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Stochastic gradient methods

The problem in this talk:

minimize
x

F (x) := E[f(x;S)] =
∫
f(x; s)dP (s)

subject to x ∈ X

Weakly convex functions: for each s, some ρ(s) such that

f(x; s) +
ρ(s)

2
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I add a big enough quadratic, it becomes convex
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Optimization methods

How do we solve optimization problems?

1. Build a “good” but simple local model of f

2. Minimize the model (perhaps regularizing)

Newton’s method: Taylor (second-order) model

f(y) ≈ fx(y) := f(x) +∇f(x)T (y − x) + (1/2)(y − x)T∇2f(x)(y − x)



Composite optimization problems (other model-able
structures)

The problem:
minimize

x
f(x) := h(c(x))

where
h : Rm → R is convex and c : Rn → Rm is smooth

[Fletcher & Watson 80; Fletcher 82; Burke 85; Wright 87; Lewis & Wright 15;

Drusvyatskiy & Lewis 16]
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The prox-linear method [Burke, Drusvyatskiy et al.]
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Iteratively (1) form regularized convex model and (2) minimize it

xk+1 = argmin
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Generic(ish) optimization methods

Iterate

xk+1 = argmin
x∈X

{
fxk(x) +

1

2αk
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I Proximal point method (fx = f) [Rockafellar 76]

I Gradient descent (fx(y) = f(x) + 〈∇f(x), y − x〉)
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The aProx family for stochastic optimization

Iterate:
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iid∼ P
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Examples:
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Conditions on our models (ρ-weakly convex case)

i. Convex model:
y 7→ fx(y; s) is convex

ii. Lower bound:

fx(y; s) ≤ f(y; s) +
ρ(s)

2
‖x− y‖22

iii. Local correctness:
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[D. & Ruan 17; Davis & Drusvyatskiy 18; Asi & D. 19]
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Modeling conditions

Model fx(y) of f near x

truncated
f(x)

(x0, f(x0))

fx0(y) = f(x0) +∇f(x0)
T (y − x0)

fx0(y) =
[
f(x0) +∇f(x0)

T (y − x0)
]
+



Models in stochastic optimization

          
           

Linear

Truncated

x0

x1

i. (Sub)gradient: fx(y) = f(x) + 〈f ′(x), y − x〉
ii. Truncated: fx(y) = (f(x) + 〈f ′(x), y − x〉) ∨ infx f(x)

iii. Bundle/multi-line: fx(y) = max{f(xi) + 〈f ′(xi), x− xi〉}
iv. Prox-linear: fx(y) = h(c(x) +∇c(x)T (y − x))
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Stability guarantees (convex)

Use full stochastic-proximal method,

xk+1 = argmin
x∈X

{
f(x;Sk) +

1

2αk
‖x− xk‖2

}
.

Theorem (Asi & D. 18)

Assume X ? = argminx∈X F (x) is non-empty and E[‖f ′(x?;S)‖2] ≤ σ2.
Then

E[dist(xk,X ?)2] ≤ dist(x0,X ?)2 + σ2
k∑
i=1

α2
i

Theorem (Asi & D. 18)

Under the same assumptions,

sup
k

dist(xk,X ?) <∞ and dist(xk,X ?) a.s.→ 0.
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Stability guarantees (convex)

Use any model with fx(y; s) ≥ infz f(z; s) (i.e. good lower bound)

xk+1 = argmin
x∈X

{
fxk(x;Sk) +

1

2αk
‖x− xk‖2

}
.

Theorem (Asi & D. 19)

Assume X ? = argminx∈X F (x) is non-empty and there exists p <∞ such
that

E[
∥∥f ′(x;S)∥∥2

] ≤ C(1 + dist(x,X ?)p).
Then

sup
k

dist(xk,X ?) <∞ and dist(xk,X ?) a.s.→ 0.



Example behaviors

On least-squares objective F (x) = 1
2m
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i=1(a
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Classical asymptotic analysis

Theorem (Polyak & Juditsky 92)

Let F be convex and strongly convex in a neighborhood of x?, and assume
that f(x;S) are globally smooth. For xk generated by stochastic gradient
method,

1√
k

k∑
i=1

(xi − x?) d
 N

(
0,∇2F (x?)−1 Cov(∇f(x?;S))∇2F (x?)−1

)
.



New asymptotic analysis (convex case)

Theorem (Asi & D. 18)

Let F be convex and strongly convex in a neighborhood of x?, and assume
that f(x;S) are smooth near x?. Then if xk remain bounded and the
models fxk(·;Sk) satisfy our conditions,

1√
k

k∑
i=1

(xi − x?) d
 N

(
0,∇2F (x?)−1 Cov(∇f(x?;S))∇2F (x?)−1

)
.

