

Claire Boyer, Yohann de Castro, Joseph Salmon,

UPMC, LSTA, France

April 14, 2017

- Introduction
- Compressed sensing ?
- 3 Super-resolution
- The proposed approach
 Results
 Some words about the proof
- Numerical resolution
- **6** Numerical experiments

Motivations

Point sources in applications

- Astronomy
- Microscopy (fluorescent molecules)
- Spectroscopy

Data

- Observed through a filter, in this talk, supposed to be a Fourier filter
- That would lead to a lower resolution version of the target signal

Motivations

Point sources in applications

- Astronomy
- Microscopy (fluorescent molecules)
- Spectroscopy

Data

- Observed through a filter, in this talk, supposed to be a Fourier filter
- That would lead to a lower resolution version of the target signal

Underlying sparse objects?

• What about compressed sensing?

- Introduction
- Compressed sensing ?
- 3 Super-resolution
- The proposed approach
 Results
 Some words about the proof
- Numerical resolution
- **6** Numerical experiments

Setting for CS

- Ambient space: \mathbb{R}^n of \mathbb{C}^n
- Data: $y \in \mathbb{C}^m$, m samples from spectrum
- Problem: reduce acquisition time by reducing the number of measurements while ensuring recovery
- Prior on the signal: sparsity

Setting for CS

- Ambient space: \mathbb{R}^n of \mathbb{C}^n
- Data: $y \in \mathbb{C}^m$, m samples from spectrum
- Problem: reduce acquisition time by reducing the number of measurements while ensuring recovery
- Prior on the signal: sparsity

Minimizing the ℓ^1 -norm?

- Convex relaxation of the ℓ^0 -norm minimization
- Still enforce sparsity

CS problem

CS recovery: ℓ^1 -minimization

To enforce sparsity of the solution

$$\min \|x\|_1$$
 such that $\left\{ \begin{array}{ll} y = Ax & (\text{exact}) \\ \|y - Ax\|_2 \le \eta & (\text{noisy}) \end{array} \right.$

Lasso formulation

$$\min \frac{1}{2} \|y - Ax\|_2^2 + \lambda \|x\|_1$$

CS problem

CS recovery: ℓ^1 -minimization

To enforce sparsity of the solution

$$\min \|x\|_1$$
 such that $\left\{ \begin{array}{ll} y = Ax & (\text{exact}) \\ \|y - Ax\|_2 \le \eta & (\text{noisy}) \end{array} \right.$

Lasso formulation

$$\min \frac{1}{2} \|y - Ax\|_2^2 + \lambda \|x\|_1$$

- convex problem
- linear programming

CS problem

CS recovery: ℓ^1 -minimization

To enforce sparsity of the solution

$$\min \|x\|_1$$
 such that $\begin{cases} y = Ax & \text{(exact)} \\ \|y - Ax\|_2 \le \eta & \text{(noisy)} \end{cases}$

Lasso formulation

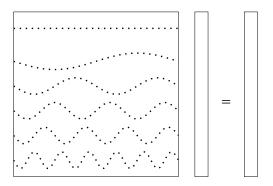
$$\min \frac{1}{2} \|y - Ax\|_2^2 + \lambda \|x\|_1$$

- convex problem
- linear programming

Using ℓ^1 -minimization

- Can we recover the signal?
 - using ℓ^1 -minimization
 - to enforce sparsity of the reconstruction
- How many measurements are required? Bound on m?

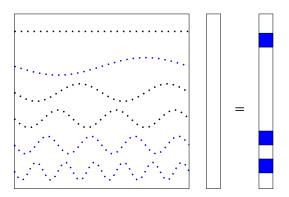
1



A full sensing matrix = Fourier matrix

¹Courtesy of Carlos Fernandez-Granda

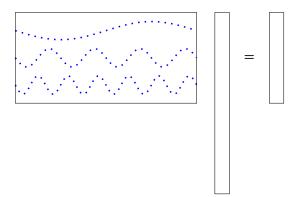
1



Limited number m of measurements

¹Courtesy of Carlos Fernandez-Granda

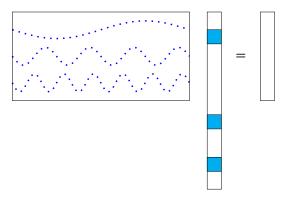
1



The sensing matrix (in $\mathbb{C}^{m\times n}$) is a submatrix of the Fourier one, with m rows

¹Courtesy of Carlos Fernandez-Granda

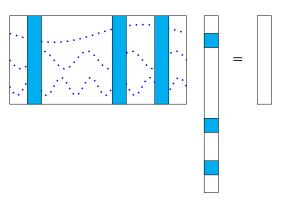
1



Is this sensing matrix A able to retrieve enough information on the target sparse vector x?

¹Courtesy of Carlos Fernandez-Granda

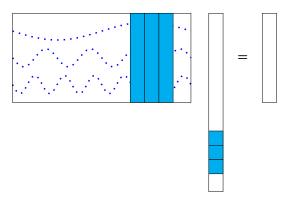
1



- If S = supp(x), A_S is the extracted sensing matrix from A which columns are indexed by S.
- A_S should be able to keep the total energy of the input signal x.

¹Courtesy of Carlos Fernandez-Granda

2



Actually, this kind of matrices are "good" sensing matrices for any sparse vector x!

²Courtesy of Carlos Fernandez-Granda

Restricted isometry property

Definition

A matrix A is said to satisfy the RIP property of order s if $\exists 0<\delta_s<1$ such that for any sparse vector x

$$(1 - \delta_s) ||x||_2^2 \le ||Ax||_2^2 \le (1 + \delta_s) ||x||_2^2$$

Restricted isometry property

Definition

A matrix A is said to satisfy the RIP property of order s if $\exists 0<\delta_{\rm s}<1$ such that for any sparse vector x

$$(1 - \delta_s) ||x||_2^2 \le ||Ax||_2^2 \le (1 + \delta_s) ||x||_2^2$$

RIP for partial Fourier matrices

Random partial Fourier matrices are known to satisfy RIP with high probability for a number m of measurements of the order

$$m \ge Cs \log^4(n)$$
 $(m \ll n)$

Spike deconvolution

Restricted isometry property

Definition

A matrix A is said to satisfy the RIP property of order s if $\exists 0<\delta_{\rm s}<1$ such that for any sparse vector x

$$(1 - \delta_s) ||x||_2^2 \le ||Ax||_2^2 \le (1 + \delta_s) ||x||_2^2$$

RIP for partial Fourier matrices

Random partial Fourier matrices are known to satisfy RIP with high probability for a number m of measurements of the order

$$m \ge Cs \log^4(n)$$
 $(m \ll n)$

- One can efficiently subsample with random Fourier measurements and ensure
 - exact recovery
 - robust recovery

