Microscopic approach of a time elapsed neural model

J. Chevallier M. J. Cacérès M. Doumic P. Reynaud-Bouret

LJAD University of Nice

Séminaire / Rennes

9 Mars 2015

Introduction	Point process	Microscopic measure	Expectation measure	Coming back to our examples	Summary
A 11					

Outline

1 Introduction

- 2 Point process
- 3 Microscopic measure
- 4 Expectation measure
- **5** Coming back to our examples

Introduction	Microscopic measure	Expectation measure	Coming back to our examples	Summary
Outline				

Introduction

- Neurobiologic interest
- Modelisation

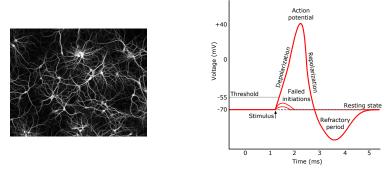
Point process

B Microscopic measure

4 Expectation measure

5 Coming back to our examples

Introduction	Point process	Microscopic measure	Expectation measure	Coming back to our examples	Summary
0000					
Neurobiologic i	nterest				
Biologica	l context				



・ロト ・個ト ・モト ・モト

2

- Action potential: brief and stereotyped phenomenon.
- Physiological constraint: refractory period.

• Age = delay since last spike.

 $n(t,s) = \begin{cases} \text{probability density of finding a neuron with age } s \text{ at time } t. \\ \text{ratio of the population with age } s \text{ at time } t. \end{cases}$

$$\begin{cases} \frac{\partial n(t,s)}{\partial t} + \frac{\partial n(t,s)}{\partial s} + p(s,X(t))n(t,s) = 0\\ m(t) := n(t,0) = \int_0^{+\infty} p(s,X(t))n(t,s) \, ds \end{cases}$$
(PPS)

Age = delay since last spike.

 $n(t,s) = \begin{cases} \text{probability density of finding a neuron with age s at time t.} \\ \text{ratio of the population with age s at time t.} \end{cases}$

$$\begin{cases} \frac{\partial n(t,s)}{\partial t} + \frac{\partial n(t,s)}{\partial s} + p(s,X(t))n(t,s) = 0\\ m(t) := n(t,0) = \int_0^{+\infty} p(s,X(t))n(t,s) ds \end{cases}$$
(PPS)

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

Parameters

• *p* represents the firing rate. For example, $p(s,X) = \mathbb{1}_{\{s > \sigma(X)\}}$.

Age = delay since last spike.

 $n(t,s) = \begin{cases} \text{probability density of finding a neuron with age s at time t.} \\ \text{ratio of the population with age s at time t.} \end{cases}$

$$\begin{cases} \frac{\partial n(t,s)}{\partial t} + \frac{\partial n(t,s)}{\partial s} + p(s,X(t))n(t,s) = 0\\ m(t) := n(t,0) = \int_0^{+\infty} p(s,X(t))n(t,s) ds \end{cases}$$
(PPS)

Parameters

Propagation time.

• p represents the firing rate. For example, $p(s,X) = \mathbb{1}_{\{s > \sigma(X)\}}$.

$$X(t) = \int_0^t d(x)m(t-x)dx$$
 (global neural activity)

• d = delay function. For example, $d(x) = e^{-\tau x}$.

・ロッ ・雪 ・ ・ ヨ ・ ・ ヨ ・

Introduction	Point process	Microscopic measure	Expectation measure	Coming back to our examples	Summary
0000					
Modelisation					
Microsco	pic modell	ing			

• The spiking times are the relevant information.

Microscopic modelling

Time point processes = random countable sets of times (points of \mathbb{R} or \mathbb{R}_+).

Introduction	Point process	Microscopic measure	Expectation measure	Coming back to our examples	Summary
0000					
Modelisation					
Microsco	pic modell	ing			

• The spiking times are the relevant information.

Microscopic modelling

Time point processes = random countable sets of times (points of \mathbb{R} or \mathbb{R}_+).

• N is a random countable set of points of \mathbb{R} (or \mathbb{R}_+) locally finite a.s.

Introduction	Point process	Microscopic measure	Expectation measure	Coming back to our examples	Summary
0000					
Modelisation					
Microsco	pic modell	ing			

• The spiking times are the relevant information.

Microscopic modelling

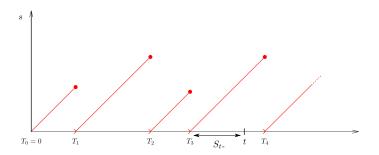
Time point processes = random countable sets of times (points of \mathbb{R} or \mathbb{R}_+).

- N is a random countable set of points of \mathbb{R} (or \mathbb{R}_+) locally finite a.s.
- Denote $\cdots < T_{-1} < T_0 \le 0 < T_1 < \ldots$ the ordered sequence of points of *N*.
- N(A) = number of points of N in A.
- Point measure: $N(dt) = \sum_{i \in \mathbb{Z}} \delta_{T_i}(dt)$. Hence, $\int f(t)N(dt) = \sum_{i \in \mathbb{Z}} f(T_i)$.

< □ > < @ > < \arrow \arro

Introduction	Point process	Microscopic measure	Expectation measure	Coming back to our examples	Summary
0000					
Modelisation					
Age proc	ess				

Age = delay since last spike.

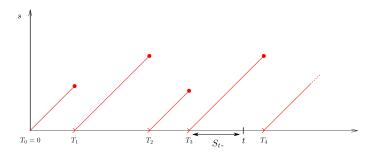


æ

・ロト ・四ト ・ヨト ・ヨト

Introduction	Point process	Microscopic measure	Expectation measure	Coming back to our examples	Summary
0000					
Modelisation					
Age proc	ess				

Age = delay since last spike.



Microscopic age

• We consider the continuous to the left (hence predictable) version of the age.

(日) (四) (日) (日)

- The age at time 0 depends on the spiking times before time 0.
- The dynamic is characterized by the spiking times after time 0.

Introduction	Point process	Microscopic measure	Expectation measure	Coming back to our examples	Summary

Outline

Introduction

2 Point process

- Overview
- Examples of point processes
- Thinning

B Microscopic measure

- Expectation measure
- **5** Coming back to our examples

Introduction	Point process	Microscopic measure	Expectation measure	Coming back to our examples	Summary
	00000				
Overview					
Framewo	rk				

Introduction	Point process	Microscopic measure	Expectation measure	Coming back to our examples	Summary
	00000				
Overview					
Framewo	rk				

• $N_{-} = N \cap (-\infty, 0]$ is a point process with distribution \mathbb{P}_{0} (initial condition). The age at time 0 is finite $\Leftrightarrow N_{-} \neq \emptyset$.

Introduction	Point process	Microscopic measure	Expectation measure	Coming back to our examples	Summary
	00000				
Overview					
Framewo	rk				

- $N_{-} = N \cap (-\infty, 0]$ is a point process with distribution \mathbb{P}_{0} (initial condition). The age at time 0 is finite $\Leftrightarrow N_{-} \neq \emptyset$.
- $N_+ = N \cap (0, +\infty)$ is a point process admitting some intensity $\lambda(t, \mathscr{F}_{t-}^N)$.

Introduction	Point process	Microscopic measure	Expectation measure	Coming back to our examples	Summary
	00000				
Overview					
Framewo	ork				

- $N_{-} = N \cap (-\infty, 0]$ is a point process with distribution \mathbb{P}_{0} (initial condition). The age at time 0 is finite $\Leftrightarrow N_{-} \neq \emptyset$.
- $N_+ = N \cap (0, +\infty)$ is a point process admitting some intensity $\lambda(t, \mathscr{F}_{t-}^N)$.

Stochastic intensity

Local behaviour: probability to find a new point.

Introduction	Point process	Microscopic measure	Expectation measure	Coming back to our examples	Summary
	00000				
Overview					
Framewo	rk				

- $N_{-} = N \cap (-\infty, 0]$ is a point process with distribution \mathbb{P}_{0} (initial condition). The age at time 0 is finite $\Leftrightarrow N_{-} \neq \emptyset$.
- $N_+ = N \cap (0, +\infty)$ is a point process admitting some intensity $\lambda(t, \mathscr{F}_{t-}^N)$.

Stochastic intensity

- Local behaviour: probability to find a new point.
- May depend on the past (e.g. refractory period).

Introduction	Point process	Microscopic measure	Expectation measure	Coming back to our examples	Summary
	00000				
Overview					
Framewo	rk				

- $N_{-} = N \cap (-\infty, 0]$ is a point process with distribution \mathbb{P}_{0} (initial condition). The age at time 0 is finite $\Leftrightarrow N_{-} \neq \emptyset$.
- $N_+ = N \cap (0, +\infty)$ is a point process admitting some intensity $\lambda(t, \mathscr{F}_{t-}^N)$.

Stochastic intensity

- Local behaviour: probability to find a new point.
- May depend on the past (e.g. refractory period).
- Heuristically,

$$\lambda(t,\mathscr{F}_{t-}^{N}) = \lim_{\Delta t \to 0} \frac{1}{\Delta t} \mathbb{P}\left(N\left([t, t+\Delta t]\right) = 1 \,|\, \mathscr{F}_{t-}^{N}\right),$$

where \mathscr{F}_{t-}^N denotes the history of N before time t.

