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m Neurons = electrically excitable cells.
m Action potential = spike of the electrical potential.

m Physiological constraint: refractory period.
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Microscopic modelling

Microscopic modelling of spike trains

Time point processes = random countable sets of times (points of R or R ).

m Point process: N={T;,i€Z}st. - <Tp<0< Ty <.
m Point measure: N(dt) =Y ez 07,(dt). Hence, [f(t)N(dt) =Yz f(T;).
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Microscopic modelling

Microscopic modelling of spike trains

Time point processes = random countable sets of times (points of R or R ).

m Point process: N={T;,i€Z}st. - <Tp<0< Ty <.
m Point measure: N(dt) =Y ez 07,(dt). Hence, [f(t)N(dt) =Yz f(T;).
m Age process: (S¢—)¢>0.

Stochastic intensity

m Heuristically,

_ o 1L _ 11N
/lt—Ahtnloﬁlp(/v([t,wm])_1|3q,),

where Z[V denotes the history of N before time t.

m Local behaviour: probability to find a new spike.

m May depend on the past (e.g. refractory period, aftershocks).




Introduction
oe

Some classical point processes in neuroscience

m Poisson process: A = A(t) (deterministic, no refractory period).




Introduction
oe

Some classical point processes in neuroscience

m Poisson process: A = A(t) (deterministic, no refractory period).
m Renewal process: A = f(S;—) < i.i.d. ISls. (refractory period)

=011 T LSL L ops1 s LSL 7




Introduction
oe

Some classical point processes in neuroscience

m Poisson process: A = A(t) (deterministic, no refractory period).
m Renewal process: A = f(S;—) < i.i.d. ISls. (refractory period)

=011 T LSL L ops1 s LSL 7

t_
m Linear Hawkes process: A; = ,u+/ h(t—z)N(dz), h>0.
0




Introduction
oe

Some classical point processes in neuroscience

m Poisson process: A = A(t) (deterministic, no refractory period).
m Renewal process: A = f(S;—) < i.i.d. ISls. (refractory period)

=011 T LSL L ops1 s LSL 7

t_
m Linear Hawkes process: A; = ,u+/ h(t—z)N(dz), h>0.
0




Introduction
oe

Some classical point processes in neuroscience

m Poisson process: A = A(t) (deterministic, no refractory period).
m Renewal process: A = f(S;—) < i.i.d. ISls. (refractory period)

=011 T LSL L ops1 s LSL 7

t_
m Linear Hawkes process: A; = ,u+/ h(t—z)N(dz), h>0.
0
N— ——

Z h(t—T)
TeN
T<t
t

+1




Introduction
oe

Some classical point processes in neuroscience

m Poisson process: A = A(t) (deterministic, no refractory period).
m Renewal process: A = f(S;—) < i.i.d. ISls. (refractory period)

=011 T LSL L ops1 s LSL 7

t_
m Linear Hawkes process: A; = ,u+/ h(t—z)N(dz), h>0.
0
N— ——

Z h(t—T)
TeN
T<t




Introduction
oe

Some classical point processes in neuroscience

m Poisson process: A = A(t) (deterministic, no refractory period).
m Renewal process: A = f(S;—) < i.i.d. ISls. (refractory period)

=011 T LSL L ops1 s LSL 7

t_
m Linear Hawkes process: A; = ,u+/ h(t—z)N(dz), h>0.
0
N— ——

Z h(t—T)
TeN
T<t

+1




Introduction
[ ]

Age structured equations (K. Pakdaman, B. Perthame, D. Salort, 2010)

m Age = delay since last spike.

(t.5) probability density of finding a neuron with age s at time t.
mn 7s = . . . .
ratio of the neural population with age s at time t.

an(t,s) dn(t,s)
ot as

oo
mean firing rate — n(t,O):/ p(s, X (£))n(t,s)ds.
0

+p(s,X(t))n(t,s)=0
(PPS)
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m Age = delay since last spike.
. n(t,s) = {probability density of finding a neuron with age s at time t.
ratio of the neural population with age s at time t.
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Parameters

m rate function p. For example, p(s,X) = 1is-0(x)}-

t
X(t):/ d(t—x)n(x,0)dx (global neural activity)
0

m Propagation time. m d = delay function. For example, d(x) = e ™.
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m Age = delay since last spike.
. n(t,s) = {probability density of finding a neuron with age s at time t.
ratio of the neural population with age s at time t.
an(t,s) . an(t,s)
dt ds

oo
mean firing rate — n(t,O):/ p(s, X (£))n(t,s)ds.
0

+p(s,X(t))n(t,s)=0
(PPS)

