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TD 1 - Temporal point processes
Poisson process - Correction

1 Basic exercises

Exercise 1. Let T be a positive continuous random variable.

Step 1. Assume that T ∼ E (λ ). Its cumulative distribution function is F(t) = 1− e−λ t and its
survival function is F(t) = e−λ t . By definition of conditional probability, P(T > t + s | T > t) =
F(t + s)/F(t). Hence, it suffices to check that

F(t + s)
F(t)

=
e−λ (t+s)

e−λ t
= e−λ s = F(s).

Step 2. Assume that T has the memoryless property and denote F its survival function. Using again
the fact that P(T > t + s | T > t) = F(t + s)/F(t) we get that the memoryless property is equivalent
to the exponentiation identity:

∀t,s ≥ 0, F(t + s) = F(t)F(s).

Then, it is basic functional analysis to know that all continuous functions satisfying the exponentiation
identity are of the form F(t) = eµt , µ ∈ R. Since F is a survival function, it satisfies F(t) → 0 as
t → +∞ so that µ must be negative. Writing λ = −µ , we have F(t) = e−λ t , that is the survival
function of the distribution E (λ ).

We conclude by using the fact that the survival function (like the cumulative distribution function)
characterizes the distribution of a random variable.

Exercise 2. Let T be a positive random variable with density. Let f denote its density, F its survival
function and q its hazard rate.

Step 1. Assume that T ∼ E (λ ). Then, we have f (t) = λe−λ t , F(t) = e−λ t and

q(t) =
f (t)

F(t)
= λ ,

for all t > 0.

Step 2. Assume that q(t) = λ for all t > 0. Hence, the density satisfies f (t) = λF(t) and is in
particular continuous on R∗

+. In turn, the fundamental Theorem of calculus states that F is C 1 and
that F ′

(t) =− f (t) for all t > 0. Then, for all t > 0, we have

−(lnF)′(t) =−F ′
(t)

F(t)
= λ .

Hence lnF is the primitive of −λ with the initial condition that lnF(0) = 0. Hence, F(t) = exp(−λ t)
and we conclude because the survival function characterizes the distribution.
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Exercise 3. Without loss of generality, let us restrict the study to one day, that is the interval [0,24)
expressed in hours. Let us denote N the non homogeneous Poisson process studied in this exercise.

1. The intensity function is

λ (t) =

{
1, if t ∈ [0,8]∪ [20,24),
2, else.

2. It is the probability that N1 = 0. Since N1 ∼ P(1), we have P(N1 = 0) = e−1.

3. It is the probability
P(N14 −N13 = 2 |N9 −N8 = 4) .

Since [8,9) and [13,14) are disjoint, the two random variables above are independent so that

P(N14 −N13 = 2 |N9 −N8 = 4) = P(N14 −N13 = 2) =
22

2!
e−2 = 2e−2.

4. It is the probability

P(N10 −N8 = 5 |N9 −N8 = 4) = P(N10 −N9 = 1 |N9 −N8 = 4) .

Since [8,9) and [9,10) are disjoint, the two random variables above are independent so that

P(N10 −N9 = 1 |N9 −N8 = 4) = P(N10 −N9 = 1) =
2
1!

e−2 = 2e−2.

5. It is the probability

P(N14 −N13 = 0 |N20 −N8 = 10) =
P(N14 −N13 = 0,N20 −N8 = 10)

P(N20 −N8 = 10)
.

Let us denote A = [8,13)∪ [14,20).

On the one hand,

P(N14 −N13 = 0,N20 −N8 = 10) = P(N14 −N13 = 0,N(A) = 10) .

Since [13,14) and A are disjoint, the two random variables above are independent so that (re-
mark that the cumulative intensity on the set A is 2×11 = 22)

P(N14 −N13 = 0,N(A) = 10)=P(N14 −N13 = 0)P(N(A) = 10)= e−2× 2210

10!
e−22 =

2210

10!
e−24.

On the other hand, P(N20 −N8 = 10) = 2410

10! e−24.

Finally, one gets P(N14 −N13 = 0 |N20 −N8 = 10) = (22/24)10 = (11/12)10. Remark that it
is the probability that a binomial B(10,1/12) random variable has value 0. This is consistent
with the fact that conditionally on N20 −N8 = 10, those ten points are uniformly distributed
inside the time interval [8,20).
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6. It is the probability

P(N9 −N7 = 1 |N8 −N6 = 1) =
∑

1
k=0P(N7 −N6 = k,N8 −N7 = 1− k,N9 −N8 = k)

P(N8 −N6 = 1)
.

