## TD 1 - Temporal point processes

## Poisson process - Correction

## 1 Basic exercises

Exercise 1. Let $T$ be a positive continuous random variable.
Step 1. Assume that $T \sim \mathscr{E}(\lambda)$. Its cumulative distribution function is $F(t)=1-e^{-\lambda t}$ and its survival function is $\bar{F}(t)=e^{-\lambda t}$. By definition of conditional probability, $\mathbb{P}(T>t+s \mid T>t)=$ $\bar{F}(t+s) / \bar{F}(t)$. Hence, it suffices to check that

$$
\frac{\bar{F}(t+s)}{\bar{F}(t)}=\frac{e^{-\lambda(t+s)}}{e^{-\lambda t}}=e^{-\lambda s}=\bar{F}(s) .
$$

Step 2. Assume that $T$ has the memoryless property and denote $\bar{F}$ its survival function. Using again the fact that $\mathbb{P}(T>t+s \mid T>t)=\bar{F}(t+s) / \bar{F}(t)$ we get that the memoryless property is equivalent to the exponentiation identity:

$$
\forall t, s \geq 0, \quad \bar{F}(t+s)=\bar{F}(t) \bar{F}(s)
$$

Then, it is basic functional analysis to know that all continuous functions satisfying the exponentiation identity are of the form $\bar{F}(t)=e^{\mu t}, \mu \in \mathbb{R}$. Since $\bar{F}$ is a survival function, it satisfies $\bar{F}(t) \rightarrow 0$ as $t \rightarrow+\infty$ so that $\mu$ must be negative. Writing $\lambda=-\mu$, we have $\bar{F}(t)=e^{-\lambda t}$, that is the survival function of the distribution $\mathscr{E}(\boldsymbol{\lambda})$.

We conclude by using the fact that the survival function (like the cumulative distribution function) characterizes the distribution of a random variable.

Exercise 2. Let $T$ be a positive random variable with density. Let $f$ denote its density, $\bar{F}$ its survival function and $q$ its hazard rate.

Step 1. Assume that $T \sim \mathscr{E}(\lambda)$. Then, we have $f(t)=\lambda e^{-\lambda t}, \bar{F}(t)=e^{-\lambda t}$ and

$$
q(t)=\frac{f(t)}{\overline{F(t)}}=\lambda
$$

for all $t>0$.

Step 2. Assume that $q(t)=\lambda$ for all $t>0$. Hence, the density satisfies $f(t)=\lambda \bar{F}(t)$ and is in particular continuous on $\mathbb{R}_{+}^{*}$. In turn, the fundamental Theorem of calculus states that $\bar{F}$ is $\mathscr{C}^{1}$ and that $\bar{F}^{\prime}(t)=-f(t)$ for all $t>0$. Then, for all $t>0$, we have

$$
-(\ln \bar{F})^{\prime}(t)=-\frac{\bar{F}^{\prime}(t)}{\bar{F}(t)}=\lambda
$$

Hence $\ln \bar{F}$ is the primitive of $-\lambda$ with the initial condition that $\ln \bar{F}(0)=0$. Hence, $\bar{F}(t)=\exp (-\lambda t)$ and we conclude because the survival function characterizes the distribution.

Exercise 3. Without loss of generality, let us restrict the study to one day, that is the interval $[0,24)$ expressed in hours. Let us denote $N$ the non homogeneous Poisson process studied in this exercise.

