisson processes with intensities $\lambda^1(t)$ and $\lambda^2(t)$. Let $N_t = N_t^1 + N_t^2$, $\Lambda^i(t) = \int_0^t \lambda^i(s) ds$, for i = 1, 2, and $\Lambda(t) = \Lambda^1(t) + \Lambda^2(t)$.

1. Let 0 < s < t and $k, \ell \in \mathbb{N}$. Let us denote $\Lambda^i_{(s,t)} = \Lambda^i(t) - \Lambda^i(s)$ for i = 1, 2. We have

$$\begin{split} \mathbb{P}(N_{s} = k, N_{t} - N_{s} = \ell) &= \sum_{k_{1}=0}^{k} \sum_{\ell_{1}=0}^{\ell} \mathbb{P}\left(N_{s}^{1} = k_{1}, N_{s}^{2} = k - k_{1}, N_{t}^{1} - N_{s}^{1} = \ell_{1}, N_{t}^{2} - N_{s}^{2} = \ell - \ell_{1}\right) \\ &= \sum_{k_{1}=0}^{k} \sum_{\ell_{1}=0}^{\ell} \left(\frac{\Lambda^{1}(s)^{k_{1}}}{k_{1}!} e^{-\Lambda^{1}(s)}\right) \left(\frac{\Lambda^{2}(s)^{k-k_{1}}}{(k-k_{1})!} e^{-\Lambda^{2}(s)}\right) \\ &\times \left(\frac{\Lambda^{1}(s,t)^{\ell_{1}}}{\ell_{1}!} e^{-\Lambda^{1}(s,t)}\right) \left(\frac{\Lambda^{2}(s,t)^{\ell-\ell_{1}}}{(\ell-\ell_{1})!} e^{-\Lambda^{2}(s,t)}\right) \\ &= \left(\frac{1}{k!} \sum_{k_{1}=0}^{k} \binom{k}{k_{1}} \Lambda^{1}(s)^{k_{1}} \Lambda^{2}(s)^{k-k_{1}}\right) e^{-\Lambda(s)} \\ &\times \left(\frac{1}{\ell!} \sum_{\ell_{1}=0}^{\ell} \binom{\ell}{\ell_{1}} \Lambda^{1}(s,t)^{\ell_{1}} \Lambda^{2}(s,t)^{\ell-\ell_{1}}\right) e^{-(\Lambda(t) - \Lambda(s))} \\ &= \frac{\Lambda(s)^{k}}{k!} e^{-\Lambda(s)} \times \frac{(\Lambda(t) - \Lambda(s))^{\ell}}{\ell!} e^{-(\Lambda(t) - \Lambda(s))} \end{split}$$

2. We recognize the product of the probability mass functions of $\mathscr{P}(\Lambda(s))$ and $\mathscr{P}(\Lambda(t) - \Lambda(s))$ and so the desired result follows.

Exercise 12. Let *N* be a Poisson process with rate λ and $p \in]0,1[$. Let $(\varepsilon_n)_n$ be a sequence of i.i.d. random variables distributed as $\mathscr{B}(p)$ which is furthermore independent of *N*. Let

$$N^0 = \{T_i \in N, \varepsilon_i = 0\}$$
 and $N^1 = \{T_i \in N, \varepsilon_i = 1\}$.

1. Let $t \ge 0$, $k, \ell \in \mathbb{N}$ and denote $n = k + \ell$. It is clear that $\{N_t^0 = k, N_t^1 = \ell\}$ implies that $N_t = n$. More precisely, we have

$$\{N_t^0 = k, N_t^1 = \ell\} = \{N_t = n, \sum_{i=1}^n \varepsilon_i = \ell\}.$$