Introduction	Point process	Microscopic measure	Expectation measure	Coming back to our examples	Summary
	00000				
Overview					
Framewo	ork				

- $N_{-} = N \cap (-\infty, 0]$ is a point process with distribution \mathbb{P}_{0} (initial condition). The age at time 0 is finite $\Leftrightarrow N_{-} \neq \emptyset$.
- $N_+ = N \cap (0, +\infty)$ is a point process admitting some intensity $\lambda(t, \mathscr{F}_{t-}^N)$.

Stochastic intensity

- Local behaviour: probability to find a new point.
- May depend on the past (e.g. refractory period).
- Heuristically,

$$\lambda(t,\mathscr{F}_{t-}^{N}) = \lim_{\Delta t \to 0} \frac{1}{\Delta t} \mathbb{P}\left(N\left([t, t+\Delta t]\right) = 1 \,|\, \mathscr{F}_{t-}^{N}\right),$$

where \mathscr{F}_{t-}^N denotes the history of N before time t. **a** $\lambda \ L^1_{loc}$ a.s. $\Leftrightarrow N$ locally finite a.s. (classic assumption).

A D > A P > A D > A D >

Introduction	Point process	Microscopic measure	Expectation measure	Coming back to our examples	Summary
	00000				
Overview					
Framewo	rk				

- $N_{-} = N \cap (-\infty, 0]$ is a point process with distribution \mathbb{P}_{0} (initial condition). The age at time 0 is finite $\Leftrightarrow N_{-} \neq \emptyset$.
- $N_+ = N \cap (0, +\infty)$ is a point process admitting some intensity $\lambda(t, \mathscr{F}_{t-}^N)$.

Stochastic intensity

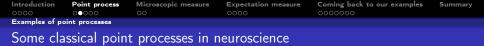
- Local behaviour: probability to find a new point.
- May depend on the past (e.g. refractory period).
- Heuristically,

$$\lambda(t,\mathscr{F}_{t-}^{N}) = \lim_{\Delta t \to 0} \frac{1}{\Delta t} \mathbb{P}\left(N\left([t, t+\Delta t]\right) = 1 \,|\, \mathscr{F}_{t-}^{N}\right),$$

where \mathscr{F}_{t-}^{N} denotes the history of N before time t. λL_{loc}^{1} a.s. $\Leftrightarrow N$ locally finite a.s. (classic assumption).

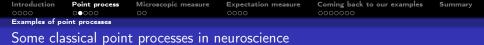
• p(s,X(t)) and $\lambda(t,\mathscr{F}_{t-}^N)$ are analogous.

Poisson process: $\lambda(t, \mathscr{F}_{t-}^N) = \lambda(t) = \text{deterministic function}.$



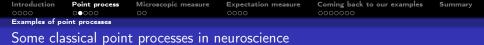
- Poisson process: $\lambda(t, \mathscr{F}_{t-}^N) = \lambda(t) = \text{deterministic function}.$
- Renewal process: $\lambda(t, \mathscr{F}_{t-}^{N}) = f(S_{t-}) \Leftrightarrow \text{i.i.d.}$ ISIs.



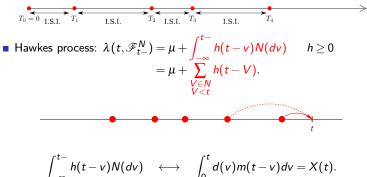


- Poisson process: $\lambda(t, \mathscr{F}_{t-}^{N}) = \lambda(t) = \text{deterministic function}.$
- Renewal process: $\lambda(t, \mathscr{F}_{t-}^N) = f(S_{t-}) \Leftrightarrow \text{i.i.d.}$ ISIs.

$$T_{0} = 0 \xrightarrow{T_{1}} T_{1} \xrightarrow{T_{1}} T_{2} \xrightarrow{T_{2}} T_{3} \xrightarrow{T_{3}} T_{4}$$
Hawkes process: $\lambda(t, \mathscr{F}_{t-}^{N}) = \mu + \int_{-\infty}^{t-} h(t-v)N(dv). \quad h \ge 0$



- Poisson process: $\lambda(t, \mathscr{F}_{t-}^{N}) = \lambda(t) =$ deterministic function.
- Renewal process: $\lambda(t, \mathscr{F}_{t-}^{N}) = f(S_{t-}) \Leftrightarrow \text{ i.i.d. ISIs.}$



э

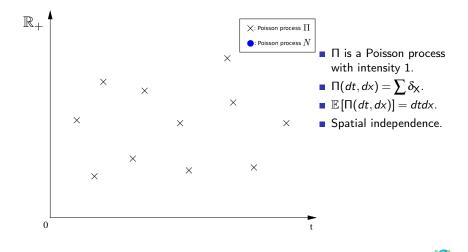
- Poisson process: $\lambda(t, \mathscr{F}_{t-}^{N}) = \lambda(t) =$ deterministic function.
- Renewal process: $\lambda(t, \mathscr{F}_{t-}^N) = f(S_{t-}) \Leftrightarrow \text{i.i.d.}$ ISIs.

$$T_{0} = 0 \quad \text{I.S.I.} \quad T_{1} \quad \text{I.S.I.} \quad T_{2} \quad \text{I.S.I.} \quad T_{3} \quad \text{I.S.I.} \quad T_{4}$$

$$Hawkes \text{ process: } \lambda(t, \mathscr{F}_{t-}^{N}) = \mu + \int_{-\infty}^{t-} h(t-v)N(dv) \quad h \ge 0$$

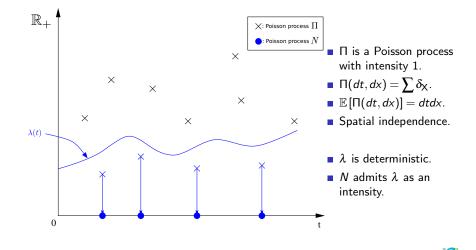
$$= \mu + \sum_{\substack{V \in N \\ V \le t}} h(t-V).$$

We use the SDE representation of these processes induced by Thinning.

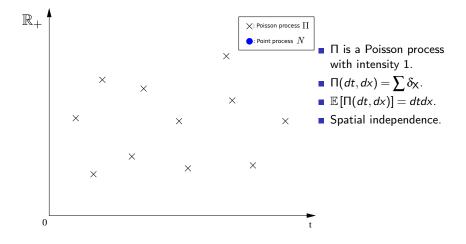


イロト イポト イヨト イヨト

э

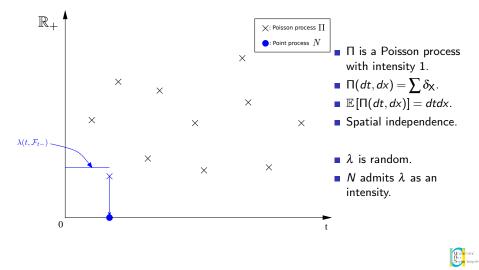


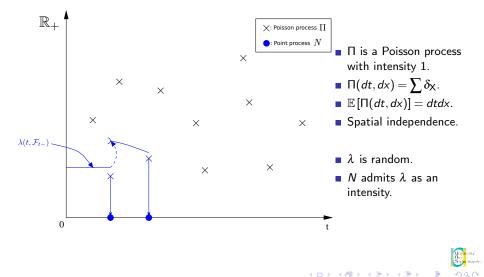
(a)

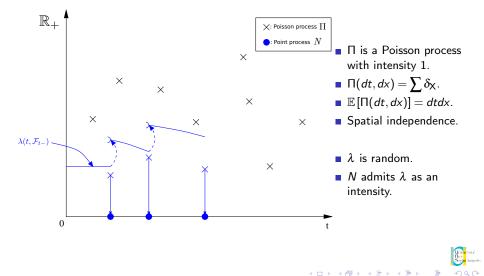


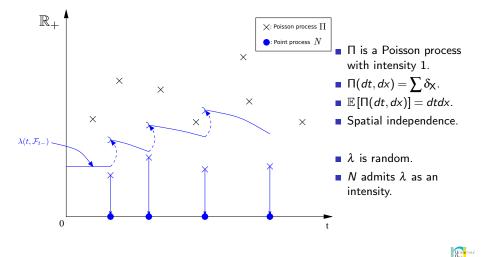
イロト イポト イヨト イヨト

ж









(a)

э

Introduction	Point process	Microscopic measure	Expectation measure	Coming back to our examples	Summary
	00000				
Thinning					
Thinning					

Theorem

Let Π be a (\mathscr{F}_t) -Poisson process with intensity 1 on \mathbb{R}^2_+ . Let $\lambda(t, \mathscr{F}_{t-})$ be a non-negative (\mathscr{F}_t) -predictable process which is L^1_{loc} a.s. and define the point process N_+ (on $(0,\infty)$) by

$$\mathsf{N}_{+}(\mathsf{C}) = \int_{\mathsf{C}\times\mathbb{R}_{+}} \mathbf{1}_{[0,\lambda(t,\mathscr{F}_{t-})]}(x) \,\Pi(dt,dx),$$

for all $C \in \mathscr{B}(\mathbb{R}_+)$. Then N_+ admits $\lambda(t, \mathscr{F}_{t-})$ as a (\mathscr{F}_t) -predictable intensity.

