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Introduction Our method Simulations Multiple testing Overview

Biological context

Structure of a typical neuron Connected neurons

Neural network: Interacting cells.

Information transport via electric pulses:
action potentials.

After preprocessing, we dispose of M trials of
simultaneously recorded spike trains.
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Figure 3: Dot displays in the two top panels show the simultaneous activity of
six simulated neurons: independent (A) and dependent (B) éring. Firing rates
are:neuron 1:10s¡1;2:20s¡1;3:15 s¡1;4:30s¡1;5:25 s¡1; 6:15 s¡1. The spike trains
in B are generated by érst copying the spike trains of A. Dependencies between
neurons are then introduced by injecting coincident events, consisting of neuron
pairs 1,3 and 2,5 (both at coincidence rate of 1 s¡1), randomly distributed in
time over all the trials. Each box contains the spike activity of a single neuron
over 100 trials of 1000 ms duration. Each dot represents a spike at the time of
its occurrence. Trials are organized in rows. Bottom panels: Spikes belonging
to statistically signiécant constellations (unitary events) are marked by squares.
Observe the different numbers of occurrences of unitary events in A and B due to
the injected coincidences. In addition, in B, some of the constellations containing
the injected spikes as subpatterns are also detected as signiécant events.
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Figure 3: Dot displays in the two top panels show the simultaneous activity of
six simulated neurons: independent (A) and dependent (B) éring. Firing rates
are:neuron 1:10s¡1;2:20s¡1;3:15 s¡1;4:30s¡1;5:25 s¡1; 6:15 s¡1. The spike trains
in B are generated by érst copying the spike trains of A. Dependencies between
neurons are then introduced by injecting coincident events, consisting of neuron
pairs 1,3 and 2,5 (both at coincidence rate of 1 s¡1), randomly distributed in
time over all the trials. Each box contains the spike activity of a single neuron
over 100 trials of 1000 ms duration. Each dot represents a spike at the time of
its occurrence. Trials are organized in rows. Bottom panels: Spikes belonging
to statistically signiécant constellations (unitary events) are marked by squares.
Observe the different numbers of occurrences of unitary events in A and B due to
the injected coincidences. In addition, in B, some of the constellations containing
the injected spikes as subpatterns are also detected as signiécant events.
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Synchronization phenomenon
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With synchronization

The synchronization phenomenon can occur during sensory-motor tasks.
The repetition of a given task may give birth to neuronal assemblies.

Goal

Detection of synchronizations.
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Statistical analysis

Cross-correlogram (Perkel et al., ’67).

Peristimulus time histogram (PSTH, (Aertsen et al., ’89)).

Unitary events (Grün, ’96).

UE method

Unitary event: spike synchrony that recurs more often than expected.
The test statistic is based on the number of coincidences.

Introduced in the PhD thesis of S. Grün (’96).
Applied to time discrete data.

GAUE method for two neurons (Tuleau-Malot et al., 2014)

Notion of coincidence transposed to the continuous time framework.

Independence test between Poisson processes based on this new notion.
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Notion of delayed coincidences

N1, . . . ,Nn are point processes on [a,b].
J ⊂ {1, . . . ,n} is a set of indices.

Definition

The delayed coincidence count of delay δ < (b−a)/2 is

XJ :=
∫

[a,b]J

1∣∣∣∣ max
i∈{1,...,J}

xi− min
i∈{1,...,J}

xi

∣∣∣∣≤δ

Ni1 (dx1) . . .NiJ (dxJ) .

Neuron 1
Neuron 2
Neuron 3

a b

Goal: Test H0 against H1{
H0 : The processes Nj , j ∈J are independent;
H1 : The processes Nj , j ∈J are not independent.
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Asymptotic properties

Let (N
(k)
1 , . . . ,N

(k)
n )1≤k≤M denote a M-sample. We compare two estimates.

CLT ⇒
√
M

m−E[XJ ]√
Var(XJ )

M→∞−−−−→N (0,1) , where m = 1
M ∑

M
k=1X

(k)
J .

If N1, . . . ,Nn are Poisson processes with intensities λ1, . . . ,λn, then{
E
[
XJ

]
= m0((λi )i )

Var
(
XJ

)
= v0((λi )i )

under H0.

Let us denote

λ̂i :=
1
M

M

∑
k=1

N
(k)
i ([a,b])

b−a
and

{
m̂0 = m0((λ̂i )i )

v̂0 = v0((λ̂i )i ).

Plug-in step (delta method + Slutsky) ⇒
√
M m−m̂0√

σ̂2
M→∞−−−−→
H0

N (0,1) where

σ̂
2 = v̂0− (b−a)−1m̂2

0

(
∑
j∈J

λ̂
−1
j

)
.
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Our independence test

Definition

Denote zα the α-quantile of the standard Gaussian distribution. Then the
symmetric test ∆α rejects H0 when m̄ and m̂0 are too different, that is when∣∣∣∣√M (m̄− m̂0)√

σ̂2

∣∣∣∣> z1−α/2.

Theorem

If N1, . . . ,Nn are homogeneous Poisson processes, the test ∆α is of asymptotic
level α.
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Simulation procedure

1 Generate a set of random parameters (b−a, (λi )i ) according to the
appropriate Framework;

2 Use this set (and δ = 10ms) to generate M trials;

3 Compute the different statistics;

4 Repeat steps 1 to 3 a thousand times.
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b−a∼U ([0.2,0.4s]);

Independent intensities. λi ∼U ([8,20Hz]);

M = 50 (Figure C).
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Hawkes processes (’71)

More realistic than Poisson processes (Goodness of fit tests,
Reynaud-Bouret et al., ’14).

Form of the intensity:

λ
j
t = max

(
0,µj +

n

∑
i=1

∫
s<t

hij (t− s) N i (ds)

)
.

spontaneous rate µj ≥ 0.
interaction function hij : influence of neuron i over neuron j .

Either excitatory or inhibitory phenomena.
Strict refractory period. (hii << 0)
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Simulations
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Overview

Independence test over any subset of n neurons.

Theoretical results on Poisson processes. Remains reliable on Hawkes
processes.

Multiple testing over the subsets.

Outlook:

Find the asymptotic for Hawkes processes.
R package.
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