Spiking neural models: from point processes to partial differential equations.

Julien Chevallier Co-workers: M. J. Càceres, M. Doumic and P. Reynaud-Bouret

LJAD University of Nice

INRIA Sophia-Antipolis

2016/06/09

(日) (國) (문) (문) (문)

Introduction	Thinning procedure	1/ Expectation	2/ Mean-field	Summary
0000	00	00	000000000	
Outline				

Introduction

- 2 A key tool: The thinning procedure
- 3 First approach: Mathematical expectation
- Second approach: Mean-field interactions

Introduction	Thinning procedure	1/ Expectation	2/ Mean-field	Summary
0000	00	00	000000000	
Outline				

Introduction

- Neurobiologic context
- Microscopic modelling
- Macroscopic modelling

A key tool: The thinning procedure

- **B** First approach: Mathematical expectation
- Second approach: Mean-field interactions

- Neurons = electrically excitable cells.
- Action potential = spike of the electrical potential.
- Physiological constraint: refractory period.

(日) (同) (日) (日)

Introduction	Thinning procedure	1/ Expectation	2/ Mean-field	Summary
0000				
Biological conte	ext			

microscopic scale

- Neurons = electrically excitable cells.
- Action potential = spike of the electrical potential.
- Physiological constraint: refractory period.

(日)

Introduction	Thinning procedure	1/ Expectation	2/ Mean-field	Summary
0000	00	00	000000000	
Biological cont	ext			

- Neurons = electrically excitable cells.
- Action potential = spike of the electrical potential.
- Physiological constraint: refractory period.

・ロト ・ 日 ト ・ モ ト ・ モ ト

- Neurons = electrically excitable cells.
- Action potential = spike of the electrical potential.
- Physiological constraint: refractory period.

- Neurons = electrically excitable cells.
- Action potential = spike of the electrical potential.
- Physiological constraint: refractory period.

- Neurons = electrically excitable cells.
- Action potential = spike of the electrical potential.
- Physiological constraint: refractory period.

- Neurons = electrically excitable cells.
- Action potential = spike of the electrical potential.
- Physiological constraint: refractory period.

э

Introduction	Thinning procedure	1/ Expectation	2/ Mean-field	Summary
0000				
Microscopic I	modelling			

Microscopic modelling of spike trains

Time point processes = random countable sets of times (points of \mathbb{R} or \mathbb{R}_+).

- Point process: $N = \{T_i, i \in \mathbb{Z}\}$ s.t. $\cdots < T_0 \le 0 < T_1 < \cdots$.
- Point measure: $N(dt) = \sum_{i \in \mathbb{Z}} \delta_{T_i}(dt)$. Hence, $\int f(t)N(dt) = \sum_{i \in \mathbb{Z}} f(T_i)$.

Introduction	Thinning procedure	1/ Expectation	2/ Mean-field	Summary
0000	00	00	000000000	
Microscopic	modelling			

Microscopic modelling of spike trains

Time point processes = random countable sets of times (points of \mathbb{R} or \mathbb{R}_+).

- Point process: $N = \{T_i, i \in \mathbb{Z}\}$ s.t. $\cdots < T_0 \le 0 < T_1 < \cdots$.
- Point measure: $N(dt) = \sum_{i \in \mathbb{Z}} \delta_{T_i}(dt)$. Hence, $\int f(t)N(dt) = \sum_{i \in \mathbb{Z}} f(T_i)$.
- Age process: $(S_{t-})_{t\geq 0}$.

Introduction	Thinning procedure	1/ Expectation	2/ Mean-field	Summary		
0000	00	00	000000000			
Microscopic	Microscopic modelling					

Microscopic modelling of spike trains

Time point processes = random countable sets of times (points of \mathbb{R} or \mathbb{R}_+).

- Point process: $N = \{T_i, i \in \mathbb{Z}\}$ s.t. $\dots < T_0 \le 0 < T_1 < \dots$.
- Point measure: $N(dt) = \sum_{i \in \mathbb{Z}} \delta_{T_i}(dt)$. Hence, $\int f(t)N(dt) = \sum_{i \in \mathbb{Z}} f(T_i)$.
- Age process: $(S_{t-})_{t\geq 0}$.

Stochastic intensity

Heuristically,

$$\lambda_t = \lim_{\Delta t \to 0} \frac{1}{\Delta t} \mathbb{P}\left(N\left([t, t + \Delta t]\right) = 1 \,|\, \mathscr{F}_{t-}^N\right),\,$$

・ロト ・ 一下・ ・ ヨト・ ・ ヨト

where \mathscr{F}_{t-}^N denotes the history of N before time t.

- Local behaviour: probability to find a new spike.
- May depend on the past (e.g. refractory period, aftershocks).