1. The intensity function is

$$
\lambda(t)= \begin{cases}1, & \text { if } t \in[0,8] \cup[20,24) \\ 2, & \text { else }\end{cases}
$$

2. It is the probability that $N_{1}=0$. Since $N_{1} \sim \mathscr{P}(1)$, we have $\mathbb{P}\left(N_{1}=0\right)=e^{-1}$.
3. It is the probability

$$
\mathbb{P}\left(N_{14}-N_{13}=2 \mid N_{9}-N_{8}=4\right) .
$$

Since $[8,9)$ and $[13,14)$ are disjoint, the two random variables above are independent so that

$$
\mathbb{P}\left(N_{14}-N_{13}=2 \mid N_{9}-N_{8}=4\right)=\mathbb{P}\left(N_{14}-N_{13}=2\right)=\frac{2^{2}}{2!} e^{-2}=2 e^{-2}
$$

4. It is the probability

$$
\mathbb{P}\left(N_{10}-N_{8}=5 \mid N_{9}-N_{8}=4\right)=\mathbb{P}\left(N_{10}-N_{9}=1 \mid N_{9}-N_{8}=4\right) .
$$

Since $[8,9)$ and $[9,10)$ are disjoint, the two random variables above are independent so that

$$
\mathbb{P}\left(N_{10}-N_{9}=1 \mid N_{9}-N_{8}=4\right)=\mathbb{P}\left(N_{10}-N_{9}=1\right)=\frac{2}{1!} e^{-2}=2 e^{-2}
$$

5. It is the probability

$$
\mathbb{P}\left(N_{14}-N_{13}=0 \mid N_{20}-N_{8}=10\right)=\frac{\mathbb{P}\left(N_{14}-N_{13}=0, N_{20}-N_{8}=10\right)}{\mathbb{P}\left(N_{20}-N_{8}=10\right)}
$$

Let us denote $A=[8,13) \cup[14,20)$.
On the one hand,

$$
\mathbb{P}\left(N_{14}-N_{13}=0, N_{20}-N_{8}=10\right)=\mathbb{P}\left(N_{14}-N_{13}=0, N(A)=10\right) .
$$

Since $[13,14)$ and $A$ are disjoint, the two random variables above are independent so that (remark that the cumulative intensity on the set $A$ is $2 \times 11=22$ )

$$
\mathbb{P}\left(N_{14}-N_{13}=0, N(A)=10\right)=\mathbb{P}\left(N_{14}-N_{13}=0\right) \mathbb{P}(N(A)=10)=e^{-2} \times \frac{22^{10}}{10!} e^{-22}=\frac{22^{10}}{10!} e^{-24}
$$

On the other hand, $\mathbb{P}\left(N_{20}-N_{8}=10\right)=\frac{24^{10}}{10!} e^{-24}$.
Finally, one gets $\mathbb{P}\left(N_{14}-N_{13}=0 \mid N_{20}-N_{8}=10\right)=(22 / 24)^{10}=(11 / 12)^{10}$. Remark that it is the probability that a binomial $\mathscr{B}(10,1 / 12)$ random variable has value 0 . This is consistent with the fact that conditionally on $N_{20}-N_{8}=10$, those ten points are uniformly distributed inside the time interval $[8,20)$.
6. It is the probability

$$
\mathbb{P}\left(N_{9}-N_{7}=1 \mid N_{8}-N_{6}=1\right)=\frac{\sum_{k=0}^{1} \mathbb{P}\left(N_{7}-N_{6}=k, N_{8}-N_{7}=1-k, N_{9}-N_{8}=k\right)}{\mathbb{P}\left(N_{8}-N_{6}=1\right)}
$$

On the one hand, for $k=0,1$, we have

$$
\mathbb{P}\left(N_{7}-N_{6}=k, N_{8}-N_{7}=1-k, N_{9}-N_{8}=k\right)=\frac{2^{k}}{k!} \frac{2^{1-k}}{(1-k)!} \frac{2^{k}}{k!} e^{-6}= \begin{cases}2 e^{-6}, & k=0 \\ 4 e^{-6}, & k=1\end{cases}
$$

On the other hand, $\mathbb{P}\left(N_{8}-N_{6}=1\right)=4 e^{-4}$. Finally, one gets $\mathbb{P}\left(N_{9}-N_{7}=2 \mid N_{8}-N_{6}=1\right)=$ $\frac{3}{2} e^{-2}$.

Exercise 4. Let $N$ be a non homogeneous Poisson process with intensity $\lambda(t)$.