I Optimal by local minimax
theorem [Hájek 72; Le Cam 73;

D. & Ruan 19]

I Key insight: subgradients of
fxk(·;Sk) close to ∇f(xk;Sk)

truncated
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Convergence to stationarity in weakly convex cases

Convergence requires Moreau envelope [Davis & Drusvyatskiy 18]

Fλ(x) := inf
y∈X

{
F (y) +

λ

2
‖y − x‖22

}
,

Important properties:

I Proximal mapping:

xλ := proxF/λ(x) := argmin
y∈X

{
F (y) +

λ

2
‖y − x‖22

}
satisfies

∇Fλ(x) = λ(x− xλ)
I Near stationarity and decrease:

F (xλ) ≤ F (x) and dist(0, ∂F (xλ)) ≤ ‖∇Fλ(x)‖2

Convergence: Say iterates xk converge if ∇Fλ(xk)→ 0
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Moreau envelope of the absolute value

F

Fλ

For F (x) = |x|,

Fλ(x) =

{
λ
2x

2 if |x| ≤ λ−1

|x| − 1
2λ if |x| > λ−1

I F ′λ(x) = λx

I |F ′λ(x)| = λ dist(x, 0)

I prox step xλ = 0 if |x| ≤ 1/λ



Convergence in weakly convex cases

Use regularized stochastic-proximal point method,

xk+1 = argmin
x∈X

{
f(x;Sk) +

ρ(Sk)

2
‖x− xk‖22 +

1

2αk
‖x− xk‖22

}
.

Theorem (Asi & D. 19)

Let random f be ρ(s) weakly convex with E[ρ2(S)] <∞. With
proximal-point iteration, iterates xk satisfy Fλ(xk)

a.s.→ G and

∞∑
k=1

αk ‖∇Fλ(xk)‖22 <∞.

Proposition (Asi & D. 19)

If iterates xk remain bounded and image of stationary points has measure
zero,

∇Fλ(xk) a.s.→ 0.
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What is an easy problem?

I Interpolation problems [Belkin, Hsu, Mitra 18; Ma, Bassily, Belkin 18]

I Overparameterized linear systems (Kaczmarz algorithms) [Strohmer &

Vershynin 09; Needell, Srebro, Ward 14; Needell & Tropp 14]

I Random projections for linear constraints [Leventhal & Lewis 10]

(a) MNIST (b) CIFAR-10 (c) SVHN (2 · 104 subsamples)

(d) TIMIT (5 · 104 subsamples) (e) HINT-S (2 · 104 subsamples) (f) 20 Newsgroups

Figure 1: Comparison of approximate classifiers trained by EigenPro-SGD [MB17] and interpo-
lated classifiers obtained from direct method for kernel least squares regression.
† All methods achieve 0.0% classification error on training set. ‡ We use subsampled dataset to reduce the
computational complexity and to avoid numerically unstable direct solution.

For comparison, we also show the performance of interpolating solutions given by Eq. 2 and
solved using direct methods. As expected, direct solutions always provide a highly accurate inter-
polation for the training data with the error in most cases close to numerical precision. Remark-
ably, we see that in all cases performance of the interpolated solution on test is either optimal or
close to optimal both in terms of both regression and classification error.

Performance of overfitted/interpolated kernel classifiers closely parallels behaviors of deep
networks noted in [ZBH+16] which fit the data exactly (only the classification error is reported
there, other references also report MSE [CCSL16, HLWvdM16, SEG+17, BFT17]). We note that
observations of unexpectedly strong performance of overfitted classifiers have been made before.
For example, in kernel methods it has been observed on multiple occasions that very small values
of regularization parameters frequently lead to optimal performance [SSSSC11, TBRS13]. Similar
observations were also made for Adaboost and Random Forests [SFBL98] (see [WOBM17] for

7



What is an easy problem?

minimize
x

F (x) := E[f(x;S)] =
∫
f(x; s)dP (s)

Definition: Problem is easy if there exists x? such that
f(x?;S) = infx f(x;S) with probability 1. [Schmidt & Le Roux 13; Ma,

Bassily, Belkin 18; Belkin, Rakhlin, Tsybakov 18]

One additional condition

iv. The models fx satisfy

fx(y; s) ≥ inf
x?∈X

f(x?; s)

truncated
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F (x) := E[f(x;S)] =
∫
f(x; s)dP (s)

Definition: Problem is easy if there exists x? such that
f(x?;S) = infx f(x;S) with probability 1. [Schmidt & Le Roux 13; Ma,

Bassily, Belkin 18; Belkin, Rakhlin, Tsybakov 18]

One additional condition

iv. The models fx satisfy

fx(y; s) ≥ inf
x?∈X

f(x?; s)

truncated



Easy strongly convex problems

Theorem (Asi & D. 18)

Let the function F satisfy the growth condition

F (x) ≥ F (x?) + λ

2
dist(x,X?)2

where X? = argminx F (x), and be easy. Then

E[dist(xk, X?)2] ≤ max

{
exp

(
−c

k∑
i=1

αi

)
, exp (−ck)

}
dist(x1, X

?)2.