Introduction	Thinning procedure	1/ Expectation	2/ Mean-field	Summary
0000	00	00	000000000	
Some classical	point processes in ne	euroscience		

Renewal process: $\lambda_t = f(S_{t-}) \Leftrightarrow \text{i.i.d.}$ ISIs. (refractory period)

$$T_{0} = 0 \xrightarrow{T_{1}} T_{1} \xrightarrow{T_{2}} T_{2} \xrightarrow{T_{3}} T_{3} \xrightarrow{T_{4}} T_{4}$$

$$T_{1} \xrightarrow{T_{2}} T_{2} \xrightarrow{T_{3}} T_{3} \xrightarrow{T_{4}} T_{4}$$

$$T_{1} \xrightarrow{T_{4}} T_{4}$$

$$T_{1} \xrightarrow{T_{4}} T_{4}$$

$$T_{1} \xrightarrow{T_{4}} T_{4}$$

$$T_{1} \xrightarrow{T_{4}} T_{4}$$

$$T_{2} \xrightarrow{T_{4}} T_{4}$$

$$T_{2} \xrightarrow{T_{4}} T_{4}$$

$$T_{4} \xrightarrow{T_{4}} T_{4}$$

$$T_{0} = 0 \quad \text{I.S.I.} \quad T_{1} \quad \text{I.S.I.} \quad T_{2} \quad \text{I.S.I.} \quad T_{3} \quad \text{I.S.I.} \quad T_{4} \quad \text{I.S.I.} \quad T_{4}$$

$$I \text{ Linear Hawkes process: } \lambda_{t} = \mu + \int_{0}^{t-} h(t-z) N(dz), \quad h \ge 0.$$

Renewal process: $\lambda_t = f(S_{t-}) \Leftrightarrow \text{i.i.d.}$ ISIs. (refractory period)

$$T_{0} = 0 \quad \text{I.S.I.} \quad T_{1} \quad \text{I.S.I.} \quad T_{2} \quad \text{I.S.I.} \quad T_{3} \quad \text{I.S.I.} \quad T_{4}$$

$$T_{1} \quad \text{Linear Hawkes process: } \lambda_{t} = \mu + \underbrace{\int_{0}^{t-} h(t-z)N(dz)}_{T < t}, \quad h \ge 0.$$

$$\sum_{\substack{T \in N \\ T < t}} h(t-T)$$

$$T = h(t-T)$$

э

(日) (四) (三) (三)

• Age = delay since last spike.

 $n(t,s) = \begin{cases} \text{probability density of finding a neuron with age s at time t.} \\ \text{ratio of the neural population with age s at time t.} \end{cases}$

mean firing rate
$$\rightarrow$$

$$\begin{cases}
\frac{\partial n(t,s)}{\partial t} + \frac{\partial n(t,s)}{\partial s} + p(s,X(t))n(t,s) = 0 \\
n(t,0) = \int_{0}^{+\infty} p(s,X(t))n(t,s) ds.
\end{cases}$$
(PPS)

■ Age = delay since last spike.

 $n(t,s) = \begin{cases} \text{probability density of finding a neuron with age s at time t.} \\ \text{ratio of the neural population with age s at time t.} \end{cases}$

mean firing rate
$$\rightarrow$$

$$\begin{cases}
\frac{\partial n(t,s)}{\partial t} + \frac{\partial n(t,s)}{\partial s} + p(s,X(t))n(t,s) = 0 \\
n(t,0) = \int_{0}^{+\infty} p(s,X(t))n(t,s) ds.
\end{cases}$$
(PPS)

Parameters

• rate function p. For example, $p(s,X) = \mathbb{1}_{\{s > \sigma(X)\}}$.

$$X(t) = \int_0^t d(t-x)n(x,0)dx \quad \text{(global neural activity)}$$

Propagation time. d = delay function. For example, $d(x) = e^{-\tau x}$.

■ Age = delay since last spike.

 $n(t,s) = \begin{cases} \text{probability density of finding a neuron with age s at time t.} \\ \text{ratio of the neural population with age s at time t.} \end{cases}$

mean firing rate
$$\rightarrow$$

$$\begin{cases}
\frac{\partial n(t,s)}{\partial t} + \frac{\partial n(t,s)}{\partial s} + p(s,X(t))n(t,s) = 0 \\
n(t,0) = \int_{0}^{+\infty} p(s,X(t))n(t,s) ds.
\end{cases}$$
(PPS)

Parameters

• rate function p. For example, $p(s,X) = \mathbb{1}_{\{s > \sigma(X)\}}$.

$$X(t) = \int_0^t d(t-x)n(x,0)dx \quad \text{(global neural activity)}$$

Propagation time. d = delay function. For example, $d(x) = e^{-\tau x}$.

Cornerstone:
$$X(t) \quad \longleftrightarrow \quad \int_0^{t-} h(t-x)N(dx).$$

Juce Antipo

ヘロト 人間 と 人 田 と 人 田 と

Introduction	Thinning procedure	1/ Expectation	2/ Mean-field	Summary
0000	00	00	000000000	
Outline				

Introduction

2 A key tool: The thinning procedure

B First approach: Mathematical expectation

Second approach: Mean-field interactions

э

э

Introduction	Thinning procedure	1/ Expectation	2/ Mean-field	Summary
0000	00	00	000000000	
Ogata's Thinni	ng, 1981			

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

æ

Introduction	Thinning procedure	1/ Expectation	2/ Mean-field	Summary
0000	00	00	000000000	
Ogata's Thinni	ng, 1981			

(日) (四) (日) (日)

æ

Introduction	Thinning procedure	1/ Expectation	2/ Mean-field	Summary
0000	00	00	000000000	
Ogata's Thinni	ng, 1981			

Introduction	Thinning procedure	1/ Expectation	2/ Mean-field	Summary
0000	00	00	000000000	
Ogata's Thinni	ng, 1981			

<ロト < 回 > < 回 > < 回 > < 三 > < 三 > < 三

Introduction	Thinning procedure	1/ Expectation	2/ Mean-field	Summary
0000	00	00	000000000	
Ogata's Thinni	ng, 1981			

<ロト < 回 > < 回 > < 回 > < 三 > < 三 > < 三

Introduction	Thinning procedure	1/ Expectation	2/ Mean-field	Summary
0000	00	00	000000000	
Outline				

Introduction

A key tool: The thinning procedure

3 First approach: Mathematical expectation

- Markovian case
- Non-Markovian case

Second approach: Mean-field interactions

Introduction	Thinning procedure	1/ Expectation	2/ Mean-field	Summary
0000	00	00	000000000	
Fokker-Planck equation				

• Assume $\lambda_t = f(t, S_{t-})$ (Poisson, renewal, ...).

