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Stochastic gradient methods

The problem in this talk:

minixmize F(z) :=E[f(x;9)] = /f(x, s)dP(s)

subject to x € X

Stochastic gradient method:

Thi1 = Tk — ARGk, 9k € Of (xk; Sk)

Why we use this?
» Easy to analyze?

» Default in software packages and simple to implement?
> It works?
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Optimization methods

How do we solve optimization problems?
1. Build a “good” but simple local model of f
2. Minimize the model (perhaps regularizing)

Newton's method: Taylor (second-order) model

Fy) = foly) = f(2) + V(@) (y — ) + (1/2)(y — )"V (2)(y — x)




Composite optimization problems (other model-able
structures)

The problem:
minixmize f(z) :== h(c(z))

where
h:R™ = Ris convex and c¢:R"™ — R™ is smooth

[Fletcher & Watson 80; Fletcher 82; Burke 85; Wright 87; Lewis & Wright 15;
Drusvyatskiy & Lewis 16]
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The prOX—|inear method [Burke, Drusvyatskiy et al.]
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. 1
T1 = argmin {fzk(w) + L ee kr}

rzeX

2c
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Iteratively (1) form regularized convex model and (2) minimize it

. 1
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The prOX—|inear method [Burke, Drusvyatskiy et al.]

Iteratively (1) form regularized convex model and (2) minimize it

. 1
s = avguin { e (0) + 51 o = a3}
zeX «

. 1
= argmin {h (c(zk) + V() (z — zp)) + % |z — :cng}
zeX «

Ty — | =4-1078




Generic(ish) optimization methods

Iterate

. 1
Tpy1 = argmin {ka (x) + S ||z — wkH2}
zeX o



Generic(ish) optimization methods

Iterate

. 1
nsr = avguin { £, (2) + 5o — a1}
zeX Qg

v

Proximal point method (f, = f) [Rockafellar 76]

Gradient descent (f,(y) = f(z) + (Vf(z),y — x))

Newton (fu(y) = f(2) + (Vf(2).y —2) + §(z — )"V f(2)(x — y))
Prox-linear (fa(y) = h(c(z) + Ve(z)" (y - 2)))

v

v

v



The aProx family for stochastic optimization

[terate:
» Sample S, ©p

» Update by minimizing model

. 1
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The aProx family for stochastic optimization

[terate:
» Sample S, ©p

» Update by minimizing model

. 1
Tpi1 = argmin {fmk (x; Sk) + Son ||z — mkH2}
zeX Qf

Examples:
» Stochastic gradient method

» Stochastic proximal-point (implicit gradient) method, f;, (z) = f(x)
[Rockafellar 76; Kulis & Bartlett 10; Karampatziakis & Langford 11;
Bertsekas 11; Toulis & Airoldi 17; Ryu & Boyd 16]

» Stochastic prox-linear methods [D. & Ruan 18; Davis & Drusvyatskiy 18;
Asi & D. 19]



Models in stochastic optimization

Conditions on our models (convex case)

i. Convex model:
y— fz(y;s) is convex

ii. Lower bound:
fo(y;s) < f(y;s)
iii. Local correctness:

fa(z;s) = f(x;s) and  Ofy(x;8) C Of(x;9)

[D. & Ruan 17; Davis & Drusvyatskiy 18]



Models in stochastic optimization

Conditions on our models (p-weakly convex case)

i. Convex model:
y — fz(y;s) is convex

ii. Lower bound:

ol ) < Fs) + 2 e 3

iii. Local correctness:

fo(z;s) = f(x;s) and  Ofy(x;s) C Of(x;s)

[D. & Ruan 17; Davis & Drusvyatskiy 18; Asi & D. 19]



Modeling conditions

Model f;(y) of f near x

f(x)
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Modeling conditions

Model f;(y) of f near x

/()

(zo, f(z0))