Introduction	Point process	Microscopic measure	Expectation measure	Coming back to our examples	Summary
	00000				
Thinning					
Thinning					

Theorem

Let Π be a (\mathscr{F}_t) -Poisson process with intensity 1 on \mathbb{R}^2_+ . Let $\lambda(t, \mathscr{F}_{t-})$ be a non-negative (\mathscr{F}_t) -predictable process which is L^1_{loc} a.s. and define the point process N_+ (on $(0,\infty)$) by

$$\mathsf{N}_{+}(\mathsf{C}) = \int_{\mathsf{C}\times\mathbb{R}_{+}} \mathbf{1}_{[0,\lambda(t,\mathscr{F}_{t-})]}(x) \,\Pi(dt,dx),$$

for all $C \in \mathscr{B}(\mathbb{R}_+)$. Then N_+ admits $\lambda(t, \mathscr{F}_{t-})$ as a (\mathscr{F}_t) -predictable intensity.

Simulation.

Introduction	Point process	Microscopic measure	Expectation measure	Coming back to our examples	Summary
	00000				
Thinning					
Thinning					

Theorem

Let Π be a (\mathscr{F}_t) -Poisson process with intensity 1 on \mathbb{R}^2_+ . Let $\lambda(t, \mathscr{F}_{t-})$ be a non-negative (\mathscr{F}_t) -predictable process which is L^1_{loc} a.s. and define the point process N_+ (on $(0,\infty)$) by

$$N_{+}(C) = \int_{C \times \mathbb{R}_{+}} \mathbf{1}_{[0,\lambda(t,\mathscr{F}_{t-})]}(x) \Pi(dt,dx),$$

for all $C \in \mathscr{B}(\mathbb{R}_+)$. Then N_+ admits $\lambda(t, \mathscr{F}_{t-})$ as a (\mathscr{F}_t) -predictable intensity.

Simulation.

Hawkes process: stationarity.
 (P. Brémaud, L. Massoulié, '96)

Introduction	Point process	Microscopic measure	Expectation measure	Coming back to our examples	Summary
	00000				
Thinning					
Thinning					

Let Π be a (\mathscr{F}_t) -Poisson process with intensity 1 on \mathbb{R}^2_+ . Let $\lambda(t, \mathscr{F}_{t-})$ be a non-negative (\mathscr{F}_t) -predictable process which is L^1_{loc} a.s. and define the point process N_+ (on $(0,\infty)$) by

$$\mathsf{N}_{+}(\mathsf{C}) = \int_{\mathsf{C}\times\mathbb{R}_{+}} \mathbf{1}_{[0,\lambda(t,\mathscr{F}_{t-})]}(x) \,\Pi(dt,dx),$$

for all $C \in \mathscr{B}(\mathbb{R}_+)$. Then N_+ admits $\lambda(t, \mathscr{F}_{t-})$ as a (\mathscr{F}_t) -predictable intensity.

・ロット 御マ キョット キョン

э

- Simulation.
- Hawkes process: stationarity.
 - (P. Brémaud, L. Massoulié, '96)
- Hawkes process: mean field limit.
 (S. Delattre et al., '14)

Introduction	Point process	Microscopic measure	Expectation measure	Coming back to our examples	Summary
	00000				
Thinning					
Thinning					

Let Π be a (\mathscr{F}_t) -Poisson process with intensity 1 on \mathbb{R}^2_+ . Let $\lambda(t, \mathscr{F}_{t-})$ be a non-negative (\mathscr{F}_t) -predictable process which is L^1_{loc} a.s. and define the point process N_+ (on $(0,\infty)$) by

$$N_{+}(C) = \int_{C \times \mathbb{R}_{+}} \mathbf{1}_{[0,\lambda(t,\mathscr{F}_{t-})]}(x) \Pi(dt,dx),$$

for all $C \in \mathscr{B}(\mathbb{R}_+)$. Then N_+ admits $\lambda(t, \mathscr{F}_{t-})$ as a (\mathscr{F}_t) -predictable intensity.

- Simulation.
- Hawkes process: stationarity.
 (P. Brémaud, L. Massoulié, '96)
- Hawkes process: mean field limit. (S. Delattre et al., '14)

What you should remind

$$N_+(dt) = \int_{x=0}^{\lambda(t,\mathscr{F}_{t-}^N)} \Pi(dt, dx).$$

・ロット (雪) (山) (山)

Introduction	Point process	Microscopic measure	Expectation measure	Coming back to our examples	Summary

Outline

Introduction

Point process

Microscopic measure Technical construction

The system

4 Expectation measure

5 Coming back to our examples

- n(t,.) is the probability density of the age at time t.
- At fixed time t, we are looking at a Dirac mass at S_{t-} .

- n(t,.) is the probability density of the age at time t.
- At fixed time t, we are looking at a Dirac mass at S_{t-} .

What we need

- Random measure U on \mathbb{R}^2 .
- Action over test functions: $\forall \phi \in C^{\infty}_{c,b}(\mathbb{R}^2_+)$,

$$\int \varphi(t,s) U(dt,ds) = \int \varphi(t,S_{t-}) dt.$$

What we define

■ We construct an ad hoc random measure *U* which satisfies a system of stochastic differential equations similar to (PPS).

イロト 不得下 不良下 不良下

Introduction	Point process	Microscopic measure	Expectation measure	Coming back to our examples	Summary
		00			
The system					
Random	system				

Let Π be a Poisson measure. Let $\left(\lambda(t,\mathscr{F}_{t-}^N)\right)_{t>0}$ be some non negative predictable process which is L^1_{loc} a.s. The measure U satisfies the following system a.s.

$$\begin{cases} (\partial_t + \partial_s) \{ U(dt, ds) \} + \left(\int_{x=0}^{\lambda(t, \mathscr{F}_{t-}^N)} \Pi(dt, dx) \right) U(t, ds) = 0, \\ U(dt, 0) = \int_{s \in \mathbb{R}} \left(\int_{x=0}^{\lambda(t, \mathscr{F}_{t-}^N)} \Pi(dt, dx) \right) U(t, ds), \end{cases}$$

in the weak sense with initial condition $\lim_{t\to 0^+} U(t,\cdot) = \delta_{-T_0}$. (-T_0 is the age at time 0)

Introduction	Point process	Microscopic measure	Expectation measure	Coming back to our examples	Summary
		00			
The system					
Random	system				

The measure U satisfies the following system a.s.

$$\begin{cases} (\partial_t + \partial_s) \{ U(dt, ds) \} + \left(\int_{x=0}^{\lambda(t, \mathscr{F}_{t-}^N)} \Pi(dt, dx) \right) U(t, ds) = 0, \\ U(dt, 0) = \int_{s \in \mathbb{R}} \left(\int_{x=0}^{\lambda(t, \mathscr{F}_{t-}^N)} \Pi(dt, dx) \right) U(t, ds), \end{cases}$$

in the weak sense with initial condition $\lim_{t\to 0^+} U(t,\cdot)=\delta_{-T_0}.$ $(-T_0$ is the age at time 0)

•
$$p(s,X(t))$$
 is replaced by $\int_{x=0}^{\lambda(t,\mathscr{F}_{t-}^{N})} \Pi(dt,dx).$

Introduction	Point process	Microscopic measure	Expectation measure	Coming back to our examples	Summary
		00			
The system					
Random	system				

The measure U satisfies the following system a.s.

$$\begin{cases} (\partial_t + \partial_s) \{ U(dt, ds) \} + \left(\int_{x=0}^{\lambda(t, \mathscr{F}_{t-}^N)} \Pi(dt, dx) \right) U(t, ds) = 0, \\ U(dt, 0) = \int_{s \in \mathbb{R}} \left(\int_{x=0}^{\lambda(t, \mathscr{F}_{t-}^N)} \Pi(dt, dx) \right) U(t, ds), \end{cases}$$

in the weak sense with initial condition $\lim_{t\to 0^+} U(t,\cdot)=\delta_{-T_0}.$ $(-T_0$ is the age at time 0)

•
$$p(s, X(t))$$
 is replaced by $\int_{x=0}^{\lambda(t, \mathscr{F}_{t-}^{N})} \Pi(dt, dx).$

$$\mathbb{E}\left[\int_{x=0}^{\lambda(t, \mathscr{F}_{t-}^{N})} \Pi(dt, dx) \middle| \mathscr{F}_{t-}^{N}\right] = \lambda\left(t, \mathscr{F}_{t-}^{N}\right) dt.$$

→ < @ > < E > < E > E

Introduction	Point process	Microscopic measure	Expectation measure	Coming back to our examples	Summary
		00			
The system					
Random	system				

The measure U satisfies the following system a.s.

$$\begin{cases} (\partial_t + \partial_s) \{ U(dt, ds) \} + \left(\int_{x=0}^{\lambda(t, \mathscr{F}_{t-}^N)} \Pi(dt, dx) \right) U(t, ds) = 0, \\ U(dt, 0) = \int_{s \in \mathbb{R}} \left(\int_{x=0}^{\lambda(t, \mathscr{F}_{t-}^N)} \Pi(dt, dx) \right) U(t, ds), \end{cases}$$

in the weak sense with initial condition $\lim_{t\to 0^+} U(t,\cdot)=\delta_{-T_0}.$ $(-T_0$ is the age at time 0)

Technical difficulty

Product of measures

・ロト ・個ト ・モト ・モン

Introduction	Point process	Microscopic measure	Expectation measure	Coming back to our examples	Summary
		00			
The system					
Random	system				

The measure U satisfies the following system a.s.