1. Assume that $\lambda(t)=0$ on $[s, u]$. In particular, $\int_{s}^{u} \lambda(t) d t=0$. Hence, by definition of the Poisson process, $N([s, u]) \sim \mathscr{P}(0)$. Yet, the Poisson distribution with parameter 0 is the Dirac mass at 0 by convention. In turn, it means that $N([s, u])=0$ almost surely.
2. Let $t \geq 0$ such that $\lambda$ is right continuous at $t$. Let $h>0$ and denote $\mu_{h}=\int_{t}^{t+h} \lambda(u) d u$. Since $\lambda$ is right continuous at $t$, it is easy to prove that $\mu_{h} \sim_{h \rightarrow 0^{+}} \lambda(t) h$. Then, by definition of the Poisson process,

$$
\mathbb{P}(N([t, t+h]) \geq 1)=1-e^{-\mu_{h}}=\mu_{h}+o\left(\mu_{h}\right) \sim_{h \rightarrow 0^{+}} \lambda(t) h .
$$

Remark: we also have $\mathbb{P}(N([t, t+h])=1)=\mu_{h} e^{-\mu_{h}} \sim_{h \rightarrow 0^{+}} \lambda(t) h$.

## 2 Intermediate exercises

## Exercise 5. See the Julia notebook.

Exercise 6. See the Julia notebook.
Exercise 7. See the Julia notebook.
Exercise 8. Let $N=\left\{T_{1}<\cdots<T_{k}<\ldots\right\}$ be a Poisson process with intensity $\lambda>0$. Let $n \in \mathbb{N}^{*}$, $0<t_{1}<\cdots<t_{n}<t_{n+1}=T$ and $h_{1}, \ldots, h_{n}>0$ such that $t_{k}+h_{k}<t_{k+1}$.

1. We have

$$
\begin{aligned}
\left\{t_{1}<T_{1} \leq t_{1}+h_{1}\right. & \left.<t_{2}<\cdots<t_{n}<T_{n} \leq t_{n}+h_{n}\right\} \\
& =\left\{N_{t_{1}}=0, N_{t_{1}+h_{1}}-N_{t_{1}}=1, \ldots, N_{t_{n}}-N_{t_{n-1}+h_{n-1}}=0, N_{t_{n}+h_{n}}-N_{t_{n}}=1\right\} .
\end{aligned}
$$

2. Thanks to the previous question and using the independence property of the Poisson process, we compute $\mathbb{P}\left(t_{1}<T_{1} \leq t_{1}+h_{1}<t_{2}<\ldots T_{n} \leq t_{n}+h_{n}\right)$ as

$$
\begin{aligned}
& \mathbb{P}\left(N_{t_{1}}=0, N_{t_{1}+h_{1}}-N_{t_{1}}=1, \ldots, N_{t_{n}}-N_{t_{n-1}+h_{n-1}}=0, N_{t_{n}+h_{n}}-N_{t_{n}}=1\right) \\
= & \mathbb{P}\left(N_{t_{1}}=0\right) \times \cdots \times \mathbb{P}\left(N_{t_{n}+h_{n}}-N_{t_{n}}=1\right) \\
= & e^{-\lambda t_{1}} \times \lambda h_{1} e^{-\lambda h_{1}} \times \cdots \times \lambda h_{n} e^{-\lambda h_{n}}=\lambda^{n} h_{1} \ldots h_{n} e^{-\lambda\left(t_{n}+h_{n}\right)} .
\end{aligned}
$$

Hence,

$$
\frac{\mathbb{P}\left(t_{1}<T_{1} \leq t_{1}+h_{1}<t_{2}<\ldots T_{n} \leq t_{n}+h_{n}\right)}{h_{1} \ldots h_{n}} \xrightarrow[h_{1}, \ldots, h_{n} \rightarrow 0]{ } \lambda^{n} e^{-\lambda t_{n}} .
$$