On the one hand, for k = 0,1, we have

P(N7 −N6 = k,N8 −N7 = 1− k,N9 −N8 = k) =
2k

k!
21−k

(1− k)!
2k

k!
e−6 =

{
2e−6, k = 0
4e−6, k = 1.

On the other hand, P(N8 −N6 = 1) = 4e−4. Finally, one gets P(N9 −N7 = 2 |N8 −N6 = 1) =
3
2e−2.

Exercise 4. Let N be a non homogeneous Poisson process with intensity λ (t).

1. Assume that λ (t) = 0 on [s,u]. In particular,
∫ u

s λ (t)dt = 0. Hence, by definition of the Poisson
process, N([s,u]) ∼ P(0). Yet, the Poisson distribution with parameter 0 is the Dirac mass at
0 by convention. In turn, it means that N([s,u]) = 0 almost surely.

2. Let t ≥ 0 such that λ is right continuous at t. Let h > 0 and denote µh =
∫ t+h

t λ (u)du. Since
λ is right continuous at t, it is easy to prove that µh ∼h→0+ λ (t)h. Then, by definition of the
Poisson process,

P(N([t, t +h])≥ 1) = 1− e−µh = µh +o(µh)∼h→0+ λ (t)h.

Remark: we also have P(N([t, t +h]) = 1) = µhe−µh ∼h→0+ λ (t)h.

2 Intermediate exercises

Exercise 5. See the Julia notebook.

Exercise 6. See the Julia notebook.

Exercise 7. See the Julia notebook.

Exercise 8. Let N = {T1 < · · · < Tk < .. .} be a Poisson process with intensity λ > 0. Let n ∈ N∗,
0 < t1 < · · ·< tn < tn+1 = T and h1, . . . ,hn > 0 such that tk +hk < tk+1.

1. We have

{t1 < T1 ≤ t1 +h1 < t2 < · · ·< tn < Tn ≤ tn +hn}
=
{

Nt1 = 0,Nt1+h1 −Nt1 = 1, . . . ,Ntn −Ntn−1+hn−1 = 0,Ntn+hn −Ntn = 1
}
.

2. Thanks to the previous question and using the independence property of the Poisson process,
we compute P(t1 < T1 ≤ t1 +h1 < t2 < .. .Tn ≤ tn +hn) as

P
(
Nt1 = 0,Nt1+h1 −Nt1 = 1, . . . ,Ntn −Ntn−1+hn−1 = 0,Ntn+hn −Ntn = 1

)
= P(Nt1 = 0)×·· ·×P(Ntn+hn −Ntn = 1)

= e−λ t1 ×λh1e−λh1 ×·· ·×λhne−λhn = λ
nh1 . . .hne−λ (tn+hn).

Hence,
P(t1 < T1 ≤ t1 +h1 < t2 < .. .Tn ≤ tn +hn)

h1 . . .hn
−−−−−−→
h1,...,hn→0

λ
ne−λ tn.
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3. As claimed in the exercise, we assume that the previous question implies that (T1, . . . ,Tn) ad-
mits the density f (t1, . . . , tn) = λ ne−λ tn . By definition of the inter event intervals, we have
(S1, . . . ,Sn) = (T1,T2 − T1, . . . ,Tn − Tn−1). In other words, they are obtained through the bi-
jective change of variables g(t1, . . . , tn) = (t1, t2 − t1, . . . , tn − tn−1). The Jacobian matrix of g
is 

1 0 . . . . . . 0
−1 1 0 . . . 0

0 −1 1 . . . ...
... . . . . . . . . . ...
0 . . . 0 −1 1

 ,

and so its determinant equals 1. In turn, it means that the density of (S1, . . . ,Sn) is

f(S1,...,Sn)(s1, . . . ,sn) = λ
ne−∑

n
i=1 si.

We recognize the product of the density of the E (λ ) distribution and so the desired result
follows.

Exercise 9. Let (Sn)n≥1 be a sequence of i.i.d. r.v. distributed according to E (λ ). Denote Tn =∑
N
i=1 Si

and N = {Tn,n ∈ N} the associated point process.