$$\begin{cases} (\partial_t + \partial_s) \{ U(dt, ds) \} + \left(\int_{x=0}^{\lambda(t, \mathscr{F}_{t-}^N)} \Pi(dt, dx) \right) U(t, ds) = 0, \\ U(dt, 0) = \int_{s \in \mathbb{R}} \left(\int_{x=0}^{\lambda(t, \mathscr{F}_{t-}^N)} \Pi(dt, dx) \right) U(t, ds), \end{cases}$$

in the weak sense with initial condition $\lim_{t\to 0^+} U(t,\cdot) = \delta_{-T_0}$. (-T_0 is the age at time 0)

Technical difficulty

Product of measures

Parametrized families of measures U(t, ds) and U(dt, s), e.g.

$$U(t,ds) = \delta_{S_{t-}}(ds)$$

イロト 不得下 不同下 不可下

Introduction	Point process	Microscopic measure	Expectation measure	Coming back to our examples	Summary
		00			
The system					
Random	system				

The measure U satisfies the following system a.s.

$$\begin{cases} (\partial_t + \partial_s) \{ U(dt, ds) \} + \left(\int_{x=0}^{\lambda(t, \mathscr{F}_{t-}^N)} \Pi(dt, dx) \right) U(t, ds) = 0, \\ U(dt, 0) = \int_{s \in \mathbb{R}} \left(\int_{x=0}^{\lambda(t, \mathscr{F}_{t-}^N)} \Pi(dt, dx) \right) U(t, ds), \end{cases}$$

in the weak sense with initial condition $\lim_{t\to 0^+} U(t,\cdot) = \delta_{-T_0}$. (-T₀ is the age at time 0)

Technical difficulty

Product of measures

Parametrized families of measures U(t, ds) and U(dt, s), e.g.

$$U(t, ds) = \delta_{S_{t-}}(ds)$$

• Fubini property: U(t, ds)dt = U(dt, s)ds = U(dt, ds).

Introduction	Point process	Microscopic measure	Expectation measure	Coming back to our examples	Summary

Outline

Introduction

Point process

B Microscopic measure

4 Expectation measure

- Technical construction
- The system
- Population-based version

5 Coming back to our examples

Definition

$$\int \varphi(t,s)u(t,ds) = \mathbb{E}\left[\int \varphi(t,s)U(t,ds)\right],$$
$$\int \varphi(t,s)u(dt,s) = \mathbb{E}\left[\int \varphi(t,s)U(dt,s)\right].$$

Definition

$$\int \varphi(t,s)u(t,ds) = \mathbb{E}\left[\int \varphi(t,s)U(t,ds)\right],$$
$$\int \varphi(t,s)u(dt,s) = \mathbb{E}\left[\int \varphi(t,s)U(dt,s)\right].$$

Stronger assumption

We need the intensity to be L^1_{loc} in expectation.

Introduction	Point process	Microscopic measure	Expectation measure	Coming back to our examples	Summary
			0000		
Technical cons	truction				
Taking t	he expecta [.]	tion			

Definition

$$\int \varphi(t,s)u(t,ds) = \mathbb{E}\left[\int \varphi(t,s)U(t,ds)\right],$$
$$\int \varphi(t,s)u(dt,s) = \mathbb{E}\left[\int \varphi(t,s)U(dt,s)\right].$$

Stronger assumption

We need the intensity to be L^1_{loc} in expectation.

Property $U(t, ds) = \delta_{S_{t-}}(ds).$

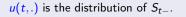
Definition

$$\int \varphi(t,s)u(t,ds) = \mathbb{E}\left[\int \varphi(t,s)U(t,ds)\right],$$
$$\int \varphi(t,s)u(dt,s) = \mathbb{E}\left[\int \varphi(t,s)U(dt,s)\right].$$

Stronger assumption

We need the intensity to be L_{loc}^1 in expectation.

Property



ヘロマ ふぼう ヘヨマ ヘロマ

э

Introduction	Point process	Microscopic measure	Expectation measure	Coming back to our examples	Summary
			0000		
The system					
Svstem i	n expectat	ion			

Let $(\lambda(t, \mathscr{F}_{t-}^N))_{t>0}$ be some non negative predictable process which is L^1_{loc} a.s. The measure U satisfies the following system,

$$\begin{cases} (\partial_t + \partial_s) \{ U(dt, ds) \} + \left(\int_{x=0}^{\lambda(t, \mathscr{F}_{t-}^N)} \Pi(dt, dx) \right) U(t, ds) = 0, \\ U(dt, 0) = \int_{s \in \mathbb{R}} \left(\int_{x=0}^{\lambda(t, \mathscr{F}_{t-}^N)} \Pi(dt, dx) \right) U(t, ds), \end{cases}$$

in the weak sense with initial condition $\lim_{t\to 0^+} U(t,\cdot) = \delta_{-T_0}$.

There are two (highly correlated) random measures: U and Π.

э

Introduction	Point process	Microscopic measure	Expectation measure	Coming back to our examples	Summary
			0000		
The system					
System i	n expectat	ion			

Let $(\lambda(t, \mathscr{F}_{t-}^{N}))_{t>0}$ be some non negative predictable process which is L^{1}_{loc} in expectation, and which admits a finite mean. The measure u satisfies the following system,

$$\begin{cases} (\partial_t + \partial_s)u(dt, ds) + \rho_{\lambda, \mathbb{P}_0}(t, s)u(dt, ds) = 0, \\ u(dt, 0) = \int_{s \in \mathbb{R}} \rho_{\lambda, \mathbb{P}_0}(t, s)u(t, ds) dt, \end{cases}$$

in the weak sense where $\rho_{\lambda,\mathbb{P}_0}(t,s) = \mathbb{E} \left[\lambda \left(t, \mathscr{F}_{t-}^N \right) | S_{t-} = s \right]$ for almost every t. The initial condition $\lim_{t\to 0^+} u(t,\cdot)$ is given by the distribution of $-T_0$.

(日) (四) (三) (三) (三)

- We deal with the equations in the weak sense.
- The terms that do not involve the spiking measure by easy to deal with.

$$\sum_{x=0}^{\lambda\left(t,\mathscr{F}_{t-}^{N}
ight)}\Pi\left(dt,dx
ight)$$
 are



- We deal with the equations in the weak sense.
- The terms that do not involve the spiking measure $\int_{x=0}^{x_{i}}$ easy to deal with.

$$\sum_{x=0}^{\lambda(t,\mathscr{F}_{t-}^{N})} \Pi(dt,dx)$$
 are

$$\int_{t}\int_{s}\varphi(t,s)\,U(t,ds)\left(\int_{x=0}^{\lambda\left(t,\mathscr{F}_{t-}^{N}\right)}\Pi\left(dt,dx\right)\right)$$

- We deal with the equations in the weak sense.
- The terms that do not involve the spiking measure $\int_{x=0}^{x_{(x)}}$ easy to deal with.

$$\sum_{x=0}^{\lambda(t,\mathscr{F}_{t-}^{N})} \Pi(dt,dx)$$
 are

$$\int_{t} \int_{s} \varphi(t,s) U(t,ds) \left(\int_{x=0}^{\lambda(t,\mathscr{F}_{t-}^{N})} \Pi(dt,dx) \right)$$

- We deal with the equations in the weak sense.
- The terms that do not involve the spiking measure $\int_{x=0}^{x_{c+1}}$ easy to deal with.

$$\sum_{k=0}^{\infty} \prod(dt, dx)$$
 are

$$\int_{t} \varphi(t, S_{t-}) \left(\int_{x=0}^{\lambda(t, \mathscr{F}_{t-}^{N})} \Pi(dt, dx) \right)$$

- We deal with the equations in the weak sense.
- The terms that do not involve the spiking measure $\int_{x=1}^{x}$ easy to deal with.

$$\sum_{k=0}^{\infty} \prod(dt, dx)$$
 are

$$\mathbb{E}\left[\int_{t} \varphi(t, S_{t-}) \left(\int_{x=0}^{\lambda(t, \mathscr{F}_{t-}^{N})} \Pi(dt, dx)\right)\right]$$

- We deal with the equations in the weak sense.
- The terms that do not involve the spiking measure easy to deal with.

$$\sum_{x=0}^{\lambda(t,\mathscr{F}_{t-}^{N})} \Pi(dt,dx)$$
 are

$$\mathbb{E}\left[\int_{t} \varphi(t, S_{t-}) \lambda\left(t, \mathscr{F}_{t-}^{N}\right) dt\right]$$

- We deal with the equations in the weak sense.
- The terms that do not involve the spiking measure $\int_{x=0}^{\lambda(t,\mathscr{F}_{t-}^{N})} \Pi(dt, dx)$ are easy to deal with.

$$\mathbb{E}\left[\int_{t} \varphi(t, S_{t-}) \lambda\left(t, \mathscr{F}_{t-}^{N}\right) dt\right] = \mathbb{E}\left[\int_{t} \varphi(t, S_{t-}) \mathbb{E}\left[\lambda\left(t, \mathscr{F}_{t-}^{N}\right) \middle| S_{t-}\right] dt\right]$$

- We deal with the equations in the weak sense.
- The terms that do not involve the spiking measure $\int_{x=0}^{\lambda(t,\mathscr{F}_{t-}^{N})} \Pi(dt, dx)$ are easy to deal with.

$$\mathbb{E}\left[\int_{t} \varphi(t, S_{t-}) \lambda\left(t, \mathscr{F}_{t-}^{N}\right) dt\right] = \mathbb{E}\left[\int_{t} \varphi(t, S_{t-}) - \rho_{\lambda, \mathbb{P}_{0}}(t, S_{t-}) - dt\right]$$

- We deal with the equations in the weak sense.
- The terms that do not involve the spiking measure $\int_{x=0}^{\lambda(t,\mathscr{F}_{t-}^{N})} \Pi(dt, dx)$ are easy to deal with.

$$\mathbb{E}\left[\int_{t} \varphi(t, S_{t-})\lambda\left(t, \mathscr{F}_{t-}^{N}\right) dt\right] = \mathbb{E}\left[\int_{t} \varphi(t, S_{t-}) \quad \rho_{\lambda, \mathbb{P}_{0}}(t, S_{t-}) \quad dt\right]$$
$$= \int_{t} \int_{s} \varphi(t, s)\rho_{\lambda, \mathbb{P}_{0}}(t, s) u(t, ds) dt.$$

Introduction	Point process	Microscopic measure	Expectation measure	Coming back to our examples	Summary
			0000		
Population-base	ed version				
Law of la	rge numbe	ers			

Law of large numbers.