3. As claimed in the exercise, we assume that the previous question implies that $\left(T_{1}, \ldots, T_{n}\right)$ admits the density $f\left(t_{1}, \ldots, t_{n}\right)=\lambda^{n} e^{-\lambda t_{n}}$. By definition of the inter event intervals, we have $\left(S_{1}, \ldots, S_{n}\right)=\left(T_{1}, T_{2}-T_{1}, \ldots, T_{n}-T_{n-1}\right)$. In other words, they are obtained through the bijective change of variables $g\left(t_{1}, \ldots, t_{n}\right)=\left(t_{1}, t_{2}-t_{1}, \ldots, t_{n}-t_{n-1}\right)$. The Jacobian matrix of $g$ is

$$
\left(\begin{array}{ccccc}
1 & 0 & \ldots & \ldots & 0 \\
-1 & 1 & 0 & \ldots & 0 \\
0 & -1 & 1 & \ddots & \vdots \\
\vdots & \ddots & \ddots & \ddots & \vdots \\
0 & \ldots & 0 & -1 & 1
\end{array}\right)
$$

and so its determinant equals 1 . In turn, it means that the density of $\left(S_{1}, \ldots, S_{n}\right)$ is

$$
f_{\left(S_{1}, \ldots, S_{n}\right)}\left(s_{1}, \ldots, s_{n}\right)=\lambda^{n} e^{-\sum_{i=1}^{n} s_{i}} .
$$

We recognize the product of the density of the $\mathscr{E}(\boldsymbol{\lambda})$ distribution and so the desired result follows.
Exercise 9. Let $\left(S_{n}\right)_{n \geq 1}$ be a sequence of i.i.d. r.v. distributed according to $\mathscr{E}(\lambda)$. Denote $T_{n}=\sum_{i=1}^{N} S_{i}$ and $N=\left\{T_{n}, n \in \mathbb{N}\right\}$ the associated point process.

1. By assumption, we know that the density of $\left(S_{1}, \ldots, S_{n}\right)$ is

$$
f_{\left(S_{1}, \ldots, S_{n}\right)}\left(s_{1}, \ldots, s_{n}\right)=\lambda^{n} e^{-\sum_{i=1}^{n} s_{i}} .
$$

It suffices then to follow the same lines as Exercise 8 Question 3 using the inverse of $g$ as a change of variable.
2. Let $0 \leq s \leq t$ and $k, \ell \in \mathbb{N}$. We have

$$
\left\{N_{s}=k, N_{t}-N_{s}=\ell\right\}=\left\{T_{1}<\cdots<T_{k} \leq s<T_{k+1}<\cdots<T_{k+\ell} \leq t\right\} .
$$

3. Thanks to the previous question, we have

$$
\begin{aligned}
\mathbb{P}\left(N_{s}=k, N_{t}-N_{s}=\ell\right) & =\mathbb{P}\left(T_{1}<\cdots<T_{k} \leq s<T_{k+1}<\cdots<T_{k+\ell} \leq t<T_{k+\ell+1}\right) \\
& =\int \lambda^{k+\ell+1} e^{-\lambda t_{k+\ell+1}} \mathbf{1}_{0<t_{1}<\cdots<t_{k} \leq s<t_{k+1}<\cdots<t_{k+\ell} \leq t<t_{k+\ell+1}} d t_{1} \ldots d t_{k+\ell+1} \\
& =\int \lambda^{k+\ell} e^{-\lambda t} \mathbf{1}_{0<t_{1}<\cdots<t_{k} \leq s<t_{k+1}<\cdots<t_{k+\ell} \leq t} d t_{1} \ldots d t_{k+\ell} \\
& =e^{-\lambda t}\left(\lambda^{k} \frac{s^{k}}{k!}\right)\left(\lambda^{\ell} \frac{(t-s)^{\ell}}{\ell!}\right) .
\end{aligned}
$$

We recognize the product of the probability mass functions of $\mathscr{P}(\lambda s)$ and $\mathscr{P}(\lambda(t-s))$ and so the desired result follows.
Exercise 10. Let $N$ be a non homogeneous Poisson process with right continuous intensity $\lambda(t)$ on $[0, T]$. Denote $\Lambda(t)=\int_{0}^{t} \lambda(s) d s$.