Introduction	Thinning procedure	1/ Expectation	2/ Mean-field	Summary
0000	00	0	000000000	
Fokker-Planck equation				

• Assume
$$\lambda_t = f(t, S_{t-})$$
 (Poisson, renewal, ...).

• $(S_{t-})_{t\geq 0}$ is Markovian with generator

$$\mathscr{G}_t\phi(s):=\phi'(s)+f(t,s)[\phi(0)-\phi(s)].$$

Introduction	Thinning procedure	1/ Expectation	2/ Mean-field	Summary
0000	00	0	000000000	
Fokker-Planck equation				

• Assume
$$\lambda_t = f(t, S_{t-})$$
 (Poisson, renewal, ...).

• $(S_{t-})_{t\geq 0}$ is Markovian with generator

$$\mathscr{G}_t\phi(s):=\phi'(s)+f(t,s)[\phi(0)-\phi(s)].$$

• Fokker-Planck equation gives the following PDE system:

$$\begin{cases} \frac{\partial}{\partial t}u(t,s) + \frac{\partial}{\partial s}u(t,s) + f(t,s)u(t,s) = 0, \\ u(t,0) = \int_{s \in \mathbb{R}_+} f(t,s)u(t,s) \, ds, \end{cases}$$

where $u(t, \cdot)$ is the distribution of S_{t-} .

Introduction	Thinning procedure	1/ Expectation	2/ Mean-field	Summary
0000	00	0•	000000000	
System in expe	ctation			

Theorem (C., Caceres, Doumic, Reynaud-Bouret 15)

Let λ_t be some non negative predictable process which is L^1_{loc} in expectation. The distribution of S_{t-} , namely $u(t, \cdot)$, satisfies the following system,

$$\begin{cases} \frac{\partial}{\partial t}u(t,s) + \frac{\partial}{\partial s}u(t,s) + \rho_{\lambda,\mathbb{P}_{0}}(t,s)u(t,s) = 0, \\ u(t,0) = \int_{s \in \mathbb{R}_{+}} \rho_{\lambda,\mathbb{P}_{0}}(t,s)u(t,s) dt, \end{cases}$$
(PPS- ρ)

in the weak sense where $\rho_{\lambda,\mathbb{P}_0}(t,s) = \mathbb{E}[\lambda_t | S_{t-} = s]$ for almost every t.

Introduction	Thinning procedure	1/ Expectation	2/ Mean-field	Summary
0000	00	0•	000000000	
System in expe	ctation			

Let λ_t be some non negative predictable process which is L^1_{loc} in expectation. The distribution of S_{t-} , namely $u(t, \cdot)$, satisfies the following system,

$$\begin{cases} \frac{\partial}{\partial t}u(t,s) + \frac{\partial}{\partial s}u(t,s) + \rho_{\lambda,\mathbb{P}_{0}}(t,s)u(t,s) = 0, \\ u(t,0) = \int_{s \in \mathbb{R}_{+}} \rho_{\lambda,\mathbb{P}_{0}}(t,s)u(t,s) dt, \end{cases}$$
(PPS- ρ)

in the weak sense where $\rho_{\lambda,\mathbb{P}_0}(t,s) = \mathbb{E}[\lambda_t | S_{t-} = s]$ for almost every t.

• Law of Large Numbers: the empirical measure $\frac{1}{n}\sum_{i=1}^{n} \delta_{S_{t-}^{i}}(ds)$ converges to a solution of (PPS- ρ), namely u.

Introduction	Thinning procedure	1/ Expectation	2/ Mean-field	Summary
0000	00	00	000000000	
System in expe	ctation			

Let λ_t be some non negative predictable process which is L^1_{loc} in expectation. The distribution of S_{t-} , namely $u(t, \cdot)$, satisfies the following system,

$$\begin{cases} \frac{\partial}{\partial t}u(t,s) + \frac{\partial}{\partial s}u(t,s) + \rho_{\lambda,\mathbb{P}_{0}}(t,s)u(t,s) = 0, \\ u(t,0) = \int_{s \in \mathbb{R}_{+}} \rho_{\lambda,\mathbb{P}_{0}}(t,s)u(t,s) dt, \end{cases}$$
(PPS- ρ)

in the weak sense where $\rho_{\lambda,\mathbb{P}_0}(t,s) = \mathbb{E}[\lambda_t | S_{t-} = s]$ for almost every t.

- Law of Large Numbers: the empirical measure $\frac{1}{n}\sum_{i=1}^{n} \delta_{S_{t-}^{i}}(ds)$ converges to a solution of (PPS- ρ), namely u.
- Includes the Markovian case, $\rho_{\lambda,\mathbb{P}_0}(t,s) = f(t,s)$.

