Detection of dependence patterns with delay

J. Chevallier T. Laloë

LJAD University of Nice

Journées de la SFdS

4 Juin 2015

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ ―臣 …の�?

Introduction	Our method	Simulations	Multiple testing	Overview
000	000	000000		
Biological contex	t			

Structure of a typical neuron

Connected neurons

- Neural network: Interacting cells.
- Information transport via electric pulses: action potentials.

Introduction	Our method	Simulations	Multiple testing	Overview
000	000	000000		
Biological contex	t			

Structure of a typical neuron

Connected neurons

- Neural network: Interacting cells.
- Information transport via electric pulses: action potentials.

After preprocessing, we dispose of M trials of simultaneously recorded spike trains.

With synchronization

- The synchronization phenomenon can occur during sensory-motor tasks.
- The repetition of a given task may give birth to neuronal assemblies.

Goal

Detection of synchronizations.

Introduction	Our method	Simulations	Multiple testing	Overview
000	000	000000		
Statistical analys	is			

- Cross-correlogram (Perkel et al., '67).
- Peristimulus time histogram (PSTH, (Aertsen et al., '89)).

Introduction	Our method	Simulations	Multiple testing	Overview
000				
Statistical analys	is			

- Cross-correlogram (Perkel et al., '67).
- Peristimulus time histogram (PSTH, (Aertsen et al., '89)).
- Unitary events (Grün, '96).

Introduction	Our method	Simulations	Multiple testing	Overview
000	000	000000		
Statistical analys	sis			

- Cross-correlogram (Perkel et al., '67).
- Peristimulus time histogram (PSTH, (Aertsen et al., '89)).
- Unitary events (Grün, '96).

UE method

- Unitary event: spike synchrony that recurs more often than expected.
- The test statistic is based on the *number of coincidences*.
 - Introduced in the PhD thesis of S. Grün ('96).
 - Applied to time discrete data.

Introduction	Our method	Simulations	Multiple testing	Overview
000	000	000000		
Statistical analys	sis			

- Cross-correlogram (Perkel et al., '67).
- Peristimulus time histogram (PSTH, (Aertsen et al., '89)).
- Unitary events (Grün, '96).

UE method

- Unitary event: spike synchrony that recurs more often than expected.
- The test statistic is based on the *number of coincidences*.
 - Introduced in the PhD thesis of S. Grün ('96).
 - Applied to time discrete data.

GAUE method for two neurons (Tuleau-Malot et al., 2014)

- Notion of coincidence transposed to the continuous time framework.
- Independence test between Poisson processes based on this new notion.

Introduction	Our method	Simulations	Multiple testing	Overview
000	000	000000		
Notion of delayed	d coincidences			

- N_1, \ldots, N_n are point processes on [a, b].
- $\mathscr{J} \subset \{1, \dots, n\}$ is a set of indices.

э

・ロッ ・ 理 ・ ・ ヨ ・ ・ 日 ・

а

(□) (@) (E) (E) =

Introduction	Our method	Simulations	Multiple testing	Overview
000	000	000000		
Asymptotic	properties			

Let $(N_1^{(k)}, \dots, N_n^{(k)})_{1 \le k \le M}$ denote a *M*-sample. We compare two estimates.

• CLT
$$\Rightarrow \sqrt{M} \frac{\overline{m} - \mathbb{E}[X_{\mathscr{I}}]}{\sqrt{\mathbb{V}ar(X_{\mathscr{I}})}} \xrightarrow{M \to \infty} \mathscr{N}(0, 1)$$
, where $\overline{m} = \frac{1}{M} \sum_{k=1}^{M} X_{\mathscr{I}}^{(k)}$.

Introduction	Our method	Simulations	Multiple testing	Overview
	000			
Asymptotic p	properties			

Let $(N_1^{(k)}, \ldots, N_n^{(k)})_{1 \le k \le M}$ denote a *M*-sample. We compare two estimates.

•
$$\mathsf{CLT} \Rightarrow \sqrt{M} \frac{\overline{m} - \mathbb{E}[X_{\mathscr{J}}]}{\sqrt{\mathbb{Var}(X_{\mathscr{J}})}} \xrightarrow{M \to \infty} \mathscr{N}(0, 1), \text{ where } \overline{m} = \frac{1}{M} \sum_{k=1}^{M} X_{\mathscr{J}}^{(k)}.$$

• If N_1, \ldots, N_n are Poisson processes with intensities $\lambda_1, \ldots, \lambda_n$, then

$$\begin{cases} \mathbb{E}\left[X_{\mathscr{J}}\right] = m_0((\lambda_i)_i) \\ \mathbb{V}ar\left(X_{\mathscr{J}}\right) = v_0((\lambda_i)_i) \end{cases} \quad \text{under } \mathscr{H}_0. \end{cases}$$