Let's focus on the exact recovery problem: given $y = Ax \in \mathbb{C}^m$, one wants to show that x is the unique solution of

$$\min_{z} \|z\|_1$$
 such that $y = Az$

First order optimality condition

x is solution if

$$0 \in \partial \|\cdot\|_1(x) + \mathrm{Im}A^*$$

Since

$$\partial \|\cdot\|_1(x) = \{g \in \mathbb{S}_{\infty}, \langle g, x \rangle = \|x\|_1\},\$$

x is solution if $\exists v \in \text{Im} A^*$, (i.e. $v = A^*h$) such that

$$\begin{cases} v_i &= \operatorname{sign}(x_i), \quad \forall i \in \operatorname{supp}(x), \\ \|v\|_{\infty} &\leq 1 \end{cases}$$

Spike deconvolution

Let's focus on the exact recovery problem: given $y = Ax \in \mathbb{C}^m$, one wants to show that x is the unique solution of

$$\min_{z} \|z\|_1 \text{ such that } y = Az$$

Uniqueness

x is solution if $\exists v \in \text{Im} A^*$, (i.e. $v = A^* h$) such that

$$\left\{ \begin{array}{ll} v_i & = \mathsf{sign}(x_i), & \forall i \in T = \mathsf{supp}(x), \\ \|v_{T^c}\|_{\infty} & < 1 \end{array} \right.$$

Let's focus on the exact recovery problem: given $y=Ax\in\mathbb{C}^m$, one wants to show that x is the unique solution of

$$\min_{z} \|z\|_1 \text{ such that } y = Az$$

Uniqueness

x is solution if $\exists v \in \text{Im} A^*$, (i.e. $v = A^*h$) such that

$$\left\{ \begin{array}{ll} v_i & = \mathsf{sign}(x_i), & \forall i \in T = \mathsf{supp}(x), \\ \|v_{T^c}\|_{\infty} & < 1 \end{array} \right.$$

- v is called a dual certificate
- Proof based on the construction of such a v

Let's focus on the exact recovery problem: given $y=Ax\in\mathbb{C}^m$, one wants to show that x is the unique solution of

$$\min_{z} ||z||_1$$
 such that $y = Az$

Uniqueness

x is solution if $\exists v \in \text{Im} A^*$, (i.e. $v = A^*h$) such that

$$\begin{cases} v_i &= \mathsf{sign}(x_i), \quad \forall i \in \mathcal{T} = \mathsf{supp}(x), \\ \|v_{\mathcal{T}^c}\|_{\infty} &< 1 \end{cases}$$

- v is called a dual certificate
- Proof based on the construction of such a v

RIP ensures that a dual certificate exists and can be constructed

- with $m = O(s \log^4(n))$ measurements
- for any sparse vector and any sign pattern.

Conclusion on CS

Some limitations

- Finite-dimensional setting: requires a grid
- One does not always have the choice of the sensing operator: it is often deterministic.

Conclusion on CS

Some limitations

- Finite-dimensional setting: requires a grid
- One does not always have the choice of the sensing operator: it is often deterministic.

Off-the-grid: motivations for super-resolution/spike deconvolution

• Point sources do not live on a cartesian grid.

- Introduction
- 2 Compressed sensing ?
- 3 Super-resolution
- The proposed approach Results Some words about the proof
- **5** Numerical resolution
- **6** Numerical experiments

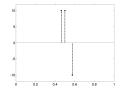
What is spike deconvolution?

Setting

Aim: reconstruct a discrete measure

$$\mu^0 = \sum_{i=1}^s a_i^0 \delta_{t_i^0}$$

- $\bullet \ \operatorname{supp}(\mu^{\mathbf{0}}) = \{t_{\mathbf{1}}^{\mathbf{0}}, \ldots, t_{s}^{\mathbf{0}}\} \subset \mathbb{T} \leadsto [0,1]$
- $(a_i^0)_{1 \le i \le s} \in \mathbb{C}^s$



What is spike deconvolution?

Setting

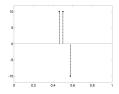
• Aim: reconstruct a discrete measure

$$\mu^{0} = \sum_{i=1}^{s} a_{i}^{0} \delta_{t_{i}^{0}}$$

- $\bullet \ \operatorname{supp}(\mu^{\mathbf{0}}) = \{t^{\mathbf{0}}_{\mathbf{1}}, \ldots, t^{\mathbf{0}}_{\mathbf{s}}\} \subset \mathbb{T} \leadsto [0,1]$
- $(a_i^0)_{1 \le i \le s} \in \mathbb{C}^s$
- From linear measurements

$$y = \Phi \mu^0 + \varepsilon$$

- Φ is a filter
- ε is a complex Gaussian vector, $\varepsilon = \varepsilon^{(1)} + i\varepsilon^{(2)}$ with $\varepsilon^{(i)} \sim \mathcal{N}(0, \sigma_0^2 \mathrm{Id})$



What is spike deconvolution?

Setting

Aim: reconstruct a discrete measure

$$\mu^0 = \sum_{i=1}^s a_i^0 \delta_{t_i^0}$$

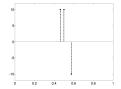
- $supp(\mu^0) = \{t_1^0, \ldots, t_s^0\} \subset \mathbb{T} \rightsquigarrow [0, 1]$
- $(a_i^0)_{1 \le i \le s} \in \mathbb{C}^s$
- From linear measurements

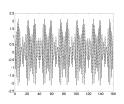
$$y = \Phi \mu^0 + \varepsilon$$

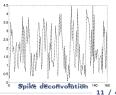
- Φ is a filter
- ε is a complex Gaussian vector, $\varepsilon = \varepsilon^{(1)} + i\varepsilon^{(2)}$ with $\varepsilon^{(i)} \sim \mathcal{N}(0, \sigma_0^2 \mathrm{Id})$

• Low-pass filter : $\Phi = \mathcal{F}_n$

$$\mathcal{F}_n(\mu) := (c_k(\mu))_{|k| \leq f_c}, \quad c_k(\mu) := \int_{\mathbb{T}} \exp(-2\pi \imath kt) \mu(\mathrm{d}t)$$







- Is there a (continuous) analog of the ℓ^1 -norm in the space of measures to ensure the measure to be discrete?
- That can be implemented efficiently?