Introduction	Thinning procedure	1/ Expectation	2/ Mean-field	Summary
0000	00	00	000000000	
System in expe	ctation			

Let λ_t be some non negative predictable process which is L^1_{loc} in expectation. The distribution of S_{t-} , namely $u(t, \cdot)$, satisfies the following system,

$$\begin{cases} \frac{\partial}{\partial t}u(t,s) + \frac{\partial}{\partial s}u(t,s) + \rho_{\lambda,\mathbb{P}_{0}}(t,s)u(t,s) = 0, \\ u(t,0) = \int_{s \in \mathbb{R}_{+}} \rho_{\lambda,\mathbb{P}_{0}}(t,s)u(t,s) dt, \end{cases}$$
(PPS- ρ)

in the weak sense where $\rho_{\lambda,\mathbb{P}_0}(t,s) = \mathbb{E}[\lambda_t | S_{t-} = s]$ for almost every t.

- Law of Large Numbers: the empirical measure $\frac{1}{n}\sum_{i=1}^{n} \delta_{S_{t-}^{i}}(ds)$ converges to a solution of (PPS- ρ), namely u.
- Includes the Markovian case, $\rho_{\lambda,\mathbb{P}_0}(t,s) = f(t,s)$.
- Non-markovian $\Rightarrow \rho_{\lambda,\mathbb{P}_0}(t,s)$ more complex.

Introduction	Thinning procedure	1/ Expectation	2/ Mean-field	Summary
0000	00	00	000000000	
System in expe	ctation			

Let λ_t be some non negative predictable process which is L^1_{loc} in expectation. The distribution of S_{t-} , namely $u(t, \cdot)$, satisfies the following system,

$$\begin{cases} \frac{\partial}{\partial t}u(t,s) + \frac{\partial}{\partial s}u(t,s) + \rho_{\lambda,\mathbb{P}_{0}}(t,s)u(t,s) = 0, \\ u(t,0) = \int_{s \in \mathbb{R}_{+}} \rho_{\lambda,\mathbb{P}_{0}}(t,s)u(t,s) dt, \end{cases}$$
(PPS- ρ)

in the weak sense where $\rho_{\lambda,\mathbb{P}_0}(t,s) = \mathbb{E}[\lambda_t | S_{t-} = s]$ for almost every t.

- Law of Large Numbers: the empirical measure $\frac{1}{n}\sum_{i=1}^{n} \delta_{S_{t-}^{i}}(ds)$ converges to a solution of (PPS- ρ), namely u.
- Includes the Markovian case, $\rho_{\lambda,\mathbb{P}_0}(t,s) = f(t,s)$.
- Non-markovian $\Rightarrow \rho_{\lambda,\mathbb{P}_0}(t,s)$ more complex.
- Linear Hawkes process: closed system for $v(t,s) := \int_{s}^{+\infty} u(t,\sigma) d\sigma$.

Introduction	Thinning procedure	1/ Expectation	2/ Mean-field	Summary
0000	00	00	000000000	
Outline				

Introduction

A key tool: The thinning procedure

3 First approach: Mathematical expectation

4 Second approach: Mean-field interactions

- Generalities
- Actual and limit dynamics
- Coupling of these two dynamics
- Mean-field approximation

Introduction	Thinning procedure	1/ Expectation	2/ Mean-field	Summary
0000	00	00	000000000	
Propagation	of chaos: a tool to	link the two scale	2 C	

- Weak dependence: homogeneous interactions scaled by 1/n.
- Symmetry: the neurons are exchangeable.
- The dynamics is described by a growing system of equations.

Introduction	Thinning procedure	1/ Expectation	2/ Mean-field	Summary
0000	00	00	00000000	
Propagation of	chaos: a tool to link	the two scales		

- Weak dependence: homogeneous interactions scaled by 1/n.
- Symmetry: the neurons are exchangeable.
- The dynamics is described by a growing system of equations.

Asymptotic when $n \rightarrow +\infty$

- The neurons become independent (they are i.d.).
- Their distribution is described by one non-linear PDE.

Introduction	Thinning procedure	1/ Expectation	2/ Mean-field	Summary
0000	00	00	00000000	
Propagation of	chaos: a tool to link	the two scales		

- Weak dependence: homogeneous interactions scaled by 1/n.
- Symmetry: the neurons are exchangeable.
- The dynamics is described by a growing system of equations.

Asymptotic when $n \rightarrow +\infty$

- The neurons become independent (they are i.d.).
- Their distribution is described by one non-linear PDE.

Mean-field

- Neuroscience: Intrinsic spiking (Stannat et al. 2014), I&F (Delarue et al. 2015), point processes models (Galves and Löcherbach 2015).
- Hawkes: Mean field approximation (Delattre et al., 2015), inference (Delattre et al., Bacry et al. 2016).

・ロト ・ 一下・ ・ 日 ・ ・ 日 ・

Introduction	Thinning procedure	1/ Expectation	2/ Mean-field	Summary
0000	00	00	00000000	
Propagation of	chaos: a tool to link	the two scales		

- Weak dependence: homogeneous interactions scaled by 1/n.
- Symmetry: the neurons are exchangeable.
- The dynamics is described by a growing system of equations.

Asymptotic when $n \rightarrow +\infty$

- The neurons become independent (they are i.d.).
- Their distribution is described by one non-linear PDE.

