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Neurobiologic interest
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Action potential: brief and stereotyped phenomenon.

Physiological constraint: refractory period.
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Modelisation

Age structured equations (K. Pakdaman, B. Perthame, D. Salort, 2010)

Age = delay since last spike.

n(t,s) =

{
probability density of finding a neuron with age s at time t.

ratio of the population with age s at time t.
∂n (t,s)

∂ t
+

∂n (t,s)

∂ s
+p (s,X (t))n (t,s) = 0

m (t) := n (t,0) =
∫ +∞

0
p (s,X (t))n (t,s)ds

(PPS)

Parameters

p represents the firing rate. For example, p(s,X ) = 1{s>σ(X )}.

X (t) =
∫ t

0
d(x)m(t−x)dx (global neural activity)

Propagation time. d = delay function. For example, d(x) = e−τx .
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Modelisation

Microscopic modelling

The spiking times are the relevant information.

Microscopic modelling

Time point processes = random countable sets of times (points of R or R+).

N is a random countable set of points of R (or R+) locally finite a.s.

Denote · · ·<T−1 <T0 ≤ 0<T1 < .. . the ordered sequence of points of N.

N(A) = number of points of N in A.

Point measure: N(dt) = ∑i∈Z δTi
(dt). Hence,

∫
f (t)N(dt) = ∑i∈Z f (Ti ).
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Modelisation

Age process

Age = delay since last spike.

Microscopic age

We consider the continuous to the left (hence predictable) version of the
age.

The age at time 0 depends on the spiking times before time 0.

The dynamic is characterized by the spiking times after time 0.
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Overview

Framework

Dichotomy of the behaviour of N with respect to time 0:

N− = N ∩ (−∞,0] is a point process with distribution P0 (initial condition).
The age at time 0 is finite ⇔ N− 6= /0.

N+ = N ∩ (0,+∞) is a point process admitting some intensity λ (t,FN
t−).

Stochastic intensity

Local behaviour: probability to find a new point.

May depend on the past (e.g. refractory period).

Heuristically,

λ (t,FN
t−) = lim

∆t→0

1
∆t

P
(
N ([t,t + ∆t]) = 1 |FN

t−

)
,

where FN
t− denotes the history of N before time t.

λ L1
loc a.s. ⇔ N locally finite a.s. (classic assumption).

p(s,X (t)) and λ (t,FN
t−) are analogous.
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Examples of point processes

Some classical point processes in neuroscience

Poisson process: λ (t,FN
t−) = λ (t) = deterministic function.

Renewal process: λ (t,FN
t−) = f (St−) ⇔ i.i.d. ISIs.

Hawkes process: λ (t,FN
t−) = µ +

∫ t−

−∞

h(t−v)N(dv)

.

h ≥ 0

= µ + ∑
V∈N
V<t

h(t−V ).

We use the SDE representation of these processes induced by Thinning.
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We use the SDE representation of these processes induced by Thinning.
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Thinning

Lewis and Shedler’s Thinning, 1979

: Poisson process

: Poisson process

t0

N
Π is a Poisson process
with intensity 1.

Π(dt,dx) = ∑δX.

E [Π(dt,dx)] = dtdx .

Spatial independence.

λ is deterministic.

N admits λ as an
intensity.
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Thinning

Ogata’s Thinning, 1981

t0

: Poisson process

: Point process N
Π is a Poisson process
with intensity 1.

Π(dt,dx) = ∑δX.

E [Π(dt,dx)] = dtdx .

Spatial independence.

λ is random.

N admits λ as an
intensity.
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Thinning

Thinning

Theorem

Let Π be a (Ft)-Poisson process with intensity 1 on R2
+. Let λ (t,Ft−) be a

non-negative (Ft)-predictable process which is L1
loc a.s. and define the point

process N+ (on (0,∞)) by

N+ (C) =
∫
C×R+

1[0,λ(t,Ft−)] (x) Π(dt,dx) ,

for all C ∈B (R+). Then N+ admits λ (t,Ft−) as a (Ft)-predictable intensity.