The total variation norm

Formal definition:

$$\|\mu\|_{TV} = \sup \left|\sum_j \mu(\mathcal{B}_j)\right|$$

over all finite partitions (B_j) of [0,1]

- If $\mu = \sum_i a_i \delta_{t_i}$, then $\|\mu\|_{TV} = \sum_i |a_i|$
- $\bullet \neq$ the total variation in image processing

Beurling minimal extrapolation

Beurling minimal extrapolation (1938)

$$\boldsymbol{\mu}^{\star} \in \operatorname*{argmin}_{\boldsymbol{\mu}} \|\boldsymbol{\mu}\|_{\mathit{TV}} \quad \mathrm{s.t.} \quad \int_{\mathbb{T}} \Phi d\boldsymbol{\mu} = \mathbf{y}$$

with
$$\Phi = (\varphi_1, \ldots, \varphi_n)$$

- ullet Infinite-dimensional variable μ
- Finitely many constraints

Beurling minimal extrapolation

Beurling minimal extrapolation (1938)

$$\mu^{\star} \in \underset{\mu}{\operatorname{argmin}} \|\mu\|_{TV} \quad \text{s.t.} \quad \int_{\mathbb{T}} \Phi d\mu = y$$

with
$$\Phi = (\varphi_1, \ldots, \varphi_n)$$

- lacktriangle Infinite-dimensional variable μ
- Finitely many constraints

Fenchel dual program

$$\hat{u} \in \arg\max \langle y, u \rangle$$
 s.t. $\left\| \sum_{k=0}^{n} u_k \varphi_k \right\|_{\infty} \le 1$

- Finite-dimensional variable
- Infinitely many constraints
- Strong duality

ℓ^1 -deconvolution: Beurling lasso (Blasso)

$$\min_{\mu} \frac{1}{2} \|y - \mathcal{F}_n(\mu)\|_2^2 + \lambda \|\mu\|_{TV}$$

- $\|\mu\|_{TV} = \sup |\sum_{j} \mu(B_j)|$ over all finite partitions (B_j) of [0,1]
- $\|\mu\|_{TV} = \sum_{i=1}^{s} |a_i|$ when the measure is discrete

Algorithms

- proximal-based [Bredies, Pikkarainen 2012]
- root-finding [Candés, Fernandez-Granda 2012]

ℓ^1 -deconvolution: Beurling lasso (Blasso)

$$\min_{\mu} \frac{1}{2} \|y - \mathcal{F}_n(\mu)\|_2^2 + \lambda \|\mu\|_{TV}$$

- $\|\mu\|_{TV} = \sup |\sum_{j} \mu(B_j)|$ over all finite partitions (B_j) of [0,1]
- $\|\mu\|_{TV} = \sum_{i=1}^{s} |a_i|$ when the measure is discrete

Algorithms

- proximal-based [Bredies, Pikkarainen 2012]
- root-finding [Candés, Fernandez-Granda 2012]

ℓ¹-deconvolution: Beurling lasso (Blasso)

$$\min_{\mu} \frac{1}{2} \|y - \mathcal{F}_n(\mu)\|_2^2 + \lambda \|\mu\|_{TV}$$

- $\|\mu\|_{TV} = \sup |\sum_{j} \mu(B_j)|$ over all finite partitions (B_j) of [0,1]
- $\|\mu\|_{TV} = \sum_{i=1}^{s} |a_i|$ when the measure is discrete

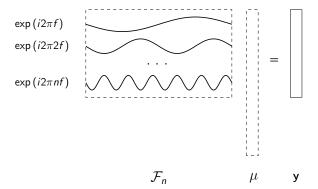
Algorithms

- proximal-based [Bredies, Pikkarainen 2012]
- root-finding [Candés, Fernandez-Granda 2012]

Others based on Prony's methods: MUSIC, ESPRIT, FRI (but lack of robustness...)

What kind of measures \mathcal{F}_n is able to retrieve?

3

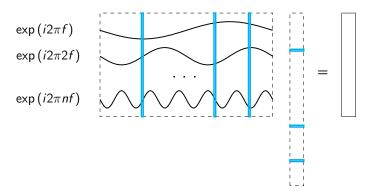


The sampling operator gives the first Fourier coefficients of the target measure

³Courtesy of Carlos Fernandez-Granda

What kind of measures \mathcal{F}_n is able to retrieve?

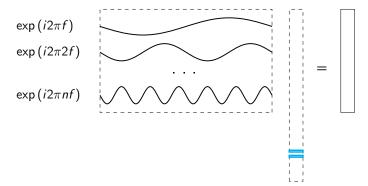
3



³Courtesy of Carlos Fernandez-Granda

What kind of measures \mathcal{F}_n is able to retrieve?

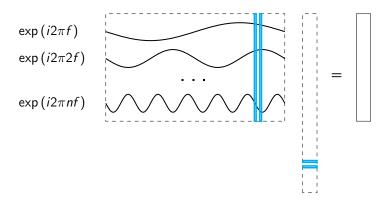
3



³Courtesy of Carlos Fernandez-Granda

What kind of measures \mathcal{F}_n is able to retrieve?

3



For such a discrete measure the sampling operator will be ill-posed

³Courtesy of Carlos Fernandez-Granda

Key feature for super-resolution

- Deterministic sampling operator
- Should be well-posed for spread out supports

Definition: minimum separation

The minimum separation for a measure μ such that $\mathrm{supp}(\mu^0)=\{t_1^0,\dots,t_{s_0}^0\}$ is the following quantity

$$\Delta = \inf_{i \neq j} d(t_i^0, t_j^0).$$

Minimum separation condition

- If $\Delta < 2/(n-1)$, the problem is ill-posed
- If $\Delta > 2/(n-1)$, the problem is well-posed

Showing that Blasso works?

Focus on

$$\min \|\mu\|_{TV}$$
 such that $\mathcal{F}_n(\mu) = y$

 $\mu = \sum_i a_i \delta_{t_i}$ with support T is the unique solution if there exists a trigonometric polynomial p.

$$p=\mathcal{F}_n^*c=\sum_\ell c_\ell e^{-2i\pi\ell\cdot}, ext{ for some } c\in\mathbb{C}^n$$

that satisfies

$$(*) \left\{ egin{array}{ll}
ho(t_i) = rac{a_i}{|a_i|} & ext{if } t_i \in T \ |
ho(t)| < 1 & ext{if } t_i
otin T \end{array}
ight.$$

$$(*) \left\{ \begin{array}{ll} \Re \left(\int_{\mathbb{T}} \overline{\rho}(t) \mu(\mathrm{d}t) \right) &= \|\mu\|_{\mathrm{TV}} \ (\textit{p} \ \text{subgradient of} \ \|\cdot\|_{\textit{TV}} \ \text{at} \ \mu) \\ \|\textit{p}\|_{\infty} &\leq 1 \end{array} \right.$$

- Q is called a dual polynomial
- Proof based on constructing such a polynomial

Dual polynomial and root-finding

Focus on

$$\min \|\mu\|_{TV}$$
 such that $\mathcal{F}_n(\mu) = y$

 $\mu = \sum_i a_i \delta_{t_i}$ with support T is the unique solution if there exists a trigonometric polynomial p,

$$p = \mathcal{F}_n^* c = \sum_{\ell} c_{\ell} e^{-2i\pi\ell}$$
, for some $c \in \mathbb{C}^n$

that satisfies

$$(*) \left\{ \begin{array}{ll} p(t_i) = \frac{a_i}{|a_i|} & \text{if } t_i \in T \\ |p(t)| < 1 & \text{if } t_i \notin T \end{array} \right. \rightsquigarrow p'(t_i) = 0$$

Root-finding

- Once the dual polynomial constructed
- The support of μ is included in the set of the roots of the polynomial derivative!