- Law of large numbers.
- Population-based approach.

Introduction	Point process	Microscopic measure	Expectation measure	Coming back to our examples	Summary				
			0000						
Population-bas	Population-based version								
Law of la	arge numbe	ers							

- Law of large numbers.
- Population-based approach.

Let $(N^i)_{i\geq 1}$ be some i.i.d. point processes on \mathbb{R} with L^1_{loc} intensity in expectation. For each i, let $(S^i_{t-})_{t>0}$ denote the age process associated to N^i . Then, for every test function φ ,

$$\int \varphi(t,s)\left(\frac{1}{n}\sum_{i=1}^n \delta_{S_{t-}^i}(ds)\right) dt \xrightarrow[n\to\infty]{a.s.} \int \varphi(t,s)u(dt,ds),$$

with u satisfying the deterministic system.

Introduction	Point process	Microscopic measure	Expectation measure	Coming back to our examples	Summary				
			0000						
Population-bas	Population-based version								
Law of la	arge numbe	ers							

- Law of large numbers.
- Population-based approach.

Let $(N^i)_{i\geq 1}$ be some i.i.d. point processes on \mathbb{R} with L^1_{loc} intensity in expectation. For each i, let $(S^i_{t-})_{t>0}$ denote the age process associated to N^i . Then, for every test function φ ,

$$\int \varphi(t,s)\left(\frac{1}{n}\sum_{i=1}^n \delta_{S_{t-}^i}(ds)\right) dt \xrightarrow[n\to\infty]{a.s.} \int \varphi(t,s)u(dt,ds),$$

with u satisfying the deterministic system.

Idea of proof

Thinning inversion Theorem \Rightarrow recover some Poisson measures $(\Pi^i)_{i\geq 1}$ and microscopic measures $(U^i)_{i\geq 1}$.

(日) (四) (日) (日)

Introduction	Point process	Microscopic measure	Expectation measure	Coming back to our examples	Summary

Outline

Introduction

- Point process
- **B** Microscopic measure
- Expectation measure
- **5** Coming back to our examples
 - Direct application
 - Linear Hawkes process

Introduction	Point process	Microscopic measure	Expectation measure	Coming back to our examples	Summary
				000000	
Direct applicati	ion				
Review o	f the exam	ples			

The system in expectation

$$\begin{cases} (\partial_t + \partial_s) u(dt, ds) + \rho_{\lambda, \mathbb{P}_0}(t, s) u(dt, ds) = 0, \\ u(dt, 0) = \int_{s \in \mathbb{R}} \rho_{\lambda, \mathbb{P}_0}(t, s) u(t, ds) dt. \end{cases}$$

where $\rho_{\lambda,\mathbb{P}_{0}}(t,s) = \mathbb{E}\left[\lambda\left(t,\mathscr{F}_{t-}^{N}\right) \middle| S_{t-}=s\right]$.

Introduction	Point process	Microscopic measure	Expectation measure	Coming back to our examples	Summary
				000000	
Direct applicati	ion				
Review o	f the exam	ples			

The system in expectation

$$\begin{cases} (\partial_t + \partial_s) u(dt, ds) + \rho_{\lambda, \mathbb{P}_0}(t, s) u(dt, ds) = 0, \\ u(dt, 0) = \int_{s \in \mathbb{R}} \rho_{\lambda, \mathbb{P}_0}(t, s) u(t, ds) dt. \end{cases}$$

where $\rho_{\lambda, \mathbb{P}_0}(t, s) = \mathbb{E} \left[\lambda \left(t, \mathscr{F}_{t-}^N \right) | S_{t-} = s \right]. \end{cases}$

・ロト ・四ト ・ヨト ・ヨト ・ヨ

- This result may seem OK to a probabilist,
- But analysts need some explicit expression for ρ .

Introduction	Point process	Microscopic measure	Expectation measure	Coming back to our examples	Summary
				000000	
Direct applicati	ion				
Review o	f the exam	ples			

The system in expectation

$$\begin{cases} (\partial_t + \partial_s) u(dt, ds) + \rho_{\lambda, \mathbb{P}_0}(t, s) u(dt, ds) = 0, \\ u(dt, 0) = \int_{s \in \mathbb{R}} \rho_{\lambda, \mathbb{P}_0}(t, s) u(t, ds) dt. \end{cases}$$

where $\rho_{\lambda,\mathbb{P}_{0}}(t,s) = \mathbb{E}\left[\lambda\left(t,\mathscr{F}_{t-}^{N}\right) \middle| S_{t-}=s\right]$.

- This result may seem OK to a probabilist,
- But analysts need some explicit expression for ρ .
- In particular, this system may seem linear, but it is non-linear in general.

Introduction	Point process	Microscopic measure	Expectation measure	Coming back to our examples	Summary
				000000	
Direct applicati	ion				
Review o	f the exam	ples			

The system in expectation

$$\begin{cases} (\partial_t + \partial_s) u(dt, ds) + \rho_{\lambda, \mathbb{P}_0}(t, s) u(dt, ds) = 0, \\ u(dt, 0) = \int_{s \in \mathbb{R}} \rho_{\lambda, \mathbb{P}_0}(t, s) u(t, ds) dt. \end{cases}$$

where $\rho_{\lambda,\mathbb{P}_{0}}(t,s) = \mathbb{E}\left[\lambda\left(t,\mathscr{F}_{t-}^{N}\right) \middle| S_{t-}=s\right]$.

- This result may seem OK to a probabilist,
- But analysts need some explicit expression for ρ .
- In particular, this system may seem linear, but it is non-linear in general.
- Poisson process.
- Renewal process.

$$\rightarrow \ \rho_{\lambda,\mathbb{P}_{\mathbf{0}}}(t,s) = f(t).$$
$$\rightarrow \ \rho_{\lambda,\mathbb{P}_{\mathbf{0}}}(t,s) = f(s).$$

Introduction	Point process	Microscopic measure	Expectation measure	Coming back to our examples	Summary
				000000	
Direct applicati	ion				
Review o	f the exam	ples			

The system in expectation

$$\begin{cases} (\partial_t + \partial_s) u(dt, ds) + \rho_{\lambda, \mathbb{P}_0}(t, s) u(dt, ds) = 0, \\ u(dt, 0) = \int_{s \in \mathbb{R}} \rho_{\lambda, \mathbb{P}_0}(t, s) u(t, ds) dt. \end{cases}$$

where $\rho_{\lambda,\mathbb{P}_{0}}(t,s) = \mathbb{E}\left[\lambda\left(t,\mathscr{F}_{t-}^{N}\right) \middle| S_{t-}=s\right]$.

- This result may seem OK to a probabilist,
- But analysts need some explicit expression for ρ .
- In particular, this system may seem linear, but it is non-linear in general.
- Poisson process.
- Renewal process.
- Hawkes process.

- $\rightarrow \rho_{\lambda,\mathbb{P}_{0}}(t,s) = f(t).$ $\rightarrow \rho_{\lambda,\mathbb{P}_{0}}(t,s) = f(s).$
- $ightarrow
 ho_{\lambda,\mathbb{P}_0}$ is much more complex.

Introduction	Point process	Microscopic measure	Expectation measure	Coming back to our examples	Summary
				000000	
Linear Hawkes	process				
Overview	of the res	ults			

$$\int_{-\infty}^{t-} h(t-x)N(dx) \quad \longleftrightarrow \quad \int_{0}^{t} d(x)m(t-x)dx = X(t).$$

Introduction		Microscopic measure	Expectation measure	Coming back to our examples	Summary
Linear Hawkes	process				
Overview	of the res	ults			

$$\int_{-\infty}^{t-} h(t-x)N(dx) \quad \longleftrightarrow \quad \int_{0}^{t} d(x)m(t-x)dx = X(t).$$

What we expected

Replacement of p(s, X(t)) by

$$\mathbb{E}\left[\lambda(t,\mathscr{F}_{t-}^{N})\right] = \mu + \int_{0}^{t} h(t-x) u(dx,0) \longleftrightarrow X(t)$$

Introduction		Microscopic measure	Expectation measure	Coming back to our examples	Summary
Linear Hawkes	process				
Overview	of the res	ults			

$$\int_{-\infty}^{t-} h(t-x)N(dx) \quad \longleftrightarrow \quad \int_{0}^{t} d(x)m(t-x)dx = X(t).$$

What we expected

Replacement of p(s, X(t)) by

$$\mathbb{E}\left[\lambda(t,\mathscr{F}_{t-}^{N})\right] = \mu + \int_{0}^{t} h(t-x) u(dx,0) \longleftrightarrow X(t)$$

What we find

p(s, X(t)) is replaced by $\rho_{\lambda, \mathbb{P}_0}(t, s)$ which is the conditional expectation, not the full expectation.