- truncated

fro () = flzo) + V f(20)" (y — 20)
feo(y) = [f(x0) + V f(x0)" (y — 20)] |




Models in stochastic optimization

----Linear

—-— Truncated

i (Sub)gradient: f.(y) = f(z) + (f'(x),y — =)

ii. Truncated: f.(y) = (f(z) + (f'(x),y — z)) Vinf, f(x)
iii. Bundle/multi-line: f,(y) = max{f(x;) + (f'(x;),x — z;)}
iv. Prox-linear: f.(y) = h(c(x) + Ve(x)T (y — z))
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. 1
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Stability guarantees (convex)

Use full stochastic-proximal method,

. 1
Tg41 = argmin {f(ﬂﬁ; Sk) + o |z — kaZ} .
reX (0753

Theorem (Asi & D. 18)

Assume X* = argmin,c F(z) is non-empty and E[|| f'(z*; 9)|I%] < o2.
Then

k
E[dist (2, X*)?] < dist(zo, X*) + 0 ) af
=1



Stability guarantees (convex)

Use full stochastic-proximal method,

. 1
Tg41 = argmin {f(ﬂﬁ; Sk) + o |z — kaZ} .
reX (0753

Theorem (Asi & D. 18)

Assume X* = argmin,c F(z) is non-empty and E[|| f'(z*; 9)|I%] < o2.
Then

k
E[dist (2, X*)?] < dist(zo, X*) + 0 ) af
=1

Theorem (Asi & D. 18)
Under the same assumptions,

sup dist(zy, X*) < 0o and dist(zy, X*) L% 0.
k



Stability guarantees (convex)

Use any model with f;(y;s) > inf, f(z;s) (i.e. good lower bound)

. 1
Tpy1 = argmin {ka(x; Sk) + Yo |z — xk||2} .
zeX 873

Theorem (Asi & D. 19)

Assume X* = argmin, .y F'(x) is non-empty and there exists p < oo such
that

E[|| £/ (x;5)|]%] < C(1 + dist(z, X*)P).
Then

sup dist(zy, X*) < 0o and dist(zy, X*) %3 0.
k



Example behaviors

On least-squares objective F(z) = 5= >" (al' — b;)?
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Classical asymptotic analysis

Theorem (Polyak & Juditsky 92)

Let F' be convex and strongly convex in a neighborhood of x*, and assume

that f(x;S) are globally smooth. For xj, generated by stochastic gradient
method,

(z —a*) & N (0. V2 F ()™ Cov(V(a*; §)) V*F(a*) ).

-

k
1=

1



New asymptotic analysis (convex case)

Theorem (Asi & D. 18)

Let F' be convex and strongly convex in a neighborhood of x*, and assume
that f(x;S) are smooth near x*. Then if x}, remain bounded and the
models fz, (+;Sy) satisfy our conditions,

k

(e —a*) % N (0, V2F ()™ Cov(V (¥ §) V*F(a*) 7).

-

=1



New asymptotic analysis (convex case)

Theorem (Asi & D. 18)

Let F' be convex and strongly convex in a neighborhood of x*, and assume
that f(x;S) are smooth near x*. Then if x}, remain bounded and the
models fz, (+;Sy) satisfy our conditions,

k
S (@i —a*) L N (0, VEF(2*) "L Cov(V £ (2% 5))VEF (") Y .

=1

-

= truncated

» Optimal by local minimax
theorem [H3jek 72; Le Cam 73;
D. & Ruan 19]

» Key insight: subgradients of
fa,, (3 Sk) close to V f(zk; Sk)




Convergence to stationarity in weakly convex cases

Convergence requires Moreau envelope [Davis & Drusvyatskiy 18]

, A
Fy\(x) := ylg)f( {F(y) +3 |y — wH%} ,

Important properties:

» Proximal mapping:

) A
yeX

satisfies
VF\(z) = Mz — 2)

» Near stationarity and decrease:

F(z*) < F(z) and dist(0,0F (z*)) < |[VF\(2)]|,



Convergence to stationarity in weakly convex cases

Convergence requires Moreau envelope [Davis & Drusvyatskiy 18]

, A
Fy\(x) := ylg)f( {F(y) +3 |y — wH%} ,

Important properties:

» Proximal mapping:

) A
yeX

satisfies
VF\(z) = Mz — 2)