Mean-field

- Neuroscience: Intrinsic spiking (Stannat et al. 2014), I&F (Delarue et al. 2015), point processes models (Galves and Löcherbach 2015).
- Hawkes: Mean field approximation (Delattre et al., 2015), inference (Delattre et al., Bacry et al. 2016).
- Here: Age dependent Hawkes processes.

・ロト ・ 日本 ・ 日本 ・ 日本

Introduction	Thinning procedure	1/ Expectation	2/ Mean-field	Summary
0000	00	00	000000000	
Multivariate Ha	wkes processes			

• Multivariate HP: (i = 1, ..., n)

$$\lambda_t^i = \Phi\left(\int_0^{t-} h_{i\to i}(t-x)N^i(dx) + \sum_{j\neq i}\int_0^{t-} h_{j\to i}(t-x)N^j(dx)\right).$$

Introduction	Thinning procedure	1/ Expectation	2/ Mean-field	Summary
0000	00	00	000000000	
Multivariate Ha	wkes processes			

• Multivariate HP: (i = 1, ..., n)

$$\lambda_t^i = \Phi\left(\int_0^{t-} \frac{h_{i\to i}(t-x)N^i(dx) + \sum_{j\neq i}\int_0^{t-} h_{j\to i}(t-x)N^j(dx)\right).$$

Introduction	Thinning procedure	1/ Expectation	2/ Mean-field	Summary
0000	00	00	000000000	
Multivariate Ha	wkes processes			

• Multivariate HP: (i = 1, ..., n)

$$\lambda_t^i = \Phi\left(\int_0^{t-} h_{i\to i}(t-x)N^i(dx) + \sum_{j\neq i}\int_0^{t-} h_{j\to i}(t-x)N^j(dx)\right).$$

Interaction function $h_{j \rightarrow i} \leftrightarrow$ synaptic weight of neuron j over neuron i.

Introduction	Thinning procedure	1/ Expectation	2/ Mean-field	Summary
0000	00	00	000000000	
Generalized Hav	wkes processes			

Age dependent Hawkes process (*n*-neurons system)

It is a multivariate point process $(N^i)_{i=1,..,n}$ with intensity given for all i = 1, ..., n by

$$\lambda_t^i = \Psi\left(S_{t-}^i, \frac{1}{n}\sum_{j=1}^n \int_0^{t-} h(t-z)N^j(dz)\right), \quad "h_{j\to i} = \frac{1}{n}h".$$

• Example: $\Psi(s,x) = \Phi(x)\mathbb{1}_{s \ge \delta} \rightsquigarrow$ strict refractory period of length δ .

・ ロ ト ・ 合 ト ・ 正 ト ・ 正 ト

• How to approximate them as $n \to +\infty$?

Age dependent Hawkes process (*n*-neurons system)

It is a multivariate point process $(N^i)_{i=1,..,n}$ with intensity given for all i = 1, ..., n by

$$\lambda_t^i = \Psi\left(S_{t-}^i, \frac{1}{n}\sum_{j=1}^n \int_0^{t-} h(t-z)N^j(dz)\right), \quad "h_{j\to i} = \frac{1}{n}h".$$

- Example: $\Psi(s,x) = \Phi(x)\mathbb{1}_{s \ge \delta} \rightsquigarrow$ strict refractory period of length δ .
- How to approximate them as $n \to +\infty$?
- LLN heuristics: they are close to independent copies of a *limit process*.

・ロト ・ 戸 ト ・ ヨ ト ・ ヨ ト

Introduction	Thinning procedure	1/ Expectation	2/ Mean-field	Summary
			000000000	
Scheme of the	coupling method			

Idea of coupling (Sznitman)

The idea is to find a suitable coupling between the particles of the *n*-particle system and *n* i.i.d. copies of a *limit process*.

Introduction	Thinning procedure	1/ Expectation	2/ Mean-field	Summary
0000	00	00	000000000	
Scheme of the	coupling method			

Idea of coupling (Sznitman)

The idea is to find a suitable coupling between the particles of the *n*-particle system and n i.i.d. copies of a *limit process*.

- 1 Find a good candidate for the limit process (LLN heuristics).
- 2 Show that it is well-defined (McKean-Vlasov fixed point problem).

- 3 Couple the dynamics in the right way.
- 4 Show the convergence.

Introduction	Thinning procedure	1/ Expectation	2/ Mean-field	Summary
0000	00	00	000000000	
Scheme of th	ne coupling method			

Idea of coupling (Sznitman)

The idea is to find a suitable coupling between the particles of the *n*-particle system and n i.i.d. copies of a *limit process*.

- 1 Find a good candidate for the limit process (LLN heuristics).
- $1^{\prime}\,$ Use the PDE to find the distribution of the limit process.
- 2 Show that it is well-defined (McKean-Vlasov fixed point problem).

A □ > A □ > A □ > A □ > A

- 3 Couple the dynamics in the right way.
- 4 Show the convergence.

Introduction	Thinning procedure	1/ Expectation	2/ Mean-field	Summary
0000	00	00	000000000	
1/ Limit proces	ss (heuristic)			

$$\lambda_t^i = \Psi\left(S_{t-}^i, \frac{1}{n}\sum_{j=1}^n \int_0^{t-} h(t-z)N^j(dz)\right).$$

Introduction	Thinning procedure	1/ Expectation	2/ Mean-field	Summary
0000	00	00	000000000	
1/ Limit proces	s (heuristic)			

$$\lambda_t^i = \Psi\left(S_{t-}^i, \frac{1}{n}\sum_{j=1}^n \int_0^{t-} h(t-z)N^j(dz)\right).$$

Independence at the limit \Rightarrow Law of Large Numbers.