Parameters

m rate function p. For example, p(s,X) = 1is-0(x)}-

t
X(t):/ d(t—x)n(x,0)dx (global neural activity)
0

m Propagation time. m d = delay function. For example, d(x) = e ™.

t7
Cornerstone: ~ X(t) <+— / h(t —x)N(dx).
0
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X: Poisson process [T

@: Poisson process [N

X
X
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M is a Poisson process
with intensity 1.

N(dt,dx) =Y &x.
E[N(dt, dx)] = dtdx.

Spatial independence.

A is deterministic.

N admits A as an
intensity.
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First approach: Mathematical expectation
m Markovian case
m Non-Markovian case
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Fokker-Planck equation

m Assume Ay = f(t,S;—) (Poisson, renewal, ...).

m (5¢t—)>0 is Markovian with generator

Ge9(s) = 9'(s) + f(t,5)[9(0) — 9 (s)]-

m Fokker-Planck equation gives the following PDE system:

d
ﬁu(t,s)—&—%u(t,s)—&—f(t,s)u(t,s) =0,

u(t,O):/;eR F(t,5)u(t,s) ds,

where u(t,-) is the distribution of S;_.
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System in expectation

Theorem (C., Caceres, Doumic, Reynaud-Bouret 15)

Let A+ be some non negative predictable process which is L}OC in expectation.
The distribution of S¢_, namely u(t,-), satisfies the following system,

d d
au(tvs)—i_ Eu(t>s)+pl.Po(tﬁs)u(t7s) = 07

(PPS-p)
u(t.0)= [ paro(t.s)u(ts) dt,

in the weak sense where p) p, (t,s) = E[A¢|St— = s] for almost every t.
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Theorem (C., Caceres, Doumic, Reynaud-Bouret 15)

Let A+ be some non negative predictable process which is L}OC in expectation.
The distribution of S¢_, namely u(t,-), satisfies the following system,

d d
au(tvs)—i_ Eu(t>s)+pl.Po(tﬁs)u(t7s) = 07

(PPS-p)
u(t.0)= [ paro(t.s)u(ts) dt,

in the weak sense where p) p, (t,s) = E[A¢|St— = s] for almost every t.

m Law of Large Numbers: the empirical measure % 7 65;-7(ds) converges
to a solution of (PPS-p), namely u.

®m Includes the Markovian case, p; p, (t,s) = f(t,s).

m Non-markovian = pj p, (t,s) more complex.

m Linear Hawkes process: closed system for v(t,s):= [;F u(t,o)do.
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B Second approach: Mean-field interactions
m Generalities
m Actual and limit dynamics
m Coupling of these two dynamics
m Mean-field approximation
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Propagation of chaos: a tool to link the two scales

Mean field n-neurons system

m Weak dependence: homogeneous interactions scaled by 1/n.
m Symmetry: the neurons are exchangeable.

m The dynamics is described by a growing system of equations.
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Propagation of chaos: a tool to link the two scales

Mean field n-neurons system
m Weak dependence: homogeneous interactions scaled by 1/n.
m Symmetry: the neurons are exchangeable.

m The dynamics is described by a growing system of equations.

| A

Asymptotic when n — o0

m The neurons become independent (they are i.d.).

m Their distribution is described by one non-linear PDE.

Mean-field

m Neuroscience: Intrinsic spiking (Stannat et al. 2014), 1&F (Delarue et al.
2015), point processes models (Galves and Lécherbach 2015).

| A

m Hawkes: Mean field approximation (Delattre et al., 2015), inference
(Delattre et al., Bacry et al. 2016).

m Here: Age dependent Hawkes processes.