1. By assumption, we know that the density of (S1, . . . ,Sn) is

f(S1,...,Sn)(s1, . . . ,sn) = λ
ne−∑

n
i=1 si.

It suffices then to follow the same lines as Exercise 8 Question 3 using the inverse of g as a
change of variable.

2. Let 0 ≤ s ≤ t and k, ℓ ∈ N. We have

{Ns = k,Nt −Ns = ℓ}= {T1 < · · ·< Tk ≤ s < Tk+1 < · · ·< Tk+ℓ ≤ t} .

3. Thanks to the previous question, we have

P(Ns = k,Nt −Ns = ℓ) = P(T1 < · · ·< Tk ≤ s < Tk+1 < · · ·< Tk+ℓ ≤ t < Tk+ℓ+1)

=
∫

λ
k+ℓ+1e−λ tk+ℓ+110<t1<···<tk≤s<tk+1<···<tk+ℓ≤t<tk+ℓ+1dt1 . . .dtk+ℓ+1

=
∫

λ
k+ℓe−λ t10<t1<···<tk≤s<tk+1<···<tk+ℓ≤tdt1 . . .dtk+ℓ

= e−λ t
(

λ
k sk

k!

)(
λ
ℓ (t − s)ℓ

ℓ!

)
.

We recognize the product of the probability mass functions of P(λ s) and P(λ (t − s)) and so
the desired result follows.

Exercise 10. Let N be a non homogeneous Poisson process with right continuous intensity λ (t) on
[0,T ]. Denote Λ(t) =

∫ t
0 λ (s)ds.

1. Following the lines of Exercise 8, we have

P(NT = n, t1 < T1 ≤ t1 +h1 < t2 < .. .Tn ≤ tn +hn)

= P
(
Nt1 = 0,Nt1+h1 −Nt1 = 1, . . . ,Ntn −Ntn−1+hn−1 = 0,Ntn+hn −Ntn = 1,NT −Ntn+hn = 0

)
= e−Λ(t1)× (Λ(t1 +h1)−Λ(t1))e−(Λ(t1+h1)−Λ(t1))×·· ·× e−(Λ(T )−Λ(tn+hn))

=
n

∏
i=1

(Λ(ti +hi)−Λ(ti))e−Λ(T ).
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Using the fact that λ is right continuous, it is easy to check that for all i = 1, . . . ,n, (Λ(ti+hi)−
Λ(ti))/hi → λ (ti) as hi → 0. In turn, it implies that

P(NT = n, t1 < T1 ≤ t1 +h1 < t2 < .. .Tn ≤ tn +hn)

h1 . . .hn
−−−−−−→
h1,...,hn→0

n

∏
i=1

λ (ti)e−Λ(T ). (1)

2. Since N is a Poisson process, we have P(NT = n) = Λ(T )n/n!e−Λ(T ). Then, by the definition
of the conditional probability, we get

P(t1 < T1 ≤ t1 +h1 < t2 < .. .Tn ≤ tn +hn|NT = n)
h1 . . .hn

−−−−−−→
h1,...,hn→0

∏
n
i=1 λ (ti)e−Λ(T )

Λ(T )n/n!e−Λ(T )
= n!

n

∏
i=1

f (ti).

Exercise 11. Let N1 and N2 be two independent Poisson processes with intensities λ 1(t) and λ 2(t).
Let Nt = N1

t +N2
t , Λi(t) =

∫ t
0 λ i(s)ds, for i = 1,2, and Λ(t) = Λ1(t)+Λ2(t).

1. Let 0 < s < t and k, ℓ ∈ N. Let us denote Λi
(s, t) = Λi(t)−Λi(s) for i = 1,2. We have

P(Ns = k,Nt −Ns = ℓ) =
k

∑
k1=0

ℓ

∑
ℓ1=0

P
(
N1

s = k1,N2
s = k− k1,N1

t −N1
s = ℓ1,N2

t −N2
s = ℓ− ℓ1

)
=

k

∑
k1=0

ℓ

∑
ℓ1=0

(
Λ1(s)k1

k1!
e−Λ1(s)

)(
Λ2(s)k−k1

(k− k1)!
e−Λ2(s)

)
×
(

Λ1(s, t)ℓ1

ℓ1!
e−Λ1(s,t)

)(
Λ2(s, t)ℓ−ℓ1

(ℓ− ℓ1)!
e−Λ2(s,t)

)
=

(
1
k!

k

∑
k1=0

(
k
k1

)
Λ

1(s)k1Λ
2(s)k−k1

)
e−Λ(s)

×

(
1
ℓ!