Introduction	Thinning procedure	1/ Expectation	2/ Mean-field	Summary
0000	00	00	000000000	
1/ Limit proces	s (heuristic)			

$$\lambda_t^i = \Psi\left(S_{t-}^i, \frac{1}{n}\sum_{j=1}^n \int_0^{t-} h(t-z)N^j(dz)\right).$$

Independence at the limit \Rightarrow Law of Large Numbers.

Limit process

It is a point process \overline{N} with intensity given by

$$\overline{\lambda}_t = \Psi\left(\overline{S}_{t-}, \int_0^{t-} h(t-z)\mathbb{E}\left[\overline{N}(dz)\right]\right).$$

Introduction	Thinning procedure	1/ Expectation	2/ Mean-field	Summary
0000	00	00	000000000	
1/ Limit proces	s (heuristic)			

$$\lambda_t^i = \Psi\left(\frac{S_{t-}^i}{n}, \frac{1}{n}\sum_{j=1}^n \int_0^{t-} h(t-z)N^j(dz)\right).$$

Independence at the limit \Rightarrow Law of Large Numbers.

Limit process

It is a point process \overline{N} with intensity given by

$$\overline{\lambda}_t = \Psi\left(\overline{S}_{t-}, \int_0^{t-} h(t-z)\mathbb{E}\left[\overline{N}(dz)\right]\right).$$

Introduction	Thinning procedure	1/ Expectation	2/ Mean-field	Summary
0000	00	00	000000000	
1/ Limit proces	s (heuristic)			

$$\lambda_t^i = \Psi\left(\frac{S_{t-}^i}{n}, \frac{1}{n}\sum_{j=1}^n \int_0^{t-} h(t-z)N^j(dz)\right).$$

Independence at the limit \Rightarrow Law of Large Numbers.

Limit process

It is a point process \overline{N} with intensity given by

$$\overline{\lambda}_t = \Psi\left(\overline{S}_{t-}, \int_0^{t-} h(t-z)\mathbb{E}\left[\overline{N}(dz)\right]\right).$$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

э

The blue terms should be close one from the other.

Introduction	Thinning procedure	1/ Expectation	2/ Mean-field	Summary
0000	00	00	000000000	
1/ Limit proces	s (heuristic)			

$$\lambda_t^i = \Psi\left(\frac{S_{t-}^i}{n}, \frac{1}{n}\sum_{j=1}^n \int_0^{t-} h(t-z)N^j(dz)\right).$$

Independence at the limit \Rightarrow Law of Large Numbers.

Limit process

It is a point process \overline{N} with intensity given by

$$\overline{\lambda}_t = \Psi\left(\overline{S}_{t-}, \int_0^{t-} h(t-z)\mathbb{E}\left[\overline{N}(dz)\right]\right).$$

- The blue terms should be close one from the other.
- The process N depends on its own distribution (McKean-Vlasov equation). Its existence is not trivial.
- The intensity of \overline{N} depends on the time and the age $\Rightarrow \overline{S}_{t-}$ is Markovian.

・ロト ・四ト ・ヨト ・ヨト ・ヨ

Introduction Thinning procedure 1/ Expectation 2/ Mean-field Summary 00000000000

1'/ Study the associated PDE system 1

If the limit process \overline{N} exists, then the distribution of \overline{S}_{t-} , denoted by $u(t, \cdot)$ satisfies (Fokker-Planck equation):

$$\begin{cases} \frac{\partial u(t,s)}{\partial t} + \frac{\partial u(t,s)}{\partial s} + \Psi(s,X(t))u(t,s) = 0, \\ u(t,0) = \int_{s \in \mathbb{R}_+} \Psi(s,X(t))u(t,s)\,ds, \end{cases}$$
(PPS-NL)

where for all $t \ge 0$, $X(t) = \int_0^t h(t-z)u(z,0)dz$.

Introduction Thinning procedure 1/Expectation 2/Mean-field Summary 0000 00 00 00000000 0 1'/ Study the accordated DDE system 1

1'/ Study the associated PDE system 1

If the limit process \overline{N} exists, then the distribution of \overline{S}_{t-} , denoted by $u(t, \cdot)$ satisfies (Fokker-Planck equation):

$$\begin{cases} \frac{\partial u(t,s)}{\partial t} + \frac{\partial u(t,s)}{\partial s} + \Psi(s,X(t)) u(t,s) = 0, \\ u(t,0) = \int_{s \in \mathbb{R}_+} \Psi(s,X(t)) u(t,s) \, ds, \end{cases}$$
(PPS-NL)

where for all $t \ge 0$, $X(t) = \int_0^t h(t-z)u(z,0)dz$.

Main assumption

The rate function Ψ is bounded and uniformly Lipschitz w.r.t. X(t).

If the limit process \overline{N} exists, then the distribution of \overline{S}_{t-} , denoted by $u(t, \cdot)$ satisfies (Fokker-Planck equation):

$$\begin{cases} \frac{\partial u(t,s)}{\partial t} + \frac{\partial u(t,s)}{\partial s} + \Psi(s,X(t)) u(t,s) = 0, \\ u(t,0) = \int_{s \in \mathbb{R}_+} \Psi(s,X(t)) u(t,s) \, ds, \end{cases}$$
(PPS-NL)

where for all $t \ge 0$, $X(t) = \int_0^t h(t-z)u(z,0)dz$.