Simulation.

Hawkes process: stationarity.
(P. Brémaud, L. Massoulié, ’96)

Hawkes process: mean field limit.
(S. Delattre et al., ’14)

What you should remind

N+(dt) =
∫

λ(t,FN
t−)

x=0
Π(dt,dx) .
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Technical construction

A microscopic analogous to n

n(t, .) is the probability density of the age at time t.

At fixed time t, we are looking at a Dirac mass at St−.

What we need

Random measure U on R2.

Action over test functions: ∀ϕ ∈ C∞
c,b(R2

+),∫
ϕ(t,s)U(dt,ds) =

∫
ϕ(t,St−)dt.

What we define

We construct an ad hoc random measure U which satisfies a system of
stochastic differential equations similar to (PPS).
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The system

Random system

Theorem

Let Π be a Poisson measure. Let
(
λ(t,FN

t−)
)
t>0 be some non negative predictable

process which is L1
loc a.s.

The measure U satisfies the following system a.s.
(∂t + ∂s){U (dt,ds)}+

(∫
λ(t,FN

t−)

x=0
Π(dt,dx)

)
U (t,ds) = 0,

U (dt,0) =
∫
s∈R

(∫
λ(t,FN

t−)

x=0
Π(dt,dx)

)
U (t,ds) ,

in the weak sense with initial condition limt→0+ U(t, ·) = δ−T0 . (−T0 is the age at
time 0)

Technical difficulty

Product of measures

Parametrized families of measures U(t,ds) and U(dt,s), e.g.

U(t,ds) = δSt−(ds)

Fubini property: U(t,ds)dt = U(dt,s)ds = U(dt,ds).
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in the weak sense with initial condition limt→0+ U(t, ·) = δ−T0 . (−T0 is the age at
time 0)

p(s,X (t)) is replaced by
∫
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Π(dt,dx).

E
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Technical construction

Taking the expectation

Can we consider the expectation measure u (dt,ds) = E [U (dt,ds)] ?

Definition ∫
ϕ(t,s)u(t,ds) = E

[∫
ϕ(t,s)U(t,ds)

]
,

∫
ϕ(t,s)u(dt,s) = E

[∫
ϕ(t,s)U(dt,s)

]
.

Stronger assumption

We need the intensity to be L1
loc in expectation.

Property
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u(t, .) is the distribution of St−.
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The system

System in expectation

Theorem

Let
(
λ (t,FN

t−)
)
t>0 be some non negative predictable process which is

L1
loc a.s.

The measure U satisfies the following system,
(∂t + ∂s){U (dt,ds)}+

(∫
λ(t,FN

t−)

x=0
Π(dt,dx)

)
U (t,ds) = 0,

U (dt,0) =
∫
s∈R

(∫
λ(t,FN

t−)

x=0
Π(dt,dx)

)
U (t,ds) ,

in the weak sense with initial condition limt→0+ U(t, ·) = δ−T0 .

There are two (highly correlated) random measures: U and Π.
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The system

System in expectation

Theorem

Let
(
λ (t,FN

t−)
)
t>0 be some non negative predictable process which is

L1
loc in expectation, and which admits a finite mean.

The measure u satisfies the following system,

(∂t + ∂s)u (dt,ds) + ρλ ,P0 (t,s)u (dt,ds) = 0,

u (dt,0) =
∫
s∈R

ρλ ,P0 (t,s)u (t,ds)dt,

in the weak sense where ρλ ,P0 (t,s) = E
[
λ
(
t,FN

t−
)∣∣St− = s

]
for almost

every t. The initial condition limt→0+ u (t, ·) is given by the distribution
of −T0.

There are two (highly correlated) random measures: U and Π.
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The system

Idea of Proof

We deal with the equations in the weak sense.

The terms that do not involve the spiking measure
∫

λ(t,FN
t−)

x=0
Π(dt,dx) are

easy to deal with.