Hence,

$$\mathbb{P}\left(N_t^0 = k, N_t^1 = \ell\right) = \mathbb{P}\left(N_t = n, \sum_{i=1}^n \varepsilon_i = \ell\right) = \mathbb{P}\left(N_t = n\right) \mathbb{P}\left(\sum_{i=1}^n \varepsilon_i = \ell\right),$$

by independence between $(\varepsilon_i)_i$ and *N*. Since the ε_i 's are i.i.d. and $\mathscr{B}(p)$, we know that $\sum_{i=1}^n \varepsilon_i$ is binomial distributed so that

$$\mathbb{P}\left(N_t^0 = k, N_t^1 = \ell\right) = \frac{(\lambda t)^n}{n!} e^{-\lambda t} \times \binom{n}{\ell} p^\ell (1-p)^k = \frac{[\lambda(1-p)]^k}{k!} e^{-\lambda(1-p)t} \times \frac{(\lambda p)^\ell}{\ell!} e^{-\lambda pt}.$$

We recognize the product of the probability mass functions of $\mathscr{P}((1-p)\lambda t)$ and $\mathscr{P}(p\lambda t)$ and so the desired result follows.

3 Advanced exercises

Exercise 13. Let N be a Poisson mixture with random rate $\tilde{\lambda}$ (with distribution \tilde{P}).

$$\mathbb{P}(N_t = k) = \int_{\lambda} \frac{(\lambda t)^k}{k!} e^{-\lambda t} d\tilde{P}(\lambda).$$

1. Since everything is non negative, we can apply Fubini Theorem without verifying any integrability condition. It gives

$$\mathbb{E}[N_t] = \sum_{k=0}^{\infty} k \mathbb{P}(N_t = k) = \int_{\lambda} \sum_{k=0}^{\infty} \frac{(\lambda t)^k}{(k-1)!} e^{-\lambda t} d\tilde{P}(\lambda) = \int_{\lambda} \lambda t \sum_{k=1}^{\infty} \frac{(\lambda t)^{k-1}}{(k-1)!} e^{-\lambda t} d\tilde{P}(\lambda) = \int_{\lambda} \lambda t d\tilde{P}(\lambda)$$

which is the desired result.

2. Following the same ideas, we have

$$\mathbb{E}\left[N_t^2\right] = \sum_{k=0}^{\infty} k^2 \mathbb{P}\left(N_t = k\right) = \int_{\lambda} \lambda t \sum_{k=1}^{\infty} k \frac{(\lambda t)^{k-1}}{(k-1)!} e^{-\lambda t} d\tilde{P}(\lambda).$$

Then, we use the fact that $k \frac{(\lambda t)^{k-1}}{(k-1)!} = \lambda t \frac{(\lambda t)^{k-2}}{(k-2)!} + \frac{(\lambda t)^{k-1}}{(k-1)!}$ to get

$$\mathbb{E}\left[N_t^2\right] = \int_{\lambda} (\lambda t)^2 + \lambda t \, d\tilde{P}(\lambda) = \mathbb{E}\left[\tilde{\lambda}^2\right] t^2 + \mathbb{E}\left[\tilde{\lambda}\right] t.$$

Then, we use the facts that $\operatorname{Var}(N_t) = \mathbb{E}[N_t^2] - \mathbb{E}[N_t]^2$ and $\operatorname{Var}(\tilde{\lambda}) = \mathbb{E}[\tilde{\lambda}^2] - \mathbb{E}[\tilde{\lambda}]^2$ to get the desired equality. The inequality is trivial since $\operatorname{Var}(\tilde{\lambda})t^2 \ge 0$. Finally, the equality case corresponds to the case when t = 0 or $\operatorname{Var}(\tilde{\lambda}) = 0$, that is $\tilde{\lambda}$ is a.s. constant.

Exercise 14. Hints:

- The value of X_t when $N_t = 0$ is not explicitly defined in the exercise statement.
- A nice way to represent X_t is for instance $X_t = \sum_{n=0}^{+\infty} (\sum_{i=1}^n Y_i) \mathbf{1}_{N_t=n}$. How to use this idea for z^{X_t} ?