» Near stationarity and decrease:
F(z*) < F(z) and dist(0,0F (z*)) < |[VF\(2)]|,

Convergence: Say iterates zj converge if VF)\(x) — 0



Moreau envelope of the absolute value

For F(z) = |z,
F
A2 : -1
sx if |[z] <A
lz| — 5y if 2] > A
Ex » F(z) =z
> |F{(z)| = Xdist(z,0)

» prox step 2 = 0 if [z < 1/A



Convergence in weakly convex cases

Use regularized stochastic-proximal point method,

Sk)

. 1
suvs = anganin { (a5 50) + 25 o~ + o o — ).

zeX 2
Theorem (Asi & D. 19)

Let random f be p(s) weakly convex with E[p?(S)] < co. With
proximal-point iteration, iterates x;, satisfy F(z;) =3 G and

(o]
> || VEA(p)|f; < oo
k=1



Convergence in weakly convex cases

Use regularized stochastic-proximal point method,

. Sk 1
Tp41 = argmin 4 f(z; Sg) + P{5) lz — il + 5— o — 3 -
reX 2 20,

Theorem (Asi & D. 19)

Let random f be p(s) weakly convex with E[p?(S)] < co. With
proximal-point iteration, iterates x;, satisfy F(z;) =3 G and

(o]
> || VEA(p)|f; < oo
k=1

Proposition (Asi & D. 19)

If iterates x, remain bounded and image of stationary points has measure
zero,

VF)\(.%']Q) a;s>. 0.



What is an easy problem?

> Interpolation problems [Belkin, Hsu, Mitra 18; Ma, Bassily, Belkin 18]

» Overparameterized linear systems (Kaczmarz algorithms) [Strohmer &
Vershynin 09; Needell, Srebro, Ward 14; Needell & Tropp 14]

» Random projections for linear constraints [Leventhal & Lewis 10]

23 60
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What is an easy problem?

minimize F(z) :=E[f(x;95)] = /f(x; s)dP(s)

xT

Definition: Problem is easy if there exists 2* such that
f(x*; S) = inf, f(x;S) with probability 1. [Schmidt & Le Roux 13; Ma,
Bassily, Belkin 18; Belkin, Rakhlin, Tsybakov 18]



What is an easy problem?

minimize F(z) :=E[f(x;95)] = /f(x; s)dP(s)

xT

Definition: Problem is easy if there exists 2* such that
f(x*; S) = inf, f(x;S) with probability 1. [Schmidt & Le Roux 13; Ma,
Bassily, Belkin 18; Belkin, Rakhlin, Tsybakov 18]

= truncated

One additional condition

iv. The models f, satisfy

falyss) = Inf f(2%5s)




Easy strongly convex problems

Theorem (Asi & D. 18)
Let the function F satisfy the growth condition

F(z) > F(z*) + %dist(:ﬂ, X*)?

where X* = argmin,, F'(z), and be easy. Then

k
E[dist(zg, X*)?] < max {exp (—cZaZ) , exXp (—ck)} dist(z1, X*)%

i=1



Easy strongly convex problems

Theorem (Asi & D. 18)
Let the function F satisfy the growth condition

F(z) > F(z*) + %dist(x, X*)?
where X* = argmin,, F'(z), and be easy. Then

k
E[dist(zg, X*)?] < max {exp (—cZaZ) , exXp (—ck)} dist(z1, X*)%

i=1

» Adaptive no matter the stepsizes

» Most other results (e.g. for SGM [Schmidt & Le Roux 13; Ma, Bassily,
Belkin 18]) require careful stepsize choices



Sharp problems

Definition: An objective F' is sharp if
F(z) > F(z*) + Adist(z, X™)
for X* = argmin F'(x). [Ferris 88; Burke & Ferris 95]
> Piecewise linear objectives

> Hinge loss F(z) = L >, [1- C%Txh

T~ m
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Sharp problems

Definition: An objective F' is sharp if
F(z) > F(z*) + Adist(z, X™)
for X* = argmin F'(x). [Ferris 88; Burke & Ferris 95]

» Piecewise linear objectives
» Hinge loss F(z) = & S [1 - aszLr
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Sharp convex problems