Main assumption

The rate function Ψ is bounded and uniformly Lipschitz w.r.t. X(t).

Theorem (C. 15)

Assume that $h: \mathbb{R}_+ \to \mathbb{R}$ is locally integrable and that u^{in} is a non-negative function such that both $\int_0^{+\infty} u^{in}(s) ds = 1$ and there exists M > 0 such that for all $s \ge 0, 0 \le u^{in}(s) \le M$. Then, there exists a unique solution in the weak sense u such that $t \mapsto u(t, \cdot)$ belongs to $BC(\mathbb{R}_+, \mathscr{P}(\mathbb{R}_+))$ (Moreover, the solution is in $C(\mathbb{R}_+, L^1(\mathbb{R}_+))$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Recall the intensity of the limit process

$$\overline{\lambda}_t = \Psi\left(\overline{S}_{t-}, \int_0^{t-} h(t-z)\mathbb{E}\left[\overline{N}(dz)\right]\right).$$

Recall the associated system (PPS-NL),

$$\begin{cases} \frac{\partial u(t,s)}{\partial t} + \frac{\partial u(t,s)}{\partial s} + \Psi(s,X(t))u(t,s) = 0, \\ u(t,0) = \int_{s \in \mathbb{R}_+} \Psi(s,X(t))u(t,s) \, ds, \end{cases}$$

where for all $t \ge 0$, $X(t) = \int_0^t h(t-z)u(z,0)dz$.

 Introduction
 Thinning procedure
 1/ Expectation
 2/ Mean-field
 Summary

 000
 00
 00
 00
 00
 00

 2/ Show that the limit process is well-posed
 00
 00
 00

Recall the intensity of the limit process

$$\overline{\lambda}_t = \Psi\left(\overline{S}_{t-1}, \int_0^{t-1} h(t-z) \mathbb{E}\left[\overline{N}(dz)\right]\right).$$

Recall the associated system (PPS-NL),

$$\begin{cases} \frac{\partial u(t,s)}{\partial t} + \frac{\partial u(t,s)}{\partial s} + \Psi(s,X(t)) u(t,s) = 0, \\ u(t,0) = \int_{s \in \mathbb{R}_+} \Psi(s,X(t)) u(t,s) ds, \end{cases}$$

where for all $t \ge 0$, $X(t) = \int_0^t h(t-z)u(z,0)dz$.

Proposition

• The distribution of the age \overline{S}_{t-} is the unique solution of (PPS-NL).

 Introduction
 Thinning procedure
 1/ Expectation
 2/ Mean-field
 Summary

 000
 00
 00
 00
 00
 00

 2/ Show that the limit process is well-posed
 00
 00
 00

Recall the intensity of the limit process

$$\overline{\lambda}_t = \Psi\left(\overline{S}_{t-}, \int_0^{t-} h(t-z)\mathbb{E}\left[\overline{N}(dz)\right]\right).$$

Recall the associated system (PPS-NL),

$$\begin{cases} \frac{\partial u(t,s)}{\partial t} + \frac{\partial u(t,s)}{\partial s} + \Psi(s,X(t)) u(t,s) = 0, \\ u(t,0) = \int_{s \in \mathbb{R}_+} \Psi(s,X(t)) u(t,s) ds, \end{cases}$$

where for all $t \ge 0$, $X(t) = \int_0^t h(t-z)u(z,0)dz$.

Proposition

- The distribution of the age \overline{S}_{t-} is the unique solution of (PPS-NL).
- The intensity of the limit process is given by

$$\overline{\lambda}_t = \Psi\left(\overline{S}_{t-}, \int_0^t h(t-z)u(z,0)dz\right).$$

Hence the limit process is well-defined.

Theorem (C. 15)

The coupling described in the previous slide is such that

$$\mathbb{E}\Big[\underbrace{\operatorname{Card}((N^{i} \triangle \overline{N}^{i}) \cap [0, \theta])}_{number \text{ of } \times \text{ in }}\Big] = \mathbb{E}\left[\underbrace{\int_{0}^{\theta} |\lambda_{t}^{i} - \overline{\lambda}_{t}^{i}| dt}_{\text{ area of }}\right] \lesssim n^{-1/2}.$$

The constant depends on θ , Ψ and h.

Introduction	Thinning procedure	1/ Expectation	2/ Mean-field	Summary
0000	00	00	00000000000	
4/ Control/Con	nvergence 1			

Theorem (C. 15)

The coupling described in the previous slide is such that

$$\mathbb{E}\Big[\underbrace{\operatorname{Card}((N^{i} \triangle \overline{N}^{i}) \cap [0, \theta])}_{number \text{ of } \times \text{ in }}\Big] = \mathbb{E}\left[\underbrace{\int_{0}^{\theta} |\lambda_{t}^{i} - \overline{\lambda}_{t}^{i}| dt}_{area \text{ of }}\right] \lesssim n^{-1/2}.$$

The constant depends on θ , Ψ and h.