1. Following the lines of Exercise 8, we have

$$
\begin{aligned}
& \mathbb{P}\left(N_{T}=n, t_{1}<T_{1} \leq t_{1}+h_{1}<t_{2}<\ldots T_{n} \leq t_{n}+h_{n}\right) \\
= & \mathbb{P}\left(N_{t_{1}}=0, N_{t_{1}+h_{1}}-N_{t_{1}}=1, \ldots, N_{t_{n}}-N_{t_{n-1}+h_{n-1}}=0, N_{t_{n}+h_{n}}-N_{t_{n}}=1, N_{T}-N_{t_{n}+h_{n}}=0\right) \\
= & e^{-\Lambda\left(t_{1}\right)} \times\left(\Lambda\left(t_{1}+h_{1}\right)-\Lambda\left(t_{1}\right)\right) e^{-\left(\Lambda\left(t_{1}+h_{1}\right)-\Lambda\left(t_{1}\right)\right)} \times \cdots \times e^{-\left(\Lambda(T)-\Lambda\left(t_{n}+h_{n}\right)\right)} \\
= & \prod_{i=1}^{n}\left(\Lambda\left(t_{i}+h_{i}\right)-\Lambda\left(t_{i}\right)\right) e^{-\Lambda(T)} .
\end{aligned}
$$

Using the fact that $\lambda$ is right continuous, it is easy to check that for all $i=1, \ldots, n,\left(\Lambda\left(t_{i}+h_{i}\right)-\right.$ $\left.\Lambda\left(t_{i}\right)\right) / h_{i} \rightarrow \lambda\left(t_{i}\right)$ as $h_{i} \rightarrow 0$. In turn, it implies that

$$
\begin{equation*}
\frac{\mathbb{P}\left(N_{T}=n, t_{1}<T_{1} \leq t_{1}+h_{1}<t_{2}<\ldots T_{n} \leq t_{n}+h_{n}\right)}{h_{1} \ldots h_{n}} \xrightarrow[h_{1}, \ldots, h_{n} \rightarrow 0]{ } \prod_{i=1}^{n} \lambda\left(t_{i}\right) e^{-\Lambda(T)} . \tag{1}
\end{equation*}
$$

2. Since $N$ is a Poisson process, we have $\mathbb{P}\left(N_{T}=n\right)=\Lambda(T)^{n} / n!e^{-\Lambda(T)}$. Then, by the definition of the conditional probability, we get

$$
\frac{\mathbb{P}\left(t_{1}<T_{1} \leq t_{1}+h_{1}<t_{2}<\ldots T_{n} \leq t_{n}+h_{n} \mid N_{T}=n\right)}{h_{1} \ldots h_{n}} \underset{h_{1}, \ldots, h_{n} \rightarrow 0}{ } \frac{\prod_{i=1}^{n} \lambda\left(t_{i}\right) e^{-\Lambda(T)}}{\Lambda(T)^{n} / n!e^{-\Lambda(T)}}=n!\prod_{i=1}^{n} f\left(t_{i}\right) .
$$

Exercise 11. Let $N^{1}$ and $N^{2}$ be two independent Poisson processes with intensities $\lambda^{1}(t)$ and $\lambda^{2}(t)$. Let $N_{t}=N_{t}^{1}+N_{t}^{2}, \Lambda^{i}(t)=\int_{0}^{t} \lambda^{i}(s) d s$, for $i=1,2$, and $\Lambda(t)=\Lambda^{1}(t)+\Lambda^{2}(t)$.