	Spike deconvolution	Compressed sensing
Setting	∞-dim	finite-dim (or easy ∞-dim)
Object of interest	a discrete measure	a sparse signal (mainly)
	$\mu = \sum_{i=1}^{s} a_i \delta_{t_i}$	$x \in \mathbb{C}^n$

⁴illustrations from Carlos Fernandez-Granda

	Spike deconvolution	Compressed sensing
Setting	∞-dim	finite-dim (or easy ∞-dim)
Object of interest	a discrete measure	a sparse signal (mainly)
	$\mu = \sum_{i=1}^{s} a_i \delta_{t_i}$	$x \in \mathbb{C}^n$
Measurements	low-pass filter	random
	4	
	spectrum extrapolation	spectrum interpolation

⁴illustrations from Carlos Fernandez-Granda

	Spike deconvolution	Compressed sensing
Setting	∞ -dim	finite-dim (or easy ∞-dim)
Object of interest	a discrete measure	a sparse signal (mainly)
	$\mu = \sum_{i=1}^{s} a_i \delta_{t_i}$	$x \in \mathbb{C}^n$
Measurements	low-pass filter	random
	spectrum extrapolation	spectrum interpolation
Resolution	$\min_{\mu} \frac{1}{2} \ y - \mathcal{F}_n(\mu)\ _2^2 + \lambda \ \mu\ _{TV}$	$\min_{x} \frac{1}{2} \ y - \mathcal{F}_{rd}(x)\ _{2}^{2} + \lambda \ x\ _{1}$
	Beurling Lasso estimator	Lasso
Key feature	Minimum separation	Measurement incoherence
		+ degree of sparsity

⁴illustrations from Carlos Fernandez-Granda

	Spike deconvolution	Compressed sensing
Setting	∞-dim	finite-dim (or easy ∞-dim)
Object of interest	a discrete measure	a sparse signal (mainly)
	$\mu = \sum_{i=1}^{s} a_i \delta_{t_i}$	$x \in \mathbb{C}^n$
Measurements	low-pass filter	random
	4	
	spectrum extrapolation	spectrum interpolation
Resolution	$\min_{\mu} \frac{1}{2} \ y - \mathcal{F}_n(\mu)\ _2^2 + \lambda \ \mu\ _{TV}$	$\min_{x} \frac{1}{2} \ y - \mathcal{F}_{rd}(x)\ _{2}^{2} + \lambda \ x\ _{1}$
	Beurling Lasso estimator	Lasso
Key feature	Minimum separation	Measurement incoherence
		+ degree of sparsity
Algorithm	SDP	LP
	Root-finding ()	

⁴illustrations from Carlos Fernandez-Granda

Handling unknown noise level

- Handling unknown noise level
- Assessing the noise level using the Rice method for a non-Gaussian process

- Handling unknown noise level
- Assessing the noise level using the Rice method for a non-Gaussian process
- Prediction & strong localization accuracy

- Handling unknown noise level
- Assessing the noise level using the Rice method for a non-Gaussian process
- Prediction & strong localization accuracy
- Numerics: the root-finding can always be done (open question of [1, Eq. (4.5)])

E. J. Candès and C. Fernandez-Granda.

Towards a mathematical theory of super-resolution.

Communications on Pure and Applied Mathematics, 67(6):906-956, 2014.

- Handling unknown noise level
- Assessing the noise level using the Rice method for a non-Gaussian process
- Prediction & strong localization accuracy
- Numerics: the root-finding can always be done (open question of [1, Eq. (4.5)])

Claire Boyer, Yohann de Castro, and Joseph Salmon.

Adapting to unknown noise level in sparse deconvolution.

Information and Inference, abs/1606.04760, 2017.

E. J. Candès and C. Fernandez-Granda.

Towards a mathematical theory of super-resolution.

Communications on Pure and Applied Mathematics, 67(6):906–956, 2014.

- Introduction
- Compressed sensing ?
- Super-resolution
- The proposed approach Results Some words about the proof
- **10** Numerical resolution
- **6** Numerical experiments

The proposed method

Data

$$y = \mathcal{F}_n \mu^0 + \varepsilon$$

- $y \in \mathbb{C}^n$ with $n = 2f_c + 1$
- ε is a complex Gaussian vector, $\varepsilon = \varepsilon^{(1)} + i\varepsilon^{(2)}$ with $\varepsilon^{(j)} \sim \mathcal{N}(0, \sigma_0^2 \mathrm{Id})$

The proposed method

Data

$$y = \mathcal{F}_n \mu^0 + \varepsilon$$

- $y \in \mathbb{C}^n$ with $n = 2f_c + 1$
- ε is a complex Gaussian vector, $\varepsilon = \varepsilon^{(1)} + i\varepsilon^{(2)}$ with $\varepsilon^{(j)} \sim \mathcal{N}(0, \sigma_0^2 \mathrm{Id})$

For handling the unknown noise level, we propose the CBLasso for Concomitant Beurling Lasso.

The proposed method

Data

$$y = \mathcal{F}_n \mu^0 + \varepsilon$$

- $v \in \mathbb{C}^n$ with $n = 2f_c + 1$
- ε is a complex Gaussian vector, $\varepsilon = \varepsilon^{(1)} + i\varepsilon^{(2)}$ with $\varepsilon^{(j)} \sim \mathcal{N}(0, \sigma_0^2 \mathrm{Id})$

For handling the unknown noise level, we propose the CBLasso for Concomitant Beurling Lasso.

CBLasso

$$(\hat{\mu}, \hat{\sigma}) \in \operatorname*{argmin}_{(\mu, \sigma) \in \mathcal{E}^* \times \mathbb{R}_{++}} \frac{1}{2n\sigma} \|y - \mathcal{F}_n(\mu)\|_2^2 + \frac{\sigma}{2} + \lambda \|\mu\|_{\mathrm{TV}} \ ,$$

- convex
- Owen 07, Antoniadis 10, Belloni Chernozhukov Wang 11, Sun Zhang 12, Chretien Darses 14, van de Geer 15 → square-root lasso and scaled-lasso

Where is the square-root?

Why square-root?