Introduction		Microscopic measure	Expectation measure	Coming back to our examples	Summary
Linear Hawkes	process				
Overview	of the res	ults			

$$\int_{-\infty}^{t-} h(t-x)N(dx) \quad \longleftrightarrow \quad \int_{0}^{t} d(x)m(t-x)dx = X(t).$$

What we expected

Replacement of p(s, X(t)) by

$$\mathbb{E}\left[\lambda(t,\mathscr{F}_{t-}^{N})\right] = \mu + \int_{0}^{t} h(t-x) u(dx,0) \longleftrightarrow X(t)$$

What we find

p(s, X(t)) is replaced by $\rho_{\lambda, \mathbb{P}_0}(t, s)$ which is the conditional expectation, not the full expectation.

Technical difficulty

 $\rho_{\lambda,\mathbb{P}_{\mathbf{0}}}\left(t,s\right) = \mathbb{E}\left[\lambda\left(t,\mathscr{F}_{t-}^{N}\right) \middle| S_{t-} = s\right] \text{ is not so easy to compute.}$

・ロト ・聞ト ・ヨト ・ヨト

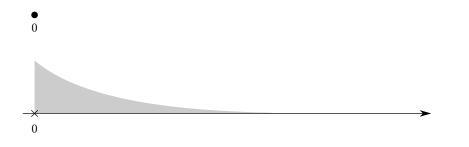
Introduction	Point process	Microscopic measure	Expectation measure	Coming back to our examples	Summary
0000		00	0000	000000	
Linear Hawkes	process				
Cluster p	rocess				

$$\lambda(t,\mathscr{F}_{t-}^{N}) = \mu + \int_{0}^{t-} h(t-v)N(dv) = \mu + \sum_{\substack{V \in N \\ V < t}} h(t-V)$$

• 0

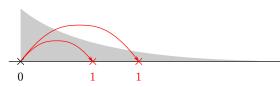
Introduction	Point process	Microscopic measure	Expectation measure	Coming back to our examples	Summary
0000		00	0000	000000	
Linear Hawkes	process				
Cluster p	rocess				

$$\lambda(t,\mathscr{F}_{t-}^{N}) = \mu + \int_{0}^{t-} h(t-v)N(dv) = \mu + \sum_{\substack{V \in N \\ V < t}} h(t-V)$$



2	0000	00		0000
				Linear Hawkes
			rocess	Cluster n
			rocess	Cluster p

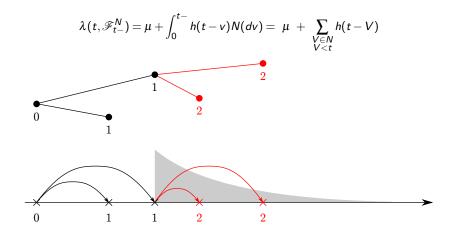
$$\lambda(t,\mathscr{F}_{t-}^{N}) = \mu + \int_{0}^{t-} h(t-v)N(dv) = \mu + \sum_{\substack{V \in N \\ V < t}} h(t-V)$$



2	0000	00		0000
				Linear Hawkes
			rocess	Cluster n
			rocess	Cluster p

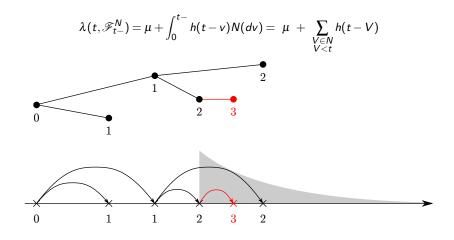
$$\lambda(t,\mathscr{F}_{t-}^{N}) = \mu + \int_{0}^{t-} h(t-v)N(dv) = \mu + \sum_{\substack{V \in N \\ V < t}} h(t-V)$$

	Point process				Summary
0000		00	0000	000000	
Linear Hawkes	process				
Cluster p	rocess				



・ロト ・個ト ・ヨト ・ヨト

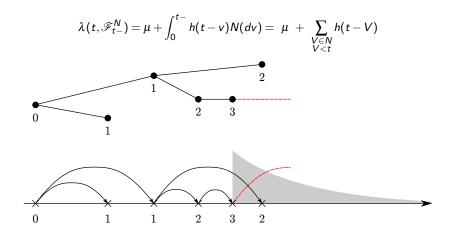
Introduction	Point process	Microscopic measure	Expectation measure	Coming back to our examples	Summary
				000000	
Linear Hawkes	process				
Cluster p	rocess				



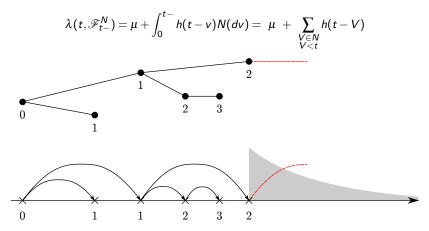
æ

・ロト ・四ト ・ヨト ・ヨト

Introduction	Point process	Microscopic measure	Expectation measure	Coming back to our examples	Summary
				000000	
Linear Hawkes	process				
Cluster p	rocess				



・ロト ・個ト ・ヨト ・ヨト



• Cluster process N_c associated to h: The set of points of generation greater than 1.

• number of children $\sim \mathscr{P}(||h||_1)$: $||h||_1 < 1 \Rightarrow N_c$ is finite a.s.

3

- Recall that: $N_- = N \cap (-\infty, 0]$ and $N_+ = N \cap (0, +\infty)$.
- N_{-} is a point process on \mathbb{R}_{-} distributed according to \mathbb{P}_{0} .

- Recall that: $N_- = N \cap (-\infty, 0]$ and $N_+ = N \cap (0, +\infty)$.
- N_{-} is a point process on \mathbb{R}_{-} distributed according to \mathbb{P}_{0} .
- $(N_1^T)_{T \in N_-}$ is a sequence of independent Poisson processes with respective intensities $\lambda_T(v) = h(v T) \mathbb{1}_{(0,\infty)}(v)$.

- Recall that: $N_- = N \cap (-\infty, 0]$ and $N_+ = N \cap (0, +\infty)$.
- N_{-} is a point process on \mathbb{R}_{-} distributed according to \mathbb{P}_{0} .
- $(N_1^T)_{T \in N_-}$ is a sequence of independent Poisson processes with respective intensities $\lambda_T(v) = h(v T) \mathbb{1}_{(0,\infty)}(v)$.
- $\left(N_{c}^{T,V}\right)_{V \in N_{1}^{T}, T \in N_{-}}$ is a sequence of <u>independent</u> cluster processes associated to *h*.

- Recall that: $N_- = N \cap (-\infty, 0]$ and $N_+ = N \cap (0, +\infty)$.
- N_{-} is a point process on \mathbb{R}_{-} distributed according to \mathbb{P}_{0} .
- $(N_1^T)_{T \in N_-}$ is a sequence of independent Poisson processes with respective intensities $\lambda_T(v) = h(v T) \overline{\mathbb{1}_{(0,\infty)}(v)}$.
- $\left(N_c^{T,V}\right)_{V \in N_1^T, T \in N_-}$ is a sequence of <u>independent</u> cluster processes associated to *h*.

$$N_{\leq 0} = N_{-} \cup \left(\bigcup_{T \in N_{-}} N_{1}^{T} \cup \left(\bigcup_{V \in N_{1}^{T}} V + N_{c}^{T,V} \right) \right).$$
(1)

The process $N_{\leq 0}$ admits $t \mapsto \int_{-\infty}^{t-} h(t-x) N_{\leq 0}(dx)$ as an intensity on $(0,\infty)$.

• Recall that: $N_- = N \cap (-\infty, 0]$ and $N_+ = N \cap (0, +\infty)$.

$$N_{\leq 0} = N_{-} \cup \left(\bigcup_{T \in N_{-}} N_{1}^{T} \cup \left(\bigcup_{V \in N_{1}^{T}} V + N_{c}^{T,V} \right) \right).$$
(1)

The process $N_{\leq 0}$ admits $t \mapsto \int_{-\infty}^{t-} h(t-x) N_{\leq 0}(dx)$ as an intensity on $(0,\infty)$.

• μ is a positive constant.

• Recall that: $N_- = N \cap (-\infty, 0]$ and $N_+ = N \cap (0, +\infty)$.

$$N_{\leq 0} = N_{-} \cup \left(\bigcup_{T \in N_{-}} N_{1}^{T} \cup \left(\bigcup_{V \in N_{1}^{T}} V + N_{c}^{T,V} \right) \right).$$
(1)

(日) (四) (三) (三) (三)

э

The process $N_{\leq 0}$ admits $t \mapsto \int_{-\infty}^{t-} h(t-x) N_{\leq 0}(dx)$ as an intensity on $(0,\infty)$.

- μ is a positive constant.
- N_{anc} is a Poisson process with intensity $\lambda(t) = \mu \mathbb{1}_{(0,\infty)}(t)$.