2/ Mean-field
@00000

Multivariate Hawkes processes

m Multivariate HP:  (i=1,...,n)

:d)(/ot Byt — ) dX)+Z/ i t—x)NJ(dx)>

J#i




2/ Mean-field
@00000

Multivariate Hawkes processes

m Multivariate HP:  (i=1,...,n)

:d)(/ot byt — ) dX)+Z/ i t—x)NJ(dx)>

J#i




2/ Mean-field
@00000

Multivariate Hawkes processes

m Multivariate HP:  (i=1,...,n)

M=o (/Ot hisi(t —x)N' (dx) +J;/Ot hji(t— X)Nj(dX)> :

Interaction function h;_,; <> synaptic weight of neuron j over neuron i.
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Age dependent Hawkes process (n-neurons system)

It is a multivariate point process (N"),-:L”_’n with intensity given for all
i=1,...,n by
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lé—W(Sé-,,l,Z/ h(t—z)NJ(dz)>, ‘= Sh,
=170 n

m Example: W(s,x) = ®(x)1,55 ~ strict refractory period of length §.

m How to approximate them as n — +oo ?
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Generalized Hawkes processes

Renewal process Multivariate HP

At = f(Stf) )L,_fz(b(j;l/ot hj_H'(t—x)Nj(dX)>

mix

Age dependent Hawkes process (n-neurons system)

It is a multivariate point process (N"),-:L”_’n with intensity given for all
i=1,...,n by

. . n t— .
lé—W(Sé-,,l,Z/ h(t—z)NJ(dz)>, ‘= Sh,
=170 n

m Example: W(s,x) = ®(x)1,55 ~ strict refractory period of length §.
m How to approximate them as n — +oo ?

m LLN heuristics: they are close to independent copies of a limit process.
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Idea of coupling (Sznitman)

The idea is to find a suitable coupling between the particles of the n-particle
system and n i.i.d. copies of a limit process.
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4 Show the convergence.
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Scheme of the coupling method

Idea of coupling (Sznitman)

The idea is to find a suitable coupling between the particles of the n-particle
system and n i.i.d. copies of a limit process.

1 Find a good candidate for the limit process (LLN heuristics).

1" Use the PDE to find the distribution of the limit process.

2 Show that it is well-defined (McKean-Vlasov fixed point problem).
3 Couple the dynamics in the right way.

4 Show the convergence.
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1/ Limit process (heuristic)

Recall the intensities of the n-neurons system

. o1 n gt :
Ai=V([S = h(t—z)N/(dz) |.
( WAL ))

m Independence at the limit = Law of Large Numbers.

Limit process

It is a point process N with intensity given by

Ae=V (Et,,/: h(t —z)E [N(dz)]) .

m The blue terms should be close one from the other.

m The process N depends on its own distribution (McKean-Vlasov equation).
Its existence is not trivial.

m The intensity of N depends on the time and the age = S;_ is Markovian. &
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1'/ Study the associated PDE system 1

If the limit process N exists, then the distribution of S;_, denoted by u(t,-)
satisfies (Fokker-Planck equation):

du(t,s) du(t,s) B
ot T os +W (s, X(t))u(t,s)=0,

u(t,O):/se]R W (s, X(t)) u(t,s)ds,

(PPS-NL)

where for all t >0, X(t) = Jg h(t — z)u(z,0)dz.
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1'/ Study the associated PDE system 1

If the limit process N exists, then the distribution of S;_, denoted by u(t,-)
satisfies (Fokker-Planck equation):

du(t,s) du(t,s) B
ot T os +W (s, X(t))u(t,s)=0,

u(t,O):/se]R W (s, X(t)) u(t,s)ds,

(PPS-NL)

where for all t >0, X(t) = Jg h(t — z)u(z,0)dz.

Main assumption

The rate function W is bounded and uniformly Lipschitz w.r.t. X(t).

Theorem (C. 15)

Assume that h: R, — R is locally integrable and that u™™ is a non-negative
function such that both JoF = u™(s)ds =1 and there exists M > 0 such that for
alls>0,0<u™(s) <M.