The CBLasso reads ([2] \sim scaled lasso)

$$(\hat{\mu}, \hat{\sigma}) \in \underset{(\mu, \sigma) \in \mathcal{E}^* \times \mathbb{R}_{++}}{\operatorname{argmin}} \frac{1}{2n\sigma} \|y - \mathcal{F}_n(\mu)\|_2^2 + \frac{\sigma}{2} + \lambda \|\mu\|_{\text{TV}} .$$

When the solution is reached for $\hat{\sigma}>0$, ([1] \sim square-root lasso)

$$\hat{\sigma} = \|y - \mathcal{F}_n(\hat{\mu})\|_2 / \sqrt{n}$$

$$\hat{\mu} \in \operatorname*{argmin}_{\mu \in F^*} \|y - \mathcal{F}_n(\mu)\|_2 / \sqrt{n} + \lambda \|\mu\|_{\mathrm{TV}}$$

A. Belloni, V. Chernozhukov, and L. Wang.

Square-root Lasso: Pivotal recovery of sparse signals via conic programming. Biometrika. 98(4):791–806. 2011.

T. Sun and C.-H. Zhang.

Scaled sparse linear regression.

Biometrika, 99(4):879-898, 2012.

Compatibility limits

Sufficient conditions for oracle inequalities

- ullet RIP \Longrightarrow REC \Longrightarrow Compatibility
- Compatibility condition :

$$\mathcal{C}(L,S)>0$$

$$\mathcal{C}(L,S):=\inf\left\{|S|\|\mathcal{F}_n(\nu)\|_2^2/n\quad\text{s.t.}\quad\sup(\nu)=S,\ \|\nu_S\|_{\mathrm{TV}}=1,\ \|\nu_{S^c}\|_{\mathrm{TV}}\leq L\right\}\ .$$

• Consider ν as a difference of two measures: $\hat{\mu}$ and μ^0

Compatibility limits

Sufficient conditions for oracle inequalities

- RIP \Longrightarrow REC \Longrightarrow Compatibility
- Compatibility condition :

$$\mathcal{C}(L,S) := \inf \left\{ |S| \|\mathcal{F}_n(\nu)\|_2^2 / n \quad \text{s.t.} \quad \text{supp}(\nu) = S, \ \|\nu_S\|_{\mathrm{TV}} = 1, \ \|\nu_{S^c}\|_{\mathrm{TV}} \leq L \right\} \ .$$

ullet Consider u as a difference of two measures: $\hat{\mu}$ and μ^0

Compatibility does not hold

- $\nu_{\varepsilon} = \delta_{-\varepsilon} + \delta_{\varepsilon}$
- Compatibility ⇒ REC ⇒ RIP
- highly coherent designs: close Dirac masses share almost the same Fourier coefficients

Non-uniform approach

Measure-dependent reconstruction

Standard assumptions

Assumption (Sampling rate condition).

$$\lambda \text{SNR} \leq \frac{\sqrt{17} - 4}{2} \simeq 0.0616$$

with SNR :=
$$\frac{\|\mu^0\|_{\mathrm{TV}}}{\sqrt{\mathbb{E}[\|\varepsilon\|_2^2]/n}} = \frac{\|\mu^0\|_{\mathrm{TV}}}{\sqrt{2}\sigma_0}.$$

•
$$\lambda \ge 2\sqrt{2\log n/n} \implies n/\log n \ge C SNR^2$$

Standard assumptions

Assumption (Sampling rate condition).

$$\lambda \text{SNR} \leq \frac{\sqrt{17} - 4}{2} \simeq 0.0616$$

with SNR :=
$$\frac{\|\mu^0\|_{\mathrm{TV}}}{\sqrt{\mathbb{E}[\|\varepsilon\|_2^2]/n}} = \frac{\|\mu^0\|_{\mathrm{TV}}}{\sqrt{2}\sigma_0}.$$

•
$$\lambda \ge 2\sqrt{2\log n/n} \implies n/\log n \ge C \operatorname{SNR}^2$$

Assumption (No-overfitting).

$$\hat{\sigma} > 0$$

Standard assumptions

Assumption (Sampling rate condition).

$$\lambda \text{SNR} \leq \frac{\sqrt{17} - 4}{2} \simeq 0.0616$$

with SNR :=
$$\frac{\|\mu^0\|_{\mathrm{TV}}}{\sqrt{\mathbb{E}[\|\epsilon\|_2^2]/n}} = \frac{\|\mu^0\|_{\mathrm{TV}}}{\sqrt{2}\sigma_0}.$$

•
$$\lambda \ge 2\sqrt{2\log n/n} \implies n/\log n \ge C SNR^2$$

Assumption (No-overfitting).

$$\hat{\sigma} > 0$$

Assumption (Separation condition).

For
$$supp(\mu^{0}) = \{t_{1}^{0}, \dots, t_{s_{0}}^{0}\},$$

$$\forall i \neq j, \qquad d(t_i^0, t_j^0) \geq \frac{1.26}{f_c}$$

Prediction result

Theorem (B., de Castro, Salmon, 2017).

Let $C > 2\sqrt{2}$. Set C' > 0, that may depend on C. Assume

- the sampling rate condition,
- the separation condition.

The estimator $\hat{\mu}$ solution to CBLasso with a choice $\lambda \geq C\sqrt{\log n/n}$ satisfies

$$\frac{1}{n} \|\mathcal{F}_n(\hat{\mu} - \mu^0)\|_2^2 \le C' \, s_0 \, \lambda^2 \, \sigma_0,$$

with high probability.

Prediction result

Theorem (B., de Castro, Salmon, 2017).

Let $C > 2\sqrt{2}$. Set C' > 0, that may depend on C. Assume

- the sampling rate condition,
- the separation condition.

The estimator $\hat{\mu}$ solution to CBLasso with a choice $\lambda \geq C\sqrt{\log n/n}$ satisfies

$$\frac{1}{n} \|\mathcal{F}_n(\hat{\mu} - \mu^0)\|_2^2 \le C' s_0 \lambda^2 \sigma_0^2 = O\left(\frac{s_0 \sigma_0^2 \log n}{n}\right),$$

with high probability.

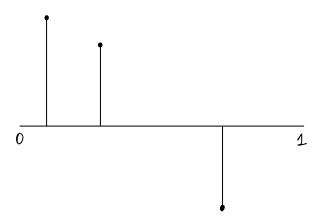
• "fast rate of convergence" of [1]

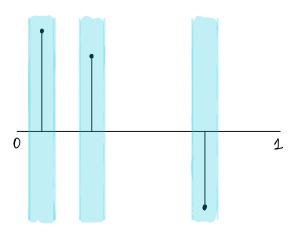
G. Tang, B. N. Bhaskar, and B. Recht.

Near minimax line spectral estimation.

Near minimax line spectral estimation.

Information Theory, IEEE Transactions on, 61(1):499–512, 2015.