• Recall that: $N_- = N \cap (-\infty, 0]$ and $N_+ = N \cap (0, +\infty)$.

$$N_{\leq 0} = N_{-} \cup \left(\bigcup_{T \in N_{-}} N_{1}^{T} \cup \left(\bigcup_{V \in N_{1}^{T}} V + N_{c}^{T,V} \right) \right).$$
(1)

э

The process $N_{\leq 0}$ admits $t \mapsto \int_{-\infty}^{t-} h(t-x) N_{\leq 0}(dx)$ as an intensity on $(0,\infty)$.

- µ is a positive constant.
- N_{anc} is a Poisson process with intensity $\lambda(t) = \mu \mathbb{1}_{(0,\infty)}(t)$.
- $(N_c^X)_{X \in N_{anc}}$ is a sequence of independent cluster processes associated to h.

Recall that: $N_- = N \cap (-\infty, 0]$ and $N_+ = N \cap (0, +\infty)$.

$$N_{\leq 0} = N_{-} \cup \left(\bigcup_{T \in N_{-}} N_{1}^{T} \cup \left(\bigcup_{V \in N_{1}^{T}} V + N_{c}^{T,V} \right) \right).$$
(1)

The process $N_{\leq 0}$ admits $t \mapsto \int_{-\infty}^{t-} h(t-x) N_{\leq 0}(dx)$ as an intensity on $(0,\infty)$.

- µ is a positive constant.
- N_{anc} is a Poisson process with intensity $\lambda(t) = \mu \mathbb{1}_{(0,\infty)}(t)$.
- $(N_c^X)_{X \in N_{anc}}$ is a sequence of independent cluster processes associated to h.

$$N_{>0} = N_{anc} \cup \left(\bigcup_{X \in N_{anc}} X + N_c^X\right).$$
⁽²⁾

3

The process $N_{>0}$ admits $t \mapsto \mu + \int_0^{t-} h(t-x) N_{>0}(dx)$ as an intensity on $(0,\infty)$.

Introduction	Point process	Microscopic measure	Expectation measure	Coming back to our examples	Summary
				0000000	
Linear Hawkes	process				

Cluster decomposition of the linear Hawkes process

$$N_{\leq 0} = N_{-} \cup \left(\bigcup_{T \in N_{-}} N_{1}^{T} \cup \left(\bigcup_{V \in N_{1}^{T}} V + N_{c}^{T,V} \right) \right).$$
(1)

The process $N_{\leq 0}$ admits $t \mapsto \int_{-\infty}^{t-} h(t-x) N_{\leq 0}(dx)$ as an intensity on $(0,\infty)$.

$$N_{>0} = N_{anc} \cup \left(\bigcup_{X \in N_{anc}} X + N_c^X\right).$$
⁽²⁾

The process $N_{>0}$ admits $t \mapsto \mu + \int_0^{t-} h(t-x) N_{>0}(dx)$ as an intensity on $(0,\infty)$.

Proposition (Hawkes, 1974)

The processes $N_{\leq 0}$ and $N_{>0}$ are independent and

$$\textit{N} = \textit{N}_{\leq 0} \cup \textit{N}_{>0}$$

has intensity on $(0,\infty)$ given by

$$\lambda(t,\mathscr{F}_{t-}^{N})=\mu+\int_{-\infty}^{t-}h(t-x)N(dx).$$

 $ho_{\lambda,\mathbb{P}_0}(t,s)=
ho_{\mathbb{P}_0}^{\mu,h}(t,s)$ (in this case) is hard to compute directly. We prefer

$$\Phi_{\mathbb{P}_{\mathbf{0}}}^{\mu,h}(t,s) = \mathbb{E}\left[\lambda(t,\mathscr{F}_{t-}^{N})\Big|S_{t-}\geq s
ight]$$

$$\mathscr{E}_{t,s}(N) = \{N \cap (t-s,t) = \emptyset\} = \{S_{t-} \ge s\}.$$

 $ho_{\lambda,\mathbb{P}_0}(t,s)=
ho_{\mathbb{P}_0}^{\mu,h}(t,s)$ (in this case) is hard to compute directly. We prefer

$$\Phi_{\mathbb{P}_{0}}^{\mu,h}(t,s) = \mathbb{E}\left[\lambda(t,\mathscr{F}_{t-}^{N})\middle|\mathscr{E}_{t,s}(N)\right]$$

$$\mathscr{E}_{t,s}(N) = \{N \cap (t-s,t) = \emptyset\} = \{S_{t-} \ge s\}.$$

 $ho_{\lambda,\mathbb{P}_0}(t,s) =
ho_{\mathbb{P}_0}^{\mu,h}(t,s)$ (in this case) is hard to compute directly. We prefer

$$\begin{aligned} \Phi_{\mathbb{P}_{0}}^{\mu,h}(t,s) &= \mathbb{E}\left[\lambda(t,\mathscr{F}_{t-}^{N})\Big|\mathscr{E}_{t,s}(N)\right] \\ &= \mathbb{E}\left[\mu + \int_{0}^{t-} h(t-x)N_{>0}(dx)\Big|\mathscr{E}_{t,s}(N_{>0})\right] \\ &+ \mathbb{E}\left[\int_{-\infty}^{t-} h(t-v)N_{\leq 0}(dv)\Big|\mathscr{E}_{t,s}(N_{\leq 0})\right] \end{aligned}$$

$$\mathscr{E}_{t,s}(N) = \{N \cap (t-s,t) = \emptyset\} = \{S_{t-} \ge s\}.$$

 $ho_{\lambda,\mathbb{P}_0}(t,s) =
ho_{\mathbb{P}_0}^{\mu,h}(t,s)$ (in this case) is hard to compute directly. We prefer

$$\begin{split} \Phi_{\mathbb{P}_{0}}^{\mu,h}(t,s) &= \mathbb{E}\left[\lambda(t,\mathscr{F}_{t-}^{N})\middle|\mathscr{E}_{t,s}(N)\right] \\ &= \mathbb{E}\left[\mu + \int_{0}^{t-}h(t-x)N_{>0}(dx)\middle|\mathscr{E}_{t,s}(N_{>0})\right] \\ &+ \mathbb{E}\left[\int_{-\infty}^{t-}h(t-v)N_{\leq 0}(dv)\middle|\mathscr{E}_{t,s}(N_{\leq 0})\right] \\ &= \Phi_{+}^{\mu,h}(t,s) + \Phi_{-\mathbb{P}_{0}}^{\mu,h}(t,s). \end{split}$$

$$\mathscr{E}_{t,s}(N) = \{N \cap (t-s,t) = \emptyset\} = \{S_{t-} \ge s\}.$$

 $ho_{\lambda,\mathbb{P}_0}(t,s)=
ho_{\mathbb{P}_0}^{\mu,h}(t,s)$ (in this case) is hard to compute directly. We prefer

$$\begin{split} \Phi_{\mathbb{P}_{0}}^{\mu,h}(t,s) &= \mathbb{E}\left[\lambda(t,\mathscr{F}_{t-}^{N})\middle|\mathscr{E}_{t,s}(N)\right] \\ &= \mathbb{E}\left[\mu + \int_{0}^{t-}h(t-x)N_{>0}(dx)\middle|\mathscr{E}_{t,s}(N_{>0})\right] \\ &+ \mathbb{E}\left[\int_{-\infty}^{t-}h(t-v)N_{\leq 0}(dv)\middle|\mathscr{E}_{t,s}(N_{\leq 0})\right] \\ &= \Phi_{+}^{\mu,h}(t,s) + \Phi_{-\mathbb{P}_{0}}^{\mu,h}(t,s). \end{split}$$

No general formula available for $\Phi_{-,\mathbb{P}_{0}}^{\mu,h}$. Two cases are studied in the article:

- *N*_− is a Poisson process.
- N_- is a one point process $(N_- = \{T_0\})$.

Introduction	Point process	Microscopic measure 00	Expectation measure	Coming back to our examples ○○○○○●○	Summary
Linear Hawkes	process				
	$\Phi^{\mu,h}_+(t,s) =$	$\mathbb{E}\left[\underbrace{\mu+\int_{0}^{t-}h(t-$	$\left \mathcal{E}_{t,s}(dx)\right $	N>0)].	

Introduction	Point process	Microscopic measure	Expectation measure	Coming back to our examples ○○○○○●○	Summary
Linear Hawkes	process				
	$\Phi^{\mu,h}_+(t,s) =$	$\mathbb{E}\left[\underbrace{\mu+\int_{0}^{t-}h(t-t)\right]$	$\left \mathcal{E}_{t,s}(dx)\right $	$N_{>0}$ = $\mu + L_s^{\mu,h}(t)$.	