1. Let $0<s<t$ and $k, \ell \in \mathbb{N}$. Let us denote $\left.\Lambda_{( }^{i} s, t\right)=\Lambda^{i}(t)-\Lambda^{i}(s)$ for $i=1,2$. We have

$$
\begin{aligned}
\mathbb{P}\left(N_{s}=k, N_{t}-N_{s}=\ell\right)= & \sum_{k_{1}=0}^{k} \sum_{\ell_{1}=0}^{\ell} \mathbb{P}\left(N_{s}^{1}=k_{1}, N_{s}^{2}=k-k_{1}, N_{t}^{1}-N_{s}^{1}=\ell_{1}, N_{t}^{2}-N_{s}^{2}=\ell-\ell_{1}\right) \\
= & \sum_{k_{1}=0}^{k} \sum_{\ell_{1}=0}^{\ell}\left(\frac{\Lambda^{1}(s)^{k_{1}}}{k_{1}!} e^{-\Lambda^{1}(s)}\right)\left(\frac{\Lambda^{2}(s)^{k-k_{1}}}{\left(k-k_{1}\right)!} e^{-\Lambda^{2}(s)}\right) \\
& \times\left(\frac{\Lambda^{1}(s, t)^{\ell} \ell_{1}}{\ell_{1}!} e^{-\Lambda^{1}(s, t)}\right)\left(\frac{\Lambda^{2}(s, t)^{\ell-\ell_{1}}}{\left(\ell-\ell_{1}\right)!} e^{-\Lambda^{2}(s, t)}\right) \\
= & \left(\frac{1}{k!} \sum_{k_{1}=0}^{k}\binom{k}{k_{1}} \Lambda^{1}(s)^{k_{1}} \Lambda^{2}(s)^{k-k_{1}}\right) e^{-\Lambda(s)} \\
& \times\left(\frac{1}{\ell!} \sum_{\ell_{1}=0}^{\ell}\binom{\ell}{\ell_{1}} \Lambda^{1}(s, t)^{\ell} \Lambda^{2}(s, t)^{\ell-\ell_{1}}\right) e^{-(\Lambda(t)-\Lambda(s))} \\
= & \frac{\Lambda(s)^{k}}{k!} e^{-\Lambda(s)} \times \frac{(\Lambda(t)-\Lambda(s))^{\ell}}{\ell!} e^{-(\Lambda(t)-\Lambda(s))}
\end{aligned}
$$

2. We recognize the product of the probability mass functions of $\mathscr{P}(\Lambda(s))$ and $\mathscr{P}(\Lambda(t)-\Lambda(s))$ and so the desired result follows.

Exercise 12. Let $N$ be a Poisson process with rate $\lambda$ and $p \in] 0,1\left[\right.$. Let $\left(\varepsilon_{n}\right)_{n}$ be a sequence of i.i.d. random variables distributed as $\mathscr{B}(p)$ which is furthermore independent of $N$. Let

$$
N^{0}=\left\{T_{i} \in N, \varepsilon_{i}=0\right\} \text { and } N^{1}=\left\{T_{i} \in N, \varepsilon_{i}=1\right\}
$$

1. Let $t \geq 0, k, \ell \in \mathbb{N}$ and denote $n=k+\ell$. It is clear that $\left\{N_{t}^{0}=k, N_{t}^{1}=\ell\right\}$ implies that $N_{t}=n$. More precisely, we have

$$
\left\{N_{t}^{0}=k, N_{t}^{1}=\ell\right\}=\left\{N_{t}=n, \sum_{i=1}^{n} \varepsilon_{i}=\ell\right\} .
$$

Hence,

$$
\mathbb{P}\left(N_{t}^{0}=k, N_{t}^{1}=\ell\right)=\mathbb{P}\left(N_{t}=n, \sum_{i=1}^{n} \varepsilon_{i}=\ell\right)=\mathbb{P}\left(N_{t}=n\right) \mathbb{P}\left(\sum_{i=1}^{n} \varepsilon_{i}=\ell\right)
$$

by independence between $\left(\varepsilon_{i}\right)_{i}$ and $N$. Since the $\varepsilon_{i}$ 's are i.i.d. and $\mathscr{B}(p)$, we know that $\sum_{i=1}^{n} \varepsilon_{i}$ is binomial distributed so that

$$
\mathbb{P}\left(N_{t}^{0}=k, N_{t}^{1}=\ell\right)=\frac{(\lambda t)^{n}}{n!} e^{-\lambda t} \times\binom{ n}{\ell} p^{\ell}(1-p)^{k}=\frac{[\lambda(1-p)]^{k}}{k!} e^{-\lambda(1-p) t} \times \frac{(\lambda p)^{\ell}}{\ell!} e^{-\lambda p t} .
$$