- Near regions: $N = \left\{ t : \exists t_j^0, d(t, t_j^0) \leq c_1/f_c \right\}$
- Far regions: $T \setminus N$

Near regions

$$\forall j \in [s_0], \quad N_j := \left\{ t \in [0,1]; \ d(t,t_j^0) \leq \frac{c_1}{f_c} \right\} \ ,$$

with $0 < c_1 < 1.26/2$.

Far region

$$F:=[0,1]\setminus\bigcup_{i\in[s_0]}N_i$$

Near regions

$$\forall j \in [s_0], \quad N_j := \left\{ t \in [0,1]; \ d(t,t_j^0) \le \frac{c_1}{f_c} \right\} \ ,$$

with $0 < c_1 < 1.26/2$.

Far region

$$F:=[0,1]\setminus\bigcup_{i\in[m]}N_i$$

Theorem (B., de Castro, Salmon, 2017).

Let $C > 2\sqrt{2}$. Let C' > 0 may depend on C. The estimator $\hat{\mu}$, solution to CBLasso with a choice $\lambda \geq C\sqrt{\log n/n}$, satisfies

Near regions

$$\forall j \in [s_0], \quad N_j := \left\{ t \in [0,1]; \ d(t,t_j^0) \le \frac{c_1}{f_c} \right\} \ ,$$

with $0 < c_1 < 1.26/2$.

Far region

$$F:=[0,1]\setminus\bigcup_{i\in[n]}N_i$$

Theorem (B., de Castro, Salmon, 2017).

Let $C > 2\sqrt{2}$. Let C' > 0 may depend on C. The estimator $\hat{\mu}$, solution to CBLasso with a choice $\lambda > C\sqrt{\log n/n}$, satisfies

Near regions

$$\forall j \in [s_0], \quad N_j := \left\{ t \in [0,1]; \ d(t,t_j^0) \le \frac{c_1}{f_c} \right\} \ ,$$

with $0 < c_1 < 1.26/2$.

Far region

$$F:=[0,1]\setminus\bigcup_{i\in[r_{co}]}N_{i}$$

Theorem (B., de Castro, Salmon, 2017).

Let $C > 2\sqrt{2}$. Let C' > 0 may depend on C. The estimator $\hat{\mu}$, solution to CBLasso with a choice $\lambda > C \sqrt{\log n/n}$, satisfies

$$\Im \sum_{\{k: \ \hat{t}_k \in F\}} |\hat{a}_k| \le C' \sigma_0 s_0 \sqrt{\log n/n} \ ,$$

with high probability.

Corollary (B., de Castro, Salmon, 2017).

For any t_j^0 in the support of μ^0 such that $a_j^0 > C'\sigma_0 s_0 \lambda$, there exists an element \hat{t}_k in the support of $\hat{\mu}$ such that

$$\mathrm{d}(t_j^0,\hat{t}_k) \leq \sqrt{\frac{C'\sigma_0s_0\lambda}{|a_j^0| - C'\sigma_0s_0\lambda}} \, \frac{1}{n} \ ,$$

with high probability.

• independent of the other spikes magnitude

Noise level estimation

Proposition (B., de Castro, Salmon, 2017).

Under the sampling rate assumption,

$$\left|\frac{\sqrt{n}\hat{\sigma}}{\|\varepsilon\|_2} - 1\right| \leq \frac{1}{2} ,$$

with probability larger than $1 - \exp(-n/9) \left(\frac{2\sqrt{2}}{n} + \frac{2\sqrt{3}+3}{3} \right)$.

Some words about the proof

KKT condition

 $\hat{\mu} = \sum_i \hat{a}_i \delta_{t_i}$ with support \hat{T} is solution of CBLasso if there exists a dual polynomial \hat{p}

$$\frac{1}{n}\mathcal{F}_n^*(y-\mathcal{F}_n(\hat{\mu})) = \hat{\sigma}\lambda\hat{\rho} \qquad \left\{ \begin{array}{ll} \hat{\rho}(t_i) = \frac{\hat{a}_i}{\hat{a}_i|} & \text{if } t_i \in \hat{T} \\ |\hat{\rho}(t)| < 1 & \text{if } t_i \notin \hat{T} \end{array} \right.$$

Some words about the proof

KKT condition

 $\hat{\mu} = \sum_i \hat{a}_i \delta_{t_i}$ with support \hat{T} is solution of CBLasso if there exists a dual polynomial \hat{p}

$$\frac{1}{n}\mathcal{F}_n^*(y-\mathcal{F}_n(\hat{\mu})) = \hat{\sigma}\lambda\hat{\rho} \qquad \begin{cases} \hat{\rho}(t_i) = \frac{\hat{a}_i}{\hat{a}_i|} & \text{if } t_i \in \hat{T} \\ |\hat{\rho}(t)| < 1 & \text{if } t_i \notin \hat{T} \end{cases}$$

Some words about the proof

KKT condition

 $\hat{\mu} = \sum_i \hat{a}_i \delta_{t_i}$ with support \hat{T} is solution of CBLasso if there exists a dual polynomial $\hat{\rho}$

$$\frac{1}{n}\mathcal{F}_n^*(y-\mathcal{F}_n(\hat{\mu})) = \hat{\sigma}\lambda\hat{\rho} \qquad \begin{cases} \hat{\rho}(t_i) = \frac{\hat{\delta}_i}{\hat{\delta}_i|} & \text{if } t_i \in \hat{T} \\ |\hat{\rho}(t)| < 1 & \text{if } t_i \notin \hat{T} \end{cases}$$

Proofs are based on generalizations of the dual certificate for the noiseless problem

Sketch of proof

Spike localization

- Proofs are based on the work of [1, 2, 3]
- amended by Rice method

Prediction

- adapt the proof of [3] to our setting
- Rice method for a non-Gaussian process

Near minimax line spectral estimation. Information Theory, IEEE Transactions on, 61(1):499-512, 2015.

- Introduction
- Compressed sensing ?
- 3 Super-resolution
- The proposed approach
 Results
 Some words about the proof
- Numerical resolution
- **6** Numerical experiments

Primal-dual

Proposition.

Denoting $\mathcal{D}_n = \left\{c \in \mathbb{C}^n : \|\mathcal{F}_n^*(c)\|_{\infty} \le 1, n\lambda^2 \|c\|^2 \le 1\right\}$, the dual formulation of the CBLasso reads

$$\hat{c} \in \underset{c \in \mathcal{D}_n}{\operatorname{arg \, max}} \lambda \langle y, c \rangle .$$
 (1)

Then, we have the link-equation between primal and dual solutions

$$y = n\lambda \hat{\sigma}\hat{c} + \mathcal{F}_n(\hat{\mu}) . \tag{2}$$

as well as a link between the coefficient and the polynomial

$$\mathcal{F}_n^*(\hat{c}) = \hat{\rho} . \tag{3}$$

Primal-dual

Proposition.