Then, there exists a unique solution in the weak sense u such that t — u(t,-)
belongs to BC(R4, Z(R..)) (Moreover, the solution is in C(R4,L*(R4)).
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2/ Show that the limit process is well-posed

Recall the intensity of the limit process

Recall the associated system (PPS-NL),

8u(§t;,s) + 8u(ggs) +W (s, X(t)u(t,s)=0,

u(t,O):/SE]R W (s, X(t)) u(t,s) ds,

where for all t >0, X(t) = [5 h(t — z)u(z,0)dz.
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2/ Show that the limit process is well-posed

Recall the intensity of the limit process

Ae=V (?H/Ot_ h(t —2)E [N(dz)]) .

Recall the associated system (PPS-NL),

8u(§t;,5) + 3U(gi,s) +W (s, X(t)u(t,s)=0,

u(t,O):/SE]R W (s, X(t)) u(t,s)ds,

where for all t >0, X(t) = [5 h(t — z)u(z,0)dz.

Proposition

m The distribution of the age S;_ is the unique solution of (PPS-NL).
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2/ Show that the limit process is well-posed

Recall the intensity of the limit process

Ae=V (?H/Ot_ h(t —2)E [N(dz)]) .

Recall the associated system (PPS-NL),

8u(§t;,5) + 3U(gi,s) +W (s, X(t)u(t,s)=0,

u(t,O):/SE]R W (s, X(t)) u(t,s)ds,

where for all t >0, X(t) = J5 h(t — z)u(z,0)dz.

Proposition

m The distribution of the age S;_ is the unique solution of (PPS-NL).

m The intensity of the limit process is given by

Ar=V (?t,7/0t h(t— z)u(z70)dz) .

m Hence the limit process is well-defined.
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3/ The coupling
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Six realizations of a

Poisson process with

intensity 2 on [0, 1]. I X —>
1 1 L
T T -
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T T -
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3/ The coupling
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Theorem (C. 15)

The coupling described in the previous slide is such that

E[Card((NiANi)ﬂ[O, 9])] —E

.6 ) 71
/ A] —/ltdt} <12,
JO

) ——
number of x in M area of I

The constant depends on 6, V and h.
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Theorem (C. 15)
The coupling described in the previous slide is such that

.6 ) 71
/ A] —/ltdt} <12,
JO

E[Card((NiANi)ﬂ[O, 9])] —E

number of x in M area of M

The constant depends on 6, V and h.

| \

Corollary
If the distribution of the initial value of the age is bounded then the coupling
described in the previous slide is such that

P ((Sg)te[o,e] #* (gi)te[o,e]) S n 12,
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4/ Control/Convergence 2

Propagation of chaos

Fix k in N. If the initial conditions are i.i.d., then the processes N1,..., Nk of
the n-neurons system behave (when n — +c0) as i.i.d. copies of the limit
process N.
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4/ Control/Convergence 2

Propagation of chaos

Fix k in N. If the initial conditions are i.i.d., then the processes N1,..., Nk of
the n-neurons system behave (when n — +c0) as i.i.d. copies of the limit
process N.

Theorem

| A

If the ages at time O are i.i.d. with common density u™®, then for all ¢t >0,

1 n
n &8st it (),
£

where u is the unique solution of the (PPS-NL) system with initial
condition u™.

N
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4/ Control/Convergence 2

Propagation of chaos

Fix k in N. If the initial conditions are i.i.d., then the processes N1,..., Nk of
the n-neurons system behave (when n — +c0) as i.i.d. copies of the limit
process N.

Theorem

| A

If the ages at time O are i.i.d. with common density u™®, then for all ¢t >0,

1 n
. _2,1554' P u(t,),
=

where u is the unique solution of the (PPS-NL) system with initial
condition u™.

N

m Link between (PPS) and a well-designed microscopic model.

m Goodness-of fit tests: Renewal and Hawkes processes.
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Summary

m First approach:
> Link with an i.i.d. network.

> Ends up with (PPS) for Renewal or Poisson processes.
> Ends up with a more intricate system with linear Hawkes processes.

m Second approach:

> Network of weakly dependent neurons (asymptotically independent).
> Refractory period possible for the limit process. Its distribution is given by
(PPS).

> Remark: The hj,;’s can be i.i.d. random variables.

m Outlook:

> Study of the system in expectation for linear Hawkes processes.
> Fluctuations around the mean limit behaviour (Central Limit Theorem).

> Break independence with correlated synaptic weights (cf Faugeras and
Maclaurin, 2014).
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