E

[

∫
t

(∫
λ(t,FN

t−)

x=0
Π(dt,dx)

)

]
= E

[∫
t

ϕ (t,St−) dt

]
=

∫
t

∫
s

ϕ(t,s)ρλ ,P0 (t,s)u(t,ds)dt.
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Population-based version

Law of large numbers

Law of large numbers.

Population-based approach.

Theorem

Let (N i )i≥1 be some i.i.d. point processes on R with L1
loc intensity in

expectation. For each i , let
(
S i
t−
)
t>0 denote the age process associated to N i .

Then, for every test function ϕ,

∫
ϕ(t,s)

(
1
n

n

∑
i=1

δS i
t−

(ds)

)
dt

a.s.−−−→
n→∞

∫
ϕ(t,s)u(dt,ds),

with u satisfying the deterministic system.

Idea of proof

Thinning inversion Theorem ⇒ recover some Poisson measures (Πi )i≥1 and
microscopic measures (U i )i≥1.
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Direct application

Review of the examples

The system in expectation(∂t + ∂s)u (dt,ds) + ρλ ,P0 (t,s)u (dt,ds) = 0,

u (dt,0) =
∫
s∈R

ρλ ,P0 (t,s)u (t,ds) dt.

where ρλ ,P0 (t,s) = E
[
λ
(
t,FN

t−
)∣∣St− = s

]
.

This result may seem OK to a probabilist,

But analysts need some explicit expression for ρ.

In particular, this system may seem linear, but it is non-linear in general.

Poisson process.

Renewal process.

Hawkes process.

→ ρλ ,P0 (t,s) = f (t).

→ ρλ ,P0 (t,s) = f (s).

→ ρλ ,P0 is much more complex.
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Linear Hawkes process

Overview of the results

Recall that ∫ t−

−∞

h(t−x)N(dx) ←→
∫ t

0
d(x)m(t−x)dx = X (t).

What we expected

Replacement of p(s,X (t)) by

E
[
λ (t,FN

t−)
]

= µ +
∫ t

0
h (t−x)u(dx ,0)←→ X (t)

What we find

p(s,X (t)) is replaced by ρλ ,P0 (t,s) which is the conditional expectation, not
the full expectation.

Technical difficulty

ρλ ,P0 (t,s) = E
[
λ
(
t,FN

t−
)∣∣St− = s

]
is not so easy to compute.
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Cluster process

λ (t,FN
t−) = µ +

∫ t−

0
h(t−v)N(dv) = µ + ∑

V∈N
V<t

h(t−V )

0

0

Cluster process Nc associated to h: The set of points of generation greater
than 1.

number of children ∼P (||h||1): ||h||1 < 1⇒ Nc is finite a.s.
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Linear Hawkes process

Cluster decomposition of the linear Hawkes process

Recall that: N− = N ∩ (−∞,0] and N+ = N ∩ (0,+∞).

N− is a point process on R− distributed according to P0.

(
NT

1
)
T∈N− is a sequence of independent Poisson processes with respective

intensities λT (v) = h(v −T )1(0,∞)(v).(
NT ,V
c

)
V∈NT

1 ,T∈N−
is a sequence of independent cluster processes

associated to h.

N≤0 = N−∪

 ⋃
T∈N−

NT
1 ∪

 ⋃
V∈NT

1

V +NT ,V
c

 . (1)

The process N≤0 admits t 7→
∫ t−
−∞

h(t−x)N≤0(dx) as an intensity on (0,∞).

N>0 = Nanc ∪

( ⋃
X∈Nanc

X +NX
c

)
. (2)

The process N>0 admits t 7→ µ +
∫ t−
0 h(t−x)N>0(dx) as an intensity on (0,∞).
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Cluster decomposition of the linear Hawkes process

N≤0 = N−∪

 ⋃
T∈N−

NT
1 ∪
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V∈NT

1

V +NT ,V
c

 . (1)

The process N≤0 admits t 7→
∫ t−
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h(t−x)N≤0(dx) as an intensity on (0,∞).

N>0 = Nanc ∪
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X∈Nanc

X +NX
c

)
. (2)

The process N>0 admits t 7→ µ +
∫ t−
0 h(t−x)N>0(dx) as an intensity on (0,∞).