Corollary

If the distribution of the initial value of the age is bounded then the coupling described in the previous slide is such that

$$\mathbb{P}\left((S_t^i)_{t\in[0,\theta]}\neq(\overline{S}_t^i)_{t\in[0,\theta]}\right)\lesssim n^{-1/2}$$

э

Introduction	Thinning procedure	1/ Expectation	2/ Mean-field	Summary
0000	00	00	000000000	
4/ Control/Cor	nvergence 2			

Propagation of chaos

Fix k in \mathbb{N} . If the initial conditions are i.i.d., then the processes N^1, \ldots, N^k of the *n*-neurons system behave (when $n \to +\infty$) as i.i.d. copies of the limit process \overline{N} .

Introduction	Thinning procedure	1/ Expectation	2/ Mean-field	Summary
0000	00	00	000000000	
4/ Control/Co	nvergence 2			

Propagation of chaos

Fix k in \mathbb{N} . If the initial conditions are i.i.d., then the processes N^1, \ldots, N^k of the *n*-neurons system behave (when $n \to +\infty$) as i.i.d. copies of the limit process \overline{N} .

Theorem

If the ages at time 0 are i.i.d. with common density u^{in} , then for all $t \ge 0$,

$$\frac{1}{n}\sum_{i=1}^n \delta_{S_t^i} \xrightarrow[n\to\infty]{} u(t,\cdot),$$

where u is the unique solution of the (PPS-NL) system with initial condition u^{in} .

Introduction	Thinning procedure	1/ Expectation	2/ Mean-field	Summary
0000	00	00	000000000	
4/ Control/Cor	ivergence 2			

Propagation of chaos

Fix k in \mathbb{N} . If the initial conditions are i.i.d., then the processes N^1, \ldots, N^k of the *n*-neurons system behave (when $n \to +\infty$) as i.i.d. copies of the limit process \overline{N} .

Theorem

If the ages at time 0 are i.i.d. with common density u^{in} , then for all $t \ge 0$,

$$\frac{1}{n}\sum_{i=1}^n \delta_{S^i_t} \xrightarrow[n\to\infty]{} u(t,\cdot),$$

where u is the unique solution of the (PPS-NL) system with initial condition u^{in} .

- Link between (PPS) and a well-designed microscopic model.
- Goodness-of fit tests: Renewal and Hawkes processes.

Introduction	Thinning procedure	1/ Expectation	2/ Mean-field	Summary
				•
Summary				

First approach:

- Link with an i.i.d. network.
- Ends up with (PPS) for Renewal or Poisson processes.
- Ends up with a more intricate system with linear Hawkes processes.

Introduction	Thinning procedure	1/ Expectation	2/ Mean-field	Summary
				•
Summary				

- First approach:
 - Link with an i.i.d. network.
 - Ends up with (PPS) for Renewal or Poisson processes.
 - Ends up with a more intricate system with linear Hawkes processes.
- Second approach:
 - Network of weakly dependent neurons (asymptotically independent).
 - Refractory period possible for the limit process. Its distribution is given by (PPS).

Introduction	Thinning procedure	1/ Expectation	2/ Mean-field	Summary
				•
Summary				

- First approach:
 - Link with an i.i.d. network.
 - Ends up with (PPS) for Renewal or Poisson processes.
 - Ends up with a more intricate system with linear Hawkes processes.
- Second approach:
 - Network of weakly dependent neurons (asymptotically independent).
 - Refractory period possible for the limit process. Its distribution is given by (PPS).

(日) (同) (日) (日)

3

• Remark: The $h_{j \rightarrow i}$'s can be i.i.d. random variables.

Introduction	Thinning procedure	1/ Expectation	2/ Mean-field	Summary
				•
Summary				

- First approach:
 - Link with an i.i.d. network.
 - Ends up with (PPS) for Renewal or Poisson processes.
 - Ends up with a more intricate system with linear Hawkes processes.
- Second approach:
 - Network of weakly dependent neurons (asymptotically independent).
 - Refractory period possible for the limit process. Its distribution is given by (PPS).

(日) (同) (日) (日)

э

- Remark: The $h_{j \rightarrow i}$'s can be i.i.d. random variables.
- Outlook:
 - Study of the system in expectation for linear Hawkes processes.

Introduction	Thinning procedure	1/ Expectation	2/ Mean-field	Summary
				•
Summary				

- First approach:
 - Link with an i.i.d. network.
 - Ends up with (PPS) for Renewal or Poisson processes.
 - Ends up with a more intricate system with linear Hawkes processes.
- Second approach:
 - Network of weakly dependent neurons (asymptotically independent).
 - Refractory period possible for the limit process. Its distribution is given by (PPS).
 - Remark: The $h_{j \rightarrow i}$'s can be i.i.d. random variables.
- Outlook:
 - Study of the system in expectation for linear Hawkes processes.
 - Fluctuations around the mean limit behaviour (Central Limit Theorem).

(日) (同) (日) (日)

ж

Introduction	Thinning procedure	1/ Expectation	2/ Mean-field	Summary
				•
Summary				

- First approach:
 - Link with an i.i.d. network.
 - Ends up with (PPS) for Renewal or Poisson processes.
 - Ends up with a more intricate system with linear Hawkes processes.
- Second approach:
 - Network of weakly dependent neurons (asymptotically independent).
 - Refractory period possible for the limit process. Its distribution is given by (PPS).
 - Remark: The $h_{j \rightarrow i}$'s can be i.i.d. random variables.
- Outlook:
 - Study of the system in expectation for linear Hawkes processes.
 - Fluctuations around the mean limit behaviour (Central Limit Theorem).
 - Break independence with correlated synaptic weights (cf Faugeras and Maclaurin, 2014).