We recognize the product of the probability mass functions of $\mathscr{P}((1-p) \lambda t)$ and $\mathscr{P}(p \lambda t)$ and so the desired result follows.

## 3 Advanced exercises

Exercise 13. Let $N$ be a Poisson mixture with random rate $\tilde{\lambda}$ (with distribution $\tilde{P}$ ).

$$
\mathbb{P}\left(N_{t}=k\right)=\int_{\lambda} \frac{(\lambda t)^{k}}{k!} e^{-\lambda t} d \tilde{P}(\lambda)
$$

1. Since everything is non negative, we can apply Fubini Theorem without verifying any integrability condition. It gives

$$
\mathbb{E}\left[N_{t}\right]=\sum_{k=0}^{\infty} k \mathbb{P}\left(N_{t}=k\right)=\int_{\lambda} \sum_{k=0}^{\infty} \frac{(\lambda t)^{k}}{(k-1)!} e^{-\lambda t} d \tilde{P}(\lambda)=\int_{\lambda} \lambda t \sum_{k=1}^{\infty} \frac{(\lambda t)^{k-1}}{(k-1)!} e^{-\lambda t} d \tilde{P}(\lambda)=\int_{\lambda} \lambda t d \tilde{P}(\lambda) .
$$

which is the desired result.
2. Following the same ideas, we have

$$
\mathbb{E}\left[N_{t}^{2}\right]=\sum_{k=0}^{\infty} k^{2} \mathbb{P}\left(N_{t}=k\right)=\int_{\lambda} \lambda t \sum_{k=1}^{\infty} k \frac{(\lambda t)^{k-1}}{(k-1)!} e^{-\lambda t} d \tilde{P}(\lambda) .
$$

Then, we use the fact that $k \frac{(\lambda t)^{k-1}}{(k-1)!}=\lambda t \frac{(\lambda t)^{k-2}}{(k-2)!}+\frac{(\lambda t)^{k-1}}{(k-1)!}$ to get

$$
\mathbb{E}\left[N_{t}^{2}\right]=\int_{\lambda}(\lambda t)^{2}+\lambda t d \tilde{P}(\lambda)=\mathbb{E}\left[\tilde{\lambda}^{2}\right] t^{2}+\mathbb{E}[\tilde{\lambda}] t
$$

Then, we use the facts that $\operatorname{Var}\left(N_{t}\right)=\mathbb{E}\left[N_{t}^{2}\right]-\mathbb{E}\left[N_{t}\right]^{2}$ and $\operatorname{Var}(\tilde{\lambda})=\mathbb{E}\left[\tilde{\lambda}^{2}\right]-\mathbb{E}[\tilde{\lambda}]^{2}$ to get the desired equality. The inequality is trivial since $\operatorname{Var}(\tilde{\lambda}) t^{2} \geq 0$. Finally, the equality case corresponds to the case when $t=0$ or $\operatorname{Var}(\tilde{\lambda})=0$, that is $\tilde{\lambda}$ is a.s. constant.

## Exercise 14. Hints:

- The value of $X_{t}$ when $N_{t}=0$ is not explicitly defined in the exercise statement.
- A nice way to represent $X_{t}$ is for instance $X_{t}=\sum_{n=0}^{+\infty}\left(\sum_{i=1}^{n} Y_{i}\right) \mathbf{1}_{N_{t}=n}$. How to use this idea for $z^{X_{t}}$ ?