Denoting $\mathcal{D}_n = \left\{c \in \mathbb{C}^n : \|\mathcal{F}_n^*(c)\|_{\infty} \leq 1, n\lambda^2 \|c\|^2 \leq 1\right\}$, the dual formulation of the CBLasso reads

$$\hat{c} \in \underset{c \in \mathcal{D}_n}{\operatorname{arg \, max}} \lambda \langle y, c \rangle .$$
 (1)

Then, we have the link-equation between primal and dual solutions

$$y = n\lambda \hat{\sigma}\hat{c} + \mathcal{F}_n(\hat{\mu}) . \tag{2}$$

as well as a link between the coefficient and the polynomial

$$\mathcal{F}_n^*(\hat{c}) = \hat{\rho} . \tag{3}$$

If the dual polynomial \hat{p} associated is not constant

- ullet the support of $\hat{\mu}$ is finite,
- ullet the support of $\hat{\mu}$ is included in the set of its derivative roots, i.e. where the polynomial saturates at 1.
- the proof based on a dual certificate construction is possible.

Primal-dual: comparison with Blasso

Dual of the Blasso

$$\hat{c} \in \argmax_{\|\mathcal{F}_n^*(c)\|_{\infty} \leq 1} \ \langle y, c \rangle \ .$$

Dual of the CBLasso

$$\hat{c} \in \underset{\substack{\|\mathcal{F}_n^*(c)\|_{\infty} \leq \mathbf{1} \\ n\lambda^2\|c\|^2 \leq \mathbf{1}}}{\arg\max} \ \lambda \left\langle y, c \right\rangle \ .$$

Primal-dual: comparison with Blasso

Dual of the Blasso

$$\hat{c} \in \mathop{\arg\max}_{\|\mathcal{F}_n^*(c)\|_{\infty} \leq 1} \, \langle y, c \rangle \ .$$

Open question

When the dual polynomial is non-constant?

Dual of the CBLasso

$$\hat{c} \in \underset{\substack{\|\mathcal{F}_n^*(c)\|_{\infty} \leq \mathbf{1} \\ n\lambda^2\|c\|^2 \leq \mathbf{1}}}{\arg\max} \ \lambda \left\langle y, c \right\rangle \ .$$

For the CBLasso

We answer this.

Showing that the dual polynomial is non-constant

 $|\hat{p}|^2$ is of constant modulus 1

$$\Rightarrow \hat{p} = v \varphi_k \text{ with } v \in \mathbb{C} \text{ and } \varphi_k(\cdot) = \exp(2\pi \imath k \cdot) \text{ for some } -f_c \leq k \leq f_c.$$

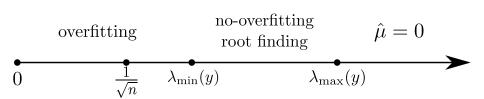
• if |v| < 1, using Holder's inequality on

$$\mathfrak{R}\left(\int_{\mathbb{T}}\overline{\hat{
ho}}(t)\hat{\mu}(\mathrm{d}t)
ight)=\|\hat{\mu}\|_{\mathrm{TV}}$$

leads to $\hat{\mu}=0$.

- if |v| = 1, we also have $\hat{c} \in \mathcal{D}_n$, so $\|\hat{c}\|_2 \le 1/(\sqrt{n}\lambda)$, leading to $|v| \le 1/(\sqrt{n}\lambda)$. Since $\lambda > 2\sqrt{\log n}/\sqrt{n} \Rightarrow |v| < 1$, which contradicts |v| = 1.
- One can then conclude that a dual polynomial of constant modulus never occurs in the CBLasso setup

Discussion on the value of λ



SDP formulation of the CBLasso

One can represent the dual feasible set \mathcal{D}_n as an SDP condition.

The dual problem can be cast as follows

$$\max_{c \in \mathbb{C}^n} \lambda \left\langle y, c \right\rangle$$
 such that

$$\exists Q \in \mathbb{C}^{n \times n} \begin{pmatrix} Q & c \ c^* & 1 \end{pmatrix} \succcurlyeq 0 \qquad \sum_{j=1}^{n-j} Q_{i,i+j} = \left\{ egin{array}{ll} 1 & ext{if } j=0 \ 0 & j=1,\ldots,n-1. \end{array}
ight.$$

SDP formulation of the CBLasso

One can represent the dual feasible set \mathcal{D}_n as an SDP condition.

The dual problem can be cast as follows

$$\max_{c \in \mathbb{C}^n} \lambda \left\langle y, c
ight
angle \quad \mathsf{such that}$$

$$\exists Q \in \mathbb{C}^{n \times n} \begin{pmatrix} Q & c \\ c^* & 1 \end{pmatrix} \succcurlyeq 0 \qquad \sum_{i=1}^{n-j} Q_{i,i+j} = \left\{ \begin{array}{cc} 1 & \text{if } j = 0 \\ 0 & j = 1, \dots, n-1. \end{array} \right.$$

$$\begin{pmatrix} I_n & \lambda \sqrt{n}c \\ \lambda \sqrt{n}c^* & 1 \end{pmatrix} \succcurlyeq 0$$

• The dual problem is a tractable SDP program

Algorithm

Given the data $y \in \mathbb{C}^n$

① solve the dual problem to find the coefficients \hat{c} of the dual polynomial \hat{p} (cvx Matlab toolbox);

Algorithm

Given the data $y \in \mathbb{C}^n$

- ① solve the dual problem to find the coefficients \hat{c} of the dual polynomial \hat{p} (cvx Matlab toolbox);
- ② identify $\operatorname{supp}(\hat{\mu}) = \{\hat{t}_1, \dots, \hat{t}_{\hat{s}}\}$ using the roots of $1 |\hat{\rho}|^2$;

Algorithm

Given the data $y \in \mathbb{C}^n$

- ① solve the dual problem to find the coefficients \hat{c} of the dual polynomial \hat{p} (cvx Matlab toolbox);
- ② identify $\operatorname{supp}(\hat{\mu}) = \{\hat{t}_1, \dots, \hat{t}_{\hat{s}}\}$ using the roots of $1 |\hat{\rho}|^2$;
- 3 fix the design matrix $X \in \mathbb{C}^{n \times \hat{s}}$, defined by $X_{k,j} = \overline{\varphi_k}(\hat{t}_j)$;

Algorithm

Given the data $y \in \mathbb{C}^n$

- ① solve the dual problem to find the coefficients \hat{c} of the dual polynomial \hat{p} (cvx Matlab toolbox);
- ② identify supp $(\hat{\mu}) = \{\hat{t}_1, \dots, \hat{t}_{\hat{s}}\}$ using the roots of $1 |\hat{\rho}|^2$;
- 3 fix the design matrix $X \in \mathbb{C}^{n \times \hat{s}}$, defined by $X_{k,j} = \overline{\varphi_k}(\hat{t}_j)$;
- solve now the following finite-dimensional problem

$$\left(\hat{\pmb{a}},\hat{\sigma}\right) \in \operatorname*{argmin}_{(\pmb{a},\sigma) \in \mathbb{C}^{\S} \times \mathbb{R}_{++}} \frac{1}{2n\sigma} \| \pmb{y} - \pmb{X} \pmb{a} \|_2^2 + \frac{\sigma}{2} + \lambda \| \pmb{a} \|_1 \ ,$$