ℓ

∑
ℓ1=0

(
ℓ

ℓ1

)
Λ

1(s, t)ℓ1Λ
2(s, t)ℓ−ℓ1

)
e−(Λ(t)−Λ(s))

=
Λ(s)k

k!
e−Λ(s)× (Λ(t)−Λ(s))ℓ

ℓ!
e−(Λ(t)−Λ(s))

2. We recognize the product of the probability mass functions of P(Λ(s)) and P(Λ(t)−Λ(s))
and so the desired result follows.

Exercise 12. Let N be a Poisson process with rate λ and p ∈]0,1[. Let (εn)n be a sequence of i.i.d.
random variables distributed as B(p) which is furthermore independent of N. Let

N0 = {Ti ∈ N, εi = 0} and N1 = {Ti ∈ N, εi = 1} .

1. Let t ≥ 0, k, ℓ ∈ N and denote n = k+ ℓ. It is clear that {N0
t = k,N1

t = ℓ} implies that Nt = n.
More precisely, we have

{N0
t = k,N1

t = ℓ}= {Nt = n,
n

∑
i=1

εi = ℓ}.

Hence,

P
(
N0

t = k,N1
t = ℓ

)
= P

(
Nt = n,

n

∑
i=1

εi = ℓ

)
= P(Nt = n)P

(
n

∑
i=1

εi = ℓ

)
,
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by independence between (εi)i and N. Since the εi’s are i.i.d. and B(p), we know that ∑
n
i=1 εi

is binomial distributed so that

P
(
N0

t = k,N1
t = ℓ

)
=

(λ t)n

n!
e−λ t ×

(
n
ℓ

)
pℓ(1− p)k =

[λ (1− p)]k

k!
e−λ (1−p)t × (λ p)ℓ

ℓ!
e−λ pt .

We recognize the product of the probability mass functions of P((1− p)λ t) and P(pλ t) and
so the desired result follows.

3 Advanced exercises

Exercise 13. Let N be a Poisson mixture with random rate λ̃ (with distribution P̃).

P(Nt = k) =
∫

λ

(λ t)k

k!
e−λ tdP̃(λ ).

1. Since everything is non negative, we can apply Fubini Theorem without verifying any integra-
bility condition. It gives

E [Nt ] =
∞

∑
k=0

kP(Nt = k)=
∫

λ

∞

∑
k=0

(λ t)k

(k−1)!
e−λ tdP̃(λ )=

∫
λ

λ t
∞

∑
k=1

(λ t)k−1

(k−1)!
e−λ tdP̃(λ )=

∫
λ

λ tdP̃(λ ).

which is the desired result.

2. Following the same ideas, we have

E
[
N2

t
]
=

∞

∑
k=0

k2P(Nt = k) =
∫

λ

λ t
∞

∑
k=1

k
(λ t)k−1

(k−1)!
e−λ tdP̃(λ ).

Then, we use the fact that k (λ t)k−1

(k−1)! = λ t (λ t)k−2

(k−2)! +
(λ t)k−1

(k−1)! to get

E
[
N2

t
]
=
∫

λ

(λ t)2 +λ t dP̃(λ ) = E
[
λ̃

2
]

t2 +E
[
λ̃

]
t.

Then, we use the facts that Var(Nt) = E
[
N2

t
]
−E [Nt ]

2 and Var(λ̃ ) = E
[
λ̃ 2
]
−E

[
λ̃

]2
to get

the desired equality. The inequality is trivial since Var(λ̃ )t2 ≥ 0. Finally, the equality case
corresponds to the case when t = 0 or Var(λ̃ ) = 0, that is λ̃ is a.s. constant.

Exercise 14. Hints:

• The value of Xt when Nt = 0 is not explicitly defined in the exercise statement.

• A nice way to represent Xt is for instance Xt = ∑
+∞

n=0 (∑
n
i=1Yi)1Nt=n. How to use this idea for

zXt ?
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