Introduction	Point process	Microscopic measure	Expectation measure	Coming back to our examples	Summa
Linear Hawkes	process				
		г	1	7	

$$\Phi^{\mu,h}_+(t,s) = \mathbb{E}\left[\underbrace{\mu + \int_0^{t-} h(t-x)N_{>0}(dx)}_{t-s} \middle| \mathscr{E}_{t,s}(N_{>0}) \right] = \mu + L^{\mu,h}_s(t).$$

Lemma

Let N be a linear Hawkes process with

$$\lambda(t,\mathscr{F}_{t-}^{N})=g(t)+\int_{0}^{t-}h(t-x)N(dx),$$

and $||h||_1 < 1$. Let

$$\begin{cases} L_{s}^{g,h}(x) = \mathbb{E}\left[\int_{0}^{x} h(x-z)N(dz) \middle| \mathscr{E}_{x,s}(N)\right] \\ G_{s}^{g,h}(x) = \mathbb{P}(\mathscr{E}_{x,s}(N)), \end{cases}$$

$$\begin{cases} L_{s}^{g,h}(x) = \int_{0}^{0 \vee (x-s)} \left(h(x-z) + L_{s}^{h,h}(x-z) \right) G_{s}^{h,h}(x-z) g(z) \, dz, \\ G_{s}^{g,h}(x) = \exp\left(-\int_{x-s}^{x} g(v) \, dv \right) \exp\left(-\int_{0}^{x-s} [1 - G_{s}^{h,h}(x-v)] g(v) \, dv \right). \end{cases}$$

Introduction	Point process	Microscopic measure	Expectation measure	Coming back to our examples	Summa
				0000000	
Linear Hawkes	process				
		-		-	
				1	

$$\Phi_{+}^{\mu,h}(t,s) = \mathbb{E}\left[\underbrace{\mu + \int_{0}^{t-} h(t-x)N_{>0}(dx)}_{t-s} \middle| \mathscr{E}_{t,s}(N_{>0}) \right] = \mu + \mathcal{L}_{s}^{\mu,h}(t)$$

Lemma

Let N be a linear Hawkes process with

$$\lambda(t,\mathscr{F}_{t-}^{N})=g(t)+\int_{0}^{t-}h(t-x)N(dx),$$

and $||h||_1 < 1.$ Let

$$\begin{cases} L_s^{g,h}(x) = \mathbb{E}\left[\int_0^x h(x-z)N(dz)\right| \mathscr{E}_{x,s}(N)\right] \\ G_s^{g,h}(x) = \mathbb{P}(\mathscr{E}_{x,s}(N)), \end{cases}$$

$$\begin{cases} L_{s}^{g,h}(x) = \int_{0}^{0 \vee (x-s)} \left(h(x-z) + L_{s}^{h,h}(x-z) \right) G_{s}^{h,h}(x-z) g(z) \, dz, \\ G_{s}^{g,h}(x) = \exp\left(-\int_{x-s}^{x} g(v) \, dv \right) \exp\left(-\int_{0}^{x-s} [1 - G_{s}^{h,h}(x-v)] g(v) \, dv \right). \end{cases}$$

Introduction	Point process	Microscopic measure	Expectation measure	Coming back to our examples 00000●0	Summa
Linear Hawkes	process				
		-		_	

$$\Phi^{\mu,h}_{+}(t,s) = \mathbb{E}\left[\underbrace{\mu + \int_{0}^{t-} h(t-x)N_{>0}(dx)}_{t-s} \middle| \mathscr{E}_{t,s}(N_{>0}) \right] = \mu + \mathcal{L}^{\mu,h}_{s}(t)$$

Lemma

Let N be a linear Hawkes process with

$$\lambda(t,\mathscr{F}_{t-}^{N})=g(t)+\int_{0}^{t-}h(t-x)N(dx),$$

and $||h||_1 < 1.$ Let

$$\begin{cases} L_s^{g,h}(x) = \mathbb{E}\left[\int_0^x h(x-z)N(dz)\right| \mathscr{E}_{x,s}(N)\right] \\ G_s^{g,h}(x) = \mathbb{P}(\mathscr{E}_{x,s}(N)), \end{cases}$$

$$\begin{cases} L_{s}^{g,h}(x) = \int_{0}^{0 \lor (x-s)} \left(h(x-z) + L_{s}^{h,h}(x-z) \right) G_{s}^{h,h}(x-z) g(z) \, dz, \\ G_{s}^{g,h}(x) = \exp\left(-\int_{x-s}^{x} g(v) \, dv \right) \exp\left(-\int_{0}^{x-s} [1 - G_{s}^{h,h}(x-v)] g(v) \, dv \right). \end{cases}$$

Introduction	Point process	Microscopic measure	Expectation measure	Coming back to our examples	Summa
				0000000	
Linear Hawkes	process				
		г	1	7	

$$\Phi_{+}^{\mu,h}(t,s) = \mathbb{E}\left[\underbrace{\mu + \int_{0}^{t-} h(t-x)N_{>0}(dx)}_{t-s} \middle| \mathscr{E}_{t,s}(N_{>0}) \right] = \mu + \mathcal{L}_{s}^{\mu,h}(t)$$

Lemma

Let N be a linear Hawkes process with

$$\lambda(t,\mathscr{F}_{t-}^{N})=g(t)+\int_{0}^{t-}h(t-x)N(dx),$$

and $||h||_1 < 1.$ Let

$$\begin{cases} L_s^{g,h}(x) = \mathbb{E}\left[\int_0^x h(x-z)N(dz)\right| \mathscr{E}_{x,s}(N)\right] \\ G_s^{g,h}(x) = \mathbb{P}(\mathscr{E}_{x,s}(N)), \end{cases}$$

$$\begin{cases} L_{s}^{g,h}(x) = \int_{0}^{0 \vee (x-s)} \left(\frac{h(x-z) + L_{s}^{h,h}(x-z)}{G_{s}^{g,h}(x-z)} \right) G_{s}^{h,h}(x-z)g(z) dz, \\ G_{s}^{g,h}(x) = \exp\left(-\int_{x-s}^{x} g(v) dv \right) \exp\left(-\int_{0}^{x-s} [1 - G_{s}^{h,h}(x-v)]g(v) dv \right). \end{cases}$$

Introduction	Point process	Microscopic measure	Expectation measure	Coming back to our examples	Summary
				000000	
Linear Hawkes	process				
Overview					

• L_s and G_s are characterized by their implicit equations.

Introduction	Point process	Microscopic measure	Expectation measure	Coming back to our examples	Summary
				000000	
Linear Hawkes	process				
Overview					

- L_s and G_s are characterized by their implicit equations.
- $\Phi^{\mu,h}_+(t,s) = \mu + L^{\mu,h}_s(t)$ and $\Phi^{\mu,h}_{-,\mathbb{P}_0}$ (at least in two cases) are known, and so $\Phi^{\mu,h}_{\mathbb{P}_0} = \Phi^{\mu,h}_+ + \Phi^{\mu,h}_{-,\mathbb{P}_0}$.

Introduction	Point process	Microscopic measure	Expectation measure	Coming back to our examples	Summary
				000000	
Linear Hawkes	process				
Overview					

- L_s and G_s are characterized by their implicit equations.
- $\Phi^{\mu,h}_+(t,s) = \mu + L^{\mu,h}_s(t)$ and $\Phi^{\mu,h}_{-,\mathbb{P}_0}$ (at least in two cases) are known, and so $\Phi^{\mu,h}_{\mathbb{P}_0} = \Phi^{\mu,h}_+ + \Phi^{\mu,h}_{-,\mathbb{P}_0}$.
- Remind that $\Phi_{\mathbb{P}_0}^{\mu,h}(t,s) = \mathbb{E}\left[\lambda\left(t,\mathscr{F}_{t-}^N\right) \middle| S_{t-} \ge s\right]$,

Introduction	Point process	Microscopic measure	Expectation measure	Coming back to our examples	Summary
				000000	
Linear Hawkes	process				
Overview					

- L_s and G_s are characterized by their implicit equations.
- $\Phi^{\mu,h}_+(t,s) = \mu + L^{\mu,h}_s(t)$ and $\Phi^{\mu,h}_{-,\mathbb{P}_0}$ (at least in two cases) are known, and so $\Phi^{\mu,h}_{\mathbb{P}_0} = \Phi^{\mu,h}_+ + \Phi^{\mu,h}_{-,\mathbb{P}_0}$.
- Remind that $\Phi_{\mathbb{P}_0}^{\mu,h}(t,s) = \mathbb{E}\left[\lambda\left(t,\mathscr{F}_{t-}^N\right) \middle| S_{t-} \geq s\right]$,
- Hence $\rho_{\mathbb{P}_0}^{\mu,h}(t,s) = \mathbb{E}\left[\lambda\left(t,\mathscr{F}_{t-}^N\right) \middle| S_{t-} = s\right]$ can be recovered as the derivative of $\Phi_{\mathbb{P}_0}^{\mu,h}$.

Introduction	Point process	Microscopic measure	Expectation measure	Coming back to our examples	Summary		
Summary							

Microscopic system.

Introduction	Point process	Microscopic measure	Expectation measure	Coming back to our examples	Summary
Summary	V				

- Microscopic system.
- System in expectation.

Introduction	Point process	Microscopic measure	Expectation measure	Coming back to our examples	Summary
Summan					

- Microscopic system.
- System in expectation.
- Population-based version. No dependence between neurons.

Introduction	Point process	Microscopic measure	Expectation measure	Coming back to our examples	Summary
Summary	V				

- Microscopic system.
- System in expectation.
- Population-based version. No dependence between neurons.

Outlook:

Introduction	Point process	Microscopic measure	Expectation measure	Coming back to our examples	Summary
Summar	V				

- Microscopic system.
- System in expectation.
- Population-based version. No dependence between neurons.

- Outlook:
 - Regularity of u.

Introduction	Point process	Microscopic measure	Expectation measure	Coming back to our examples	Summary
Summary	/				

- Microscopic system.
- System in expectation.
- Population-based version. No dependence between neurons.

- Outlook:
 - Regularity of u.
 - Mean field limit. Propagation of chaos.
 - Multivariate Hawkes processes with weak interaction.

・ロト ・四ト ・ヨト ・ヨト ・ヨ