Algorithm

Given the data $y \in \mathbb{C}^n$

- ① solve the dual problem to find the coefficients \hat{c} of the dual polynomial \hat{p} (cvx Matlab toolbox);
- ② identify $\operatorname{supp}(\hat{\mu}) = \{\hat{t}_1, \dots, \hat{t}_{\hat{s}}\}$ using the roots of $1 |\hat{\rho}|^2$;
- 3 fix the design matrix $X \in \mathbb{C}^{n \times \hat{s}}$, defined by $X_{k,j} = \overline{\varphi_k}(\hat{t}_j)$;
- solve now the following finite-dimensional problem

$$(\hat{\mathbf{a}}, \hat{\sigma}) \in \operatorname*{argmin}_{(\mathbf{a}, \sigma) \in \mathbb{C}^{\hat{\mathbf{S}}} \times \mathbb{R}_{++}} \frac{1}{2n\sigma} \|\mathbf{y} - \mathbf{X}\mathbf{a}\|_{2}^{2} + \frac{\sigma}{2} + \lambda \|\mathbf{a}\|_{1} ,$$

as follows: for an initial value of $\hat{\sigma},$ until some stopping criterion, alternate the following steps

• solve the previous problem for a fixed $\hat{\sigma}$ to compute \hat{a} ,

$$\hat{a} = X^+ y - \lambda \hat{\sigma}(X^* X)^{-1} \operatorname{sign}(X^* \hat{c})$$

• update $\hat{\sigma} = \|y - X\hat{a}\|_2 / \sqrt{n}$ using the new value of \hat{a} ,

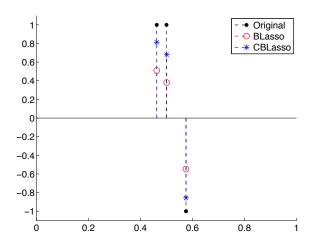
- Introduction
- Compressed sensing ?
- Super-resolution
- The proposed approach Results Some words about the proof
- Numerical resolution
- **6** Numerical experiments

Code available at

 $\verb|https://github.com/claireBoyer/CBLasso||$

http://www.lsta.upmc.fr/boyer/

Measure reconstruction



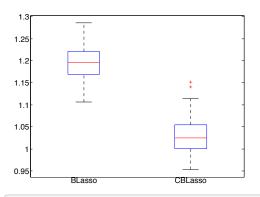
Reconstruction of a discrete measure. The original measure μ^0 is composed of 3 spikes (in black). The reconstructed measure $\hat{\mu}$ using our proposed CBLasso (in blue). In comparison, we plot the reconstructed measure using the BLasso, (in red).

Noise level estimation

$$\varepsilon = \varepsilon^{(1)} + i\varepsilon^{(2)} \text{ with } \varepsilon^{(j)} \sim \mathcal{N}(\mathbf{0}, \sigma_0 \mathrm{Id}) \text{ with } \sigma_0 = 1/\sqrt{2}.$$

Noise level estimation

$$\varepsilon = \varepsilon^{(1)} + i\varepsilon^{(2)}$$
 with $\varepsilon^{(j)} \sim \mathcal{N}(0, \sigma_0 \mathrm{Id})$ with $\sigma_0 = 1/\sqrt{2}$.



Boxplot on $\hat{\sigma}$ for 100 CBLasso consistent estimations of $\sqrt{2}\sigma_0=1.$ We compare our method to

$$\hat{\sigma}^{\mathrm{BLasso}} = \frac{\|y - \mathcal{F}_n(\hat{\mu}^{\mathrm{BLasso}})\|_2}{\sqrt{n - \hat{\mathsf{s}}^{\mathrm{BLasso}}}}$$

proposed in [1] where $\hat{\mu}^{\rm BLasso}$ is the reconstructed measure supported on $\hat{s}^{\rm BLasso}$ spikes via BLasso.

S. Reid, R. Tibshirani, and J. Friedman.

A study of error variance estimation in lasso regression.

arXiv preprint arXiv:1311.5274, 2014.

Bias

Noise level estimation

$$\left|\frac{\sqrt{n}\hat{\sigma}}{\|\varepsilon\|_2} - 1\right| \leq \frac{1}{2} \ ,$$

with high probability.

Bias

$$\hat{\sigma} \simeq \sqrt{2}\sigma_0 imes rac{\mathbb{E}\|\mathbf{g}\|_2}{\sqrt{2n}} = \sqrt{2}\sigma_0 imes rac{\Gamma(n+1/2)}{\sqrt{n}\Gamma(n)}
ightarrow \sqrt{2}\sigma_0 \,,$$

showing that $\hat{\sigma}/\sqrt{2}$ is a consistent estimator of σ_0 .

The CBLasso

- new approach to handle unknown noise level in spike detection
- theoretical contributions :
 - prediction for CBLasso
 - localization for CBLasso
 - closing the question of constant polynomial in this setting
- numerical method is also proposed to tackle the CBLasso

The CBLasso

- new approach to handle unknown noise level in spike detection
- theoretical contributions :
 - prediction for CBLasso
 - localization for CBLasso
 - o closing the question of constant polynomial in this setting
- numerical method is also proposed to tackle the CBLasso

Perspectives

- Choice of λ (impossible cross-validation)
- Towards nD results
- Other filters?

The CBLasso

- new approach to handle unknown noise level in spike detection
- theoretical contributions :
 - prediction for CBLasso
 - localization for CBLasso
 - closing the question of constant polynomial in this setting
- numerical method is also proposed to tackle the CBLasso

Perspectives

- Choice of λ (impossible cross-validation)
- Towards nD results
- Other filters?

Claire Boyer, Yohann de Castro, and Joseph Salmon.

Adapting to unknown noise level in sparse deconvolution.

Information and Inference, abs/1606.04760, 2017.

The CBLasso

- new approach to handle unknown noise level in spike detection
- theoretical contributions :
 - prediction for CBLasso
 - localization for CBLasso
 - closing the question of constant polynomial in this setting
- numerical method is also proposed to tackle the CBLasso

Perspectives

- Choice of λ (impossible cross-validation)
- Towards nD results
- Other filters?

Claire Boyer, Yohann de Castro, and Joseph Salmon.

Adapting to unknown noise level in sparse deconvolution.

Information and Inference, abs/1606.04760, 2017.

For the frustrated optimizers...

A subgradient descent

