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Neurons = electrically excitable cells.

Action potential = spike of the electrical potential.

Physiological constraint: refractory period.



Introduction Thinning procedure 1/ Expectation 2/ Mean-field Summary

Biological context

microscopic scale

macroscopic scale

Action
potential

V
ol

ta
ge

 (
m

V
)

D
ep

ol
ar

iz
at

io
n R

epolarization

Threshold

Stimulus

Failed
initiations

Resting state

Refractory
period

+40

0

-55

-70

0 1 2 3 4 5
Time (ms)

.

.

.

Neurons = electrically excitable cells.

Action potential = spike of the electrical potential.

Physiological constraint: refractory period.



Introduction Thinning procedure 1/ Expectation 2/ Mean-field Summary

Biological context

microscopic scale

macroscopic scale

Action
potential

V
ol

ta
ge

 (
m

V
)

D
ep

ol
ar

iz
at

io
n R

epolarization

Threshold

Stimulus

Failed
initiations

Resting state

Refractory
period

+40

0

-55

-70

0 1 2 3 4 5
Time (ms)

.

.

.

Neurons = electrically excitable cells.

Action potential = spike of the electrical potential.

Physiological constraint: refractory period.



Introduction Thinning procedure 1/ Expectation 2/ Mean-field Summary

Biological context

microscopic scale

macroscopic scale

Action
potential

V
ol

ta
ge

 (
m

V
)

D
ep

ol
ar

iz
at

io
n R

epolarization

Threshold

Stimulus

Failed
initiations

Resting state

Refractory
period

+40

0

-55

-70

0 1 2 3 4 5
Time (ms)

.

.

.

Neurons = electrically excitable cells.

Action potential = spike of the electrical potential.

Physiological constraint: refractory period.



Introduction Thinning procedure 1/ Expectation 2/ Mean-field Summary

Biological context

microscopic scale macroscopic scale

Action
potential

V
ol

ta
ge

 (
m

V
)

D
ep

ol
ar

iz
at

io
n R

epolarization

Threshold

Stimulus

Failed
initiations

Resting state

Refractory
period

+40

0

-55

-70

0 1 2 3 4 5
Time (ms)

.

.

.

Neurons = electrically excitable cells.

Action potential = spike of the electrical potential.

Physiological constraint: refractory period.



Introduction Thinning procedure 1/ Expectation 2/ Mean-field Summary

Biological context

microscopic scale macroscopic scale

Action
potential

V
ol

ta
ge

 (
m

V
)

D
ep

ol
ar

iz
at

io
n R

epolarization

Threshold

Stimulus

Failed
initiations

Resting state

Refractory
period

+40

0

-55

-70

0 1 2 3 4 5
Time (ms)

.

.

.

Neurons = electrically excitable cells.

Action potential = spike of the electrical potential.

Physiological constraint: refractory period.



Introduction Thinning procedure 1/ Expectation 2/ Mean-field Summary

Biological context

microscopic scale macroscopic scale

Action
potential

V
ol

ta
ge

 (
m

V
)

D
ep

ol
ar

iz
at

io
n R

epolarization

Threshold

Stimulus

Failed
initiations

Resting state

Refractory
period

+40

0

-55

-70

0 1 2 3 4 5
Time (ms)

.

.

.

Neurons = electrically excitable cells.

Action potential = spike of the electrical potential.

Physiological constraint: refractory period.



Introduction Thinning procedure 1/ Expectation 2/ Mean-field Summary

Microscopic modelling

Microscopic modelling of spike trains

Time point processes = random countable sets of times (points of R or R+).

Point process: N = {Ti , i ∈ Z} s.t. · · ·< T0 ≤ 0< T1 < · · · .
Point measure: N(dt) = ∑i∈Z δTi

(dt). Hence,
∫
f (t)N(dt) = ∑i∈Z f (Ti ).

Age process: (St−)t≥0.
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Microscopic modelling of spike trains

Time point processes = random countable sets of times (points of R or R+).

Point process: N = {Ti , i ∈ Z} s.t. · · ·< T0 ≤ 0< T1 < · · · .
Point measure: N(dt) = ∑i∈Z δTi

(dt). Hence,
∫
f (t)N(dt) = ∑i∈Z f (Ti ).

Age process: (St−)t≥0.

Stochastic intensity

Heuristically,

λt = lim
∆t→0

1
∆t

P
(
N ([t,t + ∆t]) = 1 |FN

t−

)
,

where FN
t− denotes the history of N before time t.

Local behaviour: probability to find a new spike.

May depend on the past (e.g. refractory period, aftershocks).
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Some classical point processes in neuroscience

Poisson process: λt = λ (t) (deterministic, no refractory period).