I Adaptive no matter the stepsizes

I Most other results (e.g. for SGM [Schmidt & Le Roux 13; Ma, Bassily,

Belkin 18]) require careful stepsize choices
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Sharp problems

Definition: An objective F is sharp if

F (x) ≥ F (x?) + λdist(x,X?)

for X? = argminF (x). [Ferris 88; Burke & Ferris 95]

I Piecewise linear objectives
I Hinge loss F (x) = 1

m

∑m
i=1

[
1− aTi x

]
+
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Sharp convex problems

Definition: An objective F is sharp if

F (x) ≥ F (x?) + λdist(x,X?)

for X? = argminF (x). [Ferris 88; Burke & Ferris 95]

I Piecewise linear objectives

I Hinge loss F (x) = 1
m

∑m
i=1

[
1− aTi x

]
+

I Projection onto intersections: F (x) = 1
m

∑m
i=1 dist(x,Ci)

Theorem (Asi & D. 18)

Let F have sharp growth and be easy. If F is convex,

E[dist(xk+1, X
?)2] ≤ max

{
exp(−ck), exp

(
−c

k∑
i=1

αi

)}
dist(x1, X

?)2.
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Sharp weakly problems

Definition: An objective F is sharp if

F (x) ≥ F (x?) + λdist(x,X?)

for X? = argminF (x). [Ferris 88; Burke & Ferris 95]

I Phase retrieval F (x) = 1
m

∥∥(Ax)2 − (Ax?)2
∥∥

1

I Blind deconvolution [Charisopoulos et al. 19]

Theorem (Asi & D. 19)

Let F have sharp growth and be easy. There exists c ∈ (0, 1) such that on
the event xk → X?,

lim sup
k

dist(xk, X
?)

(1− c)k <∞.
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Methods

Iterate

xk+1 = argmin
x

{
fxk(x;Sk) +

1

2αk
‖x− xk‖22

}

I Stochastic gradient

fxk(x;Sk) = f(xk;Sk) + 〈f ′(xk;Sk), x− xk〉

I Truncated gradient (f ≥ 0):

fxk(x;Sk) =
[
f(xk;Sk) + 〈f ′(xk;Sk), x− xk〉

]
+

I (Stochastic) proximal point

fxk(x;Sk) = f(x;Sk)
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Linear regression with low noise

F (x) =
1

2m

m∑
i=1

(aTi x− bi)2
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Linear regression with no noise

F (x) =
1

2m

m∑
i=1

(aTi x− bi)2
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Linear regression with “poor” conditioning
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Multiclass hinge loss: no noise

f(x; (a, l)) = max
i 6=l

[1 + 〈a, xi − xl〉]+
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Multiclass hinge loss: small label flipping

f(x; (a, l)) = max
i 6=l

[1 + 〈a, xi − xl〉]+
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Multiclass hinge loss: substantial label flipping

f(x; (a, l)) = max
i 6=l

[1 + 〈a, xi − xl〉]+
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(Robust) Phase retrieval

[Candès, Li, Soltanolkotabi 15]

Observations (usually)
bi = 〈ai, x?〉2

yield objective

f(x) =
1

m

m∑
i=1

|〈ai, x〉2 − bi|
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Phase retrieval without noise

F (x) =
1

m

m∑
i=1

|〈ai, x〉2 − bi|

10 1 100 101 102 103 104 105

0

200

400

600

800

1000

Proximal
SGM
Truncated

Initial stepsize α0

T
im

e
to
ε-

ac
cu

ra
cy



Matrix completion without noise

F (x, y) =
∑
i,j∈Ω

|〈xi, yj〉 −Mij |
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Deep learning experiments

CIFAR 10 Dataset: 10 class image classification
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Deep learning experiment: dog recognition

Stanford Dogs: 120 class dog breed classification
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Conclusions

I Perhaps blind application of stochastic gradient methods is not the
right answer

I Care and better modeling can yield improved performance

I Computational efficiency important in model choice

Questions

I Parallelism?

I The importance of better models in stochastic optimization.
arXiv:1903.08619

I Stochastic (Approximate) Proximal Point Methods: Convergence,
Optimality, and Adaptivity. arXiv:1810.05633
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