Let us denote

$$\hat{\lambda}_{i} := \frac{1}{M} \sum_{k=1}^{M} \frac{N_{i}^{(k)}([a,b])}{b-a} \text{ and } \begin{cases} \hat{m}_{0} = m_{0}((\hat{\lambda}_{i})_{i}) \\ \hat{v}_{0} = v_{0}((\hat{\lambda}_{i})_{i}). \end{cases}$$

Plug-in step (delta method + Slutsky) $\Rightarrow \sqrt{M} \frac{\overline{m} - \hat{m}_0}{\sqrt{\hat{\sigma}^2}} \xrightarrow{M \to \infty} \mathcal{N}(0, 1)$ where

$$\hat{\sigma}^2 = \hat{v}_0 - (b-a)^{-1} \hat{m}_0^2 \left(\sum_{j \in \mathscr{J}} \hat{\lambda}_j^{-1} \right).$$

< □ > < @ > < ≧ > < ≧ > < ≧ > < ≧

Introduction	Our method	Simulations	Multiple testing	Overview
000	000	000000		
Our indepen	dence test			

Definition

Denote z_{α} the α -quantile of the standard Gaussian distribution. Then the symmetric test Δ_{α} rejects \mathscr{H}_0 when \bar{m} and \hat{m}_0 are too different, that is when

$$\left|\sqrt{M}\frac{(\bar{m}-\hat{m}_0)}{\sqrt{\hat{\sigma}^2}}\right|>z_{1-\alpha/2}.$$

Theorem

If N_1, \ldots, N_n are homogeneous Poisson processes, the test Δ_{α} is of asymptotic level α .

Introduction	Our method	Simulations	Multiple testing	Overview
000	000	00000		
Simulation proce	edure			

- Generate a set of random parameters $(b a, (\lambda_i)_i)$ according to the appropriate Framework;
- **2** Use this set (and $\delta = 10$ ms) to generate *M* trials;
- **3** Compute the different statistics;
- 4 Repeat steps 1 to 3 a thousand times.

Introduction	Our method	Simulations	Multiple testing	Overview
000	000	00000		
Level				

- n = 4 neurons. $\mathscr{J} = \{1, 2, 3, 4\};$
- $b-a \sim \mathscr{U}([0.2, 0.4s]);$
- Independent intensities. $\lambda_i \sim \mathscr{U}([8, 20Hz]);$
- M = 50 (Figure C).

Introduction	Our method	Simulations	Multiple testing	Overview
		000000		
Power				

• Add an injection process \tilde{N} . Intensity: 0.3Hz.

- **α** = 0.05.
- M = 50 (Figure B).

Introduction	Our method	Simulations	Multiple testing	Overview
000	000	000000		
Hawkes processe	s ('71)			

 More realistic than Poisson processes (Goodness of fit tests, Reynaud-Bouret et al., '14).

- More realistic than Poisson processes (Goodness of fit tests, Reynaud-Bouret et al., '14).
- Form of the intensity:

$$\lambda_t^j = \max\left(0, \mu_j + \sum_{i=1}^n \int_{s < t} h_{ij}(t-s) N^i(ds)\right).$$

ヘロト ヘロト ヘヨト ヘヨト

э

- spontaneous rate $\mu_j \ge 0$.
- interaction function h_{ii} : influence of neuron *i* over neuron *j*.
 - Either excitatory or inhibitory phenomena.
 - Strict refractory period. $(h_{ii} << 0)$

Introduction	Our method	Simulations	Multiple testing	Overview
		000000		
Level				

- n = 4 neurons. $\mathscr{J} = \{1, 2, 3, 4\};$
- $b-a \sim \mathscr{U}([0.2, 0.4s]);$
- Independent spontaneous intensities. $\mu_i \sim \mathscr{U}([8, 20 \text{Hz}]);$
- Auto-interaction functions h_{ii} to model refractory period of 3ms.

æ

• M = 50 (Figure C).

Introduction	Our method	Simulations	Multiple testing	Overview
000	000	000000		
Power				

- Add interaction functions according to the graph. Range: 5ms.
- *α* = 0.05.
- M = 50 (Figure B).

Introduction	Our method	Simulations	Multiple testing	Overview
000	000	000000	•	
Simulations				

æ

(ロ) (部) (主) (主)

Introduction	Our method	Simulations	Multiple testing	Overview
000	000	000000		
Overview				

- Independence test over any subset of *n* neurons.
- Theoretical results on Poisson processes. Remains reliable on Hawkes processes.
- Multiple testing over the subsets.

Introduction	Our method	Simulations	Multiple testing	Overview
000	000	000000		
Overview				

- Independence test over any subset of *n* neurons.
- Theoretical results on Poisson processes. Remains reliable on Hawkes processes.
- Multiple testing over the subsets.
- Outlook:
 - Find the asymptotic for Hawkes processes.
 - R package.