Renewal process: λt = f (St−) ⇔ i.i.d. ISIs. (refractory period)

Linear Hawkes process: λt = µ + , h ≥ 0.
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Age structured equations (K. Pakdaman, B. Perthame, D. Salort, 2010)

Age = delay since last spike.

n(t,s) =

{
probability density of finding a neuron with age s at time t.

ratio of the neural population with age s at time t.

mean firing rate→


∂n (t,s)

∂ t
+

∂n (t,s)

∂ s
+p (s,X (t))n (t,s) = 0

n (t,0) =
∫ +∞

0
p (s,X (t))n (t,s)ds.

(PPS)

Parameters

rate function p. For example, p(s,X ) = 1{s>σ(X )}.

X (t) =
∫ t

0
d(t−x)n(x ,0)dx (global neural activity)

Propagation time. d = delay function. For example, d(x) = e−τx .

Cornerstone: X (t) ←→
∫ t−

0
h(t−x)N(dx).
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Lewis and Shedler’s Thinning, 1979

: Poisson process

: Poisson process

t0

N
Π is a Poisson process
with intensity 1.

Π(dt,dx) = ∑δX.

E [Π(dt,dx)] = dtdx .

Spatial independence.

λ is deterministic.

N admits λ as an
intensity.
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Fokker-Planck equation

Assume λt = f (t,St−) (Poisson, renewal, ...).

(St−)t≥0 is Markovian with generator

Gtφ(s) := φ
′(s) + f (t,s)[φ(0)−φ(s)].

Fokker-Planck equation gives the following PDE system:
∂

∂ t
u (t,s) +

∂

∂ s
u (t,s) + f (t,s)u (t,s) = 0,

u (t,0) =
∫
s∈R+

f (t,s)u (t,s) ds,

where u(t, ·) is the distribution of St−.
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System in expectation

Theorem (C., Caceres, Doumic, Reynaud-Bouret 15)

Let λt be some non negative predictable process which is L1
loc in expectation.

The distribution of St−, namely u(t, ·), satisfies the following system,
∂

∂ t
u (t,s) +

∂

∂ s
u (t,s) + ρλ ,P0(t,s)u (t,s) = 0,

u (t,0) =
∫
s∈R+

ρλ ,P0(t,s)u (t,s) dt,
(PPS-ρ)

in the weak sense where ρλ ,P0 (t,s) = E [λt |St− = s] for almost every t.

Law of Large Numbers: the empirical measure 1
n ∑

n
i=1 δS i

t−
(ds) converges

to a solution of (PPS-ρ), namely u.

Includes the Markovian case, ρλ ,P0 (t,s) = f (t,s).

Non-markovian ⇒ ρλ ,P0 (t,s) more complex.

Linear Hawkes process: closed system for v(t,s) :=
∫+∞

s u(t,σ)dσ .
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Propagation of chaos: a tool to link the two scales

Mean field n-neurons system

Weak dependence: homogeneous interactions scaled by 1/n.

Symmetry: the neurons are exchangeable.

The dynamics is described by a growing system of equations.

Asymptotic when n→+∞

The neurons become independent (they are i.d.).

Their distribution is described by one non-linear PDE.

Mean-field

Neuroscience: Intrinsic spiking (Stannat et al. 2014), I&F (Delarue et al.
2015), point processes models (Galves and Löcherbach 2015).

Hawkes: Mean field approximation (Delattre et al., 2015), inference
(Delattre et al., Bacry et al. 2016).

Here: Age dependent Hawkes processes.
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Multivariate Hawkes processes

Multivariate HP: (i = 1, . . . ,n)

λ
i
t = Φ

(∫ t−

0
hi→i (t−x)N i (dx) + ∑

j 6=i

∫ t−

0
hj→i (t−x)N j (dx)

)
.

Interaction function hj→i ↔ synaptic weight of neuron j over neuron i .
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Generalized Hawkes processes

Renewal process Multivariate HP

λt = f (St−) λ i
t = Φ

(
n

∑
j=1

∫ t−

0
hj→i (t−x)N j (dx)

)

Age dependent Hawkes process (n-neurons system)

It is a multivariate point process (N i )i=1,..,n with intensity given for all
i = 1, . . . ,n by

λ
i
t = Ψ

(
S i
t−,

1
n

n

∑
j=1

∫ t−

0
h(t− z)N j (dz)

)
, “hj→i =

1
n
h”.

Example: Ψ(s,x) = Φ(x)1s≥δ  strict refractory period of length δ .

How to approximate them as n→+∞ ?

LLN heuristics: they are close to independent copies of a limit process.
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Scheme of the coupling method

Idea of coupling (Sznitman)

The idea is to find a suitable coupling between the particles of the n-particle
system and n i.i.d. copies of a limit process.