Definition: An objective F' is sharp if
F(x) > F(z*) + Mdist(z, X*)

for X* = argmin F'(z). [Ferris 88; Burke & Ferris 95]

» Piecewise linear objectives
» Hinge loss F(z) = 2 >y [1 — aZTx]Jr

—m
1

» Projection onto intersections: F'(z) = — > ", dist(z, C;)

~m



Sharp convex problems

Definition: An objective F' is sharp if
F(x) > F(z*) + Mdist(z, X*)

for X* = argmin F'(z). [Ferris 88; Burke & Ferris 95]

» Piecewise linear objectives
» Hinge loss F(x) = % > [1 — a?z]Jr
1

» Projection onto intersections: F'(z) = — > ", dist(z, C;)

~m

Theorem (Asi & D. 18)
Let F' have sharp growth and be easy. If F' is convex,

k
E[dist(zg41, X*)?] < max {exp(—ck), exp (—CZ ai> } dist(z1, X*)%

i=1



Sharp weakly problems

Definition: An objective F' is sharp if
F(z) > F(z*) + Adist(z, X™)

for X* = argmin F'(z). [Ferris 88; Burke & Ferris 95]
> Phase retrieval F(z) = 1 H(Ax)2 - (A:c*)2H1

» Blind deconvolution [Charisopoulos et al. 19]
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Definition: An objective F' is sharp if
F(z) > F(z*) + Adist(z, X™)

for X* = argmin F'(z). [Ferris 88; Burke & Ferris 95]
> Phase retrieval F(z) = 1 H(Ax)2 - (A:c*)2H1

» Blind deconvolution [Charisopoulos et al. 19]

Theorem (Asi & D. 19)

Let F' have sharp growth and be easy. There exists ¢ € (0, 1) such that on
the event x;, — X7,

dist X*
lims.upM < 0.

k (1—c)k



Outline

Revisiting experimental results
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Methods

Iterate

. 1
rivs = angmin{ (0380 + oo~ il
T Ak

» Stochastic gradient
fan (5 Sk) = far; Sk) + (f (2x; Sk), @ — a)
» Truncated gradient (f > 0):
fur (3 Sk) = [f (xx; Sk) + (f'(xx; Sk), @ — x) ],
» (Stochastic) proximal point

fu (255%) = f(x; Sk)



Linear regression with low noise

m
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Linear regression with no noise
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Linear regression with “poor” conditioning

Accuracy epsilon = 0.055
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Linear regression with “poor” conditioning

Accuracy epsilon = 0.055
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Poor conditioning? x(A) =15




Multiclass hinge loss: no noise

Flas(@.0) = max[1+ (a,a: — 1),
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Multiclass hinge loss: small label flipping

Flas (@) = maxc[1 + (. — )],
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Multiclass hinge loss: substantial label flipping

f(x;(a,l)) = I?;%IX [1 + (a,z; — l‘l>]+
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(Robust) Phase retrieval
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source
%ﬁmple phase plate

[Candes, Li, Soltanolkotabi 15]



(Robust) Phase retrieval

diffraction patterls

source ;
"Kample phase plate

Observations (usually)

[Candes, Li, Soltanolkotabi 15]

yield objective



Phase retrieval without noise

F(a)= 3" [ ) ~ b
=1
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Matrix completion without noise

F(z,y) = Y [(zi,y;) — M|
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Deep learning experiments

CIFAR 10 Dataset: 10 class image classification
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Deep learning experiment: dog recognition

Stanford Dogs: 120 class dog breed classification
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Conclusions

» Perhaps blind application of stochastic gradient methods is not the
right answer

» Care and better modeling can yield improved performance

» Computational efficiency important in model choice



Conclusions

» Perhaps blind application of stochastic gradient methods is not the
right answer

» Care and better modeling can yield improved performance

» Computational efficiency important in model choice

Questions

» Parallelism?

» The importance of better models in stochastic optimization.
arXiv:1903.08619

» Stochastic (Approximate) Proximal Point Methods: Convergence,
Optimality, and Adaptivity. arXiv:1810.05633
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