Proposition (Hawkes, 1974)

The processes N≤0 and N>0 are independent and

N = N≤0∪N>0

has intensity on (0,∞) given by

λ (t,FN
t−) = µ +

∫ t−

−∞

h(t−x)N(dx).
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Linear Hawkes process

Coming back to the conditional expectation

ρλ ,P0(t,s) = ρ
µ,h
P0

(t,s) (in this case) is hard to compute directly. We prefer

Φ
µ,h
P0

(t,s) = E
[
λ (t,FN

t−)
∣∣∣St− ≥ s

]

= E
[

µ +
∫ t−

0
h(t−x)N>0(dx)

∣∣∣∣Et,s(N>0)

]
+E
[∫ t−

−∞

h(t−v)N≤0(dv)

∣∣∣∣Et,s(N≤0)

]
= Φ

µ,h
+ (t,s) + Φ

µ,h
−,P0

(t,s).

For any point process N and any real numbers s < t, let

Et,s(N) = {N ∩ (t− s,t) = /0}= {St− ≥ s}.
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µ,h
+ (t,s) + Φ
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No general formula available for Φ
µ,h
−,P0

. Two cases are studied in the article:

N− is a Poisson process.

N− is a one point process (N− = {T0}).
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Linear Hawkes process

Φ
µ,h
+ (t,s) = E

[
µ +

∫ t−

0
h(t−x)N>0(dx)︸ ︷︷ ︸

intensity of N>0

∣∣∣∣∣Et,s(N>0)

]
.

= µ +L
µ,h
s (t).

Lemma

Let N be a linear Hawkes process with

λ (t,FN
t−) = g(t) +

∫ t−

0
h(t−x)N(dx),

and ||h||1 < 1. Let Lg ,hs (x) = E
[∫ x

0
h(x−z)N(dz)

∣∣∣∣Ex ,s(N)

]
Gg ,h
s (x) = P(Ex ,s(N)) ,

for any x ,s ≥ 0. Then, for any x ,s ≥ 0,
Lg ,hs (x) =

∫ 0∨(x−s)

0

(
h (x− z) +Lh,hs (x− z)

)
Gh,h
s (x− z)g(z)dz ,

Gg ,h
s (x) = exp

(
−
∫ x

x−s
g(v)dv

)
exp
(
−
∫ x−s

0
[1−Gh,h

s (x−v)]g(v)dv

)
.
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Φ
µ,h
+ (t,s) = E

[
µ +

∫ t−

0
h(t−x)N>0(dx)︸ ︷︷ ︸

intensity of N>0

∣∣∣∣∣Et,s(N>0)

]

.

= µ +L
µ,h
s (t).

Lemma

Let N be a linear Hawkes process with

λ (t,FN
t−) = g(t) +

∫ t−

0
h(t−x)N(dx),

and ||h||1 < 1. Let Lg ,hs (x) = E
[∫ x

0
h(x−z)N(dz)

∣∣∣∣Ex ,s(N)

]
Gg ,h
s (x) = P(Ex ,s(N)) ,
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Linear Hawkes process

Overview

Ls and Gs are characterized by their implicit equations.

Φ
µ,h
+ (t,s) = µ +L

µ,h
s (t) and Φ

µ,h
−,P0

(at least in two cases) are known, and

so Φ
µ,h
P0

= Φ
µ,h
+ + Φ

µ,h
−,P0

.

Remind that Φ
µ,h
P0

(t,s) = E
[
λ
(
t,FN

t−
)∣∣St− ≥ s

]
,

Hence ρ
µ,h
P0

(t,s) = E
[
λ
(
t,FN

t−
)∣∣St− = s

]
can be recovered as the

derivative of Φ
µ,h
P0

.
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Summary

Microscopic system.

System in expectation.

Population-based version. No dependence between neurons.

Outlook:

I Regularity of u.
I Mean field limit. Propagation of chaos.
I Multivariate Hawkes processes with weak interaction.
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