1 Find a good candidate for the limit process (LLN heuristics).

1’ Use the PDE to find the distribution of the limit process.

2 Show that it is well-defined (McKean-Vlasov fixed point problem).

3 Couple the dynamics in the right way.

4 Show the convergence.
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1/ Limit process (heuristic)

Recall the intensities of the n-neurons system

λ
i
t = Ψ

(
S i
t−,

1
n

n

∑
j=1

∫ t−

0
h(t− z)N j (dz)

)
.

Independence at the limit ⇒ Law of Large Numbers.

Limit process

It is a point process N with intensity given by

λ t = Ψ

(
S t−,

∫ t−

0
h(t− z)E

[
N(dz)

])
.

The blue terms should be close one from the other.

The process N depends on its own distribution (McKean-Vlasov equation).
Its existence is not trivial.

The intensity of N depends on the time and the age ⇒ S t− is Markovian.
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1’/ Study the associated PDE system 1

If the limit process N exists, then the distribution of S t−, denoted by u(t, ·)
satisfies (Fokker-Planck equation):

∂u (t,s)

∂ t
+

∂u (t,s)

∂ s
+ Ψ(s,X (t))u (t,s) = 0,

u (t,0) =
∫
s∈R+

Ψ(s,X (t))u (t,s)ds,
(PPS-NL)

where for all t ≥ 0, X (t) =
∫ t
0 h(t− z)u(z ,0)dz .

Main assumption

The rate function Ψ is bounded and uniformly Lipschitz w.r.t. X (t).

Theorem (C. 15)

Assume that h : R+→ R is locally integrable and that uin is a non-negative
function such that both

∫+∞

0 uin(s)ds = 1 and there exists M > 0 such that for
all s ≥ 0, 0≤ uin(s)≤M.
Then, there exists a unique solution in the weak sense u such that t 7→ u(t, ·)
belongs to BC(R+,P(R+)) (Moreover, the solution is in C(R+,L1(R+)).
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2/ Show that the limit process is well-posed

Recall the intensity of the limit process

λ t = Ψ

(
S t−,

∫ t−

0
h(t− z)E

[
N(dz)

])
.

Recall the associated system (PPS-NL),
∂u (t,s)

∂ t
+

∂u (t,s)

∂ s
+ Ψ(s,X (t))u (t,s) = 0,

u (t,0) =
∫
s∈R+

Ψ(s,X (t))u (t,s)ds,

where for all t ≥ 0, X (t) =
∫ t
0 h(t− z)u(z ,0)dz .

Proposition

The distribution of the age S t− is the unique solution of (PPS-NL).

The intensity of the limit process is given by

λ t = Ψ

(
S t−,

∫ t

0
h(t− z)u(z ,0)dz

)
.

Hence the limit process is well-defined.
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3/ The coupling

Six realizations of a
Poisson process with
intensity 2 on [0,1].
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: Point process

: Poisson process

: Limit process
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4/ Control/Convergence 1

Theorem (C. 15)

The coupling described in the previous slide is such that

E
[
Card

(
(N i4N

i
)∩ [0,θ ]

)︸ ︷︷ ︸
number of × in

]
= E

[∫
θ

0
|λ i

t −λ
i
t |dt︸ ︷︷ ︸

area of

]
. n−1/2.

The constant depends on θ , Ψ and h.

Corollary

If the distribution of the initial value of the age is bounded then the coupling
described in the previous slide is such that

P
(

(S i
t )t∈[0,θ ] 6= (S

i
t)t∈[0,θ ]

)
. n−1/2.
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4/ Control/Convergence 2

Propagation of chaos

Fix k in N. If the initial conditions are i.i.d., then the processes N1, . . . ,Nk of
the n-neurons system behave (when n→+∞) as i.i.d. copies of the limit
process N.

Theorem

If the ages at time 0 are i.i.d. with common density uin, then for all t ≥ 0,

1
n

n

∑
i=1

δS i
t
−−−→
n→∞

u(t, ·),

where u is the unique solution of the (PPS-NL) system with initial
condition uin.

Link between (PPS) and a well-designed microscopic model.

Goodness-of fit tests: Renewal and Hawkes processes.
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Summary

First approach:
I Link with an i.i.d. network.
I Ends up with (PPS) for Renewal or Poisson processes.
I Ends up with a more intricate system with linear Hawkes processes.

Second approach:

I Network of weakly dependent neurons (asymptotically independent).
I Refractory period possible for the limit process. Its distribution is given by

(PPS).
I Remark: The hj→i ’s can be i.i.d. random variables.

Outlook:

I Study of the system in expectation for linear Hawkes processes.
I Fluctuations around the mean limit behaviour (Central Limit Theorem).
I Break independence with correlated synaptic weights (cf Faugeras and

Maclaurin, 2014).
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