UFR IM2AG M1 MG 2019-20

TD - Processus Stochastiques

Révisions

1 Loi de variables aléatoires

Exercice 1 (Maximiser l'espérance). Soit $n \ge 2$. On considère deux variables aléatoires indépendantes X_1 et X_2 , définies sur le même espace probabilisé $(\Omega, \mathscr{F}, \mathbb{P})$, et suivant la loi uniforme discrète sur $\{1, 2, ..., n\}$. On considère a un entier de $\{1, 2, ..., n\}$, et Y la variable aléatoire définie par :

$$\forall \omega \in \Omega, \ Y(\omega) = \begin{cases} X_2(\omega) & \text{si } X_1(\omega) \leq a \\ X_1(\omega) & \text{si } X_1(\omega) > a \end{cases}$$

- 1. Déterminer la loi de Y et en déduire son espérance.
- 2. Conclure.

Exercice 2 (Changement de variables).

- 1. Soit U une variable aléatoire uniforme sur [0,1]. Quelle est la densité de tan $(\pi U/2)$?
- 2. Soient *X* et *Y* deux variables indépendantes de loi $\mathcal{N}(0,1)$.
 - (a) Quelle est la densité de X/Y?
- * (b) Quelle est la densité jointe de $(X/Y, X^2 + Y^2)$?

2 Convergence

Exercice 3 (Comparaison des modes de convergence). Soient $(x_n)_{n\geq 1}$ et $(p_n)_{n\geq 1}$ deux suites de réels non nuls telles que $0 < p_n \le 1$. Soit $(X_n)_{n\geq 1}$ une suite de v.a. indépendantes telle que

$$\mathbb{P}(X_n = x_n) = p_n$$
 et $\mathbb{P}(X_n = 0) = 1 - p_n$.

Répondre aux questions suivantes concernant la convegence de $(X_n)_{n\geq 1}$ vers 0, puis remplir le tableau.

- 1. Convergences en loi et en probabilité (qui sont équivalentes ici car?).
 - (a) Quelle condition sur (x_n) est suffisante pour que (X_n) converge vers 0?
 - (b) Supposons que $x_n \ge 1$. Quelle est la condition nécessaire et suffisante (CNS) sur (p_n) pour que (X_n) converge vers 0?
- 2. Convergence presque sûre.
 - (a) Quelle condition sur (x_n) est suffisante pour que (X_n) converge p.s. vers 0?
 - (b) Supposons que $x_n \ge 1$. Quelle est la CNS sur (p_n) pour que (X_n) converge p.s. vers 0? *Indication : utiliser le Lemme de Borel-Cantelli*.
- 3. Quelle est la CNS sur les suites (x_n) et (p_n) pour que (X_n) converge p.s. vers 0 dans L^p ?

p_n	x_n	loi	p.s.	L^1	L^2
1/2	1/n				
$1/n^2$	1				
$1/n^2$	n				
$1/n^{2}$	n^2				
1/n	1				
1/n	\sqrt{n}				
1/n	n				

Exercice 4 (Marche aléatoire). Soit $(X_i)_{i\geq 1}$ une suite i.i.d. de v.a. telle que :

$$\mathbb{P}(X_i = +1) = p, \quad \mathbb{P}(X_i = -1) = q, \quad p+q = 1.$$

On considère la marche aléatoire simple unidimensionnelle définie par

$$S_n = \sum_{i=1}^n X_i$$

avec $S_0=0$. Soit $A_n=\{S_n=0\}$ l'événement "la marche retourne en 0 au temps n". On pose

$$A=\cap_{k\geq 1}\cup_{n\geq k}A_n=\limsup_{n\to +\infty}A_n=\{\text{``la marche retourne une infinit\'e de fois en 0''}\}.$$

- 1. Énoncer les lemmes de Borel-Cantelli.
- * 2. Calculer $\mathbb{P}(A_n)$.
- * 3. Prouver que, si $p \neq 1/2$, alors $\mathbb{P}(A) = 0$.
 - 4. En utilisant la loi forte des grands nombres, donner une conclusion plus précise permettant de retrouver le résultat précédent.