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The multireference alignment model
True signal: x € Ct | | | I

M observations:

fi = R{)ix T— 0N

Withn ~ N(0,1,), i.id. |
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High SNR is easy
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There is a fundamental limit to our
ability to align one pair of observations

True signal
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Cross-correlation
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Einstein-from-noise

It is preferable to avoid the need for an initial guess.



Importantly, we don’t need to
estimate the shifts—only the signal
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Length L = 32, #observations M = 100,000, noise level 0 = 1
(window heightis 1)



fi = R{)ix + on

The invariant features approach

Estimate the signal from statistics which are
invariant under cyclic shifts.

For example, to estimate the mean of the signal, we
do not need to estimate the shifts:

M
=5 )
=1

2
Estimates first Fourier coefficient, variance O (aﬁ)



fi = R{)ix + on

[Invariant feature 2: power spectrum
Let y = DFT(x) (discrete Fourier transform).
The power spectrum of x is:

P, = |Y|2

2TTit
Invariant because: DFT(R;x); = yre L

k

(P, is the DFT of the auto-correlation of x.)



fi = R{)ix + on

[Invariant feature 2: power spectrum

y = DFT(x), P = |y|*

E{PRtx+an} = P, + Lo?
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4
Unbiased estimator with variance O (Gﬁ) .

Sufficient to estimate the Fourier moduli.



fi = R{)ix + on

Invariant feature 3: bispectrum

Lety = DFT(x). The bispectrum of x is:

(By)ke = YiVeYo—k

2TTit
Invariant because: DFT(R;x);, = yre L

k

(B, is the 2D-DFT of the triple-correlation of x.)



fi = R{)ix + on

Invariant feature 3: bispectrum

y = DFT(x), bispectrum (By) ke = YiYVeVe-i
[f x has zero mean, then

E{BRtx+an} = B,

M

~ 1

Bx_ﬂx = Mz Bfi_ﬁx
=1

6
Unbiased estimator with variance O (%) .

Can we recover Fourier phases from the bispectrum?



fi = R{)ix + on

Invertibility (up to shifts)

The bispectrum alone is sufficient to recover
the signal, under support conditions on the DFT.

If x € CL, this is sufficient:

yir + 0fork € {1, ..., K} with K 2%

vy =0forke{K+1,.. L—1}

Yo free



In principle, there is no limit on o
The map ¢: x - (u,, P,, B,) is smooth.

, ]4, is invertible at x.

Thus, ]¢—1 exists, that is,

6
Variance on (u,, P,, B,) is O (Gﬁ), SO,



fi = R{)ix + on

MRA from invariant features

Input M observations &;, noise level o
Output estimate of the signal, X

1. Estimate invaAriaAnt features O(ML?)
Compute fiy, P, Bx_

2. Combine to estimate y = DFT(x) 0(fun(L))

a. Estimate y, from fi,
b. Estimate |y, | from P, for k # 0

c. Estimate phases of y; from Ex_”x fork #0

3. Return X, the inverse DFT of the estimated y



Bispectrum inversion (phases only)

This is the part we focus on:

Given a bispectrum estimator [

Bki’ X Vi VeYo—kr

how can we recover the phases of y?
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Frequency marching

Phase estimation is trivial in the absence of noise.
Let §# = phase(y) and B = phase(B), then:

Bre = 915 eT ok

2711

Pick§; ine® ~ e ™
To find J,, use By, = 3’13’23’1
To find 3, use B{3 = y1y3y2

r

To find J,, use By4 = 7, 9473 and 324 = }’2)’4)’2
Etc.

- .
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Bie = YiVeVo—ri

T(J)ke = Yo (circulant)

B~ 3§y oT(H)



Phases-from-bispectrum
as non-convex optimization

~

Since B = $¥* o T($), try to solve:

min ”W (B — ZZ" o T(Z))”

zeCL

subject to: |z;| = 1 foreach k

W o (B =2z o T(@)|lo= - I + .. |1E = 2(W P 0 B, 22" 0 T(2))
~—

constant



Phases-from-bispectrum
as non-convex optimization

With M(z) = WP o B o T(2):
max (z, M(z)z)
zeCL
subject to: |z;| = 1 foreach k

Closely related to .
Difference: instead of quadratic.



Commercial: phase synchronization

max (z, Mz)
zeCL

subject to: |z,| = 1 foreach k

Near optimal bounds with Joe Zhong (ORFE)

The proof involves £, perturbation bounds
for eigenvectors.



Solve locally using the geometry of
the set of phases (torus)

With M(z) = B o T(2):

max (z, M(z)z)
zecL

subject to: |z;| = 1 foreach k

Apply Riemannian trust-regions

Random initialization
Converges to a second-order KKT point



Non-convexity and convergence

max (z, M(z)z)
zecL

subject to: |z,| = 1 foreach k

«In the noiseless case, empirically,
there are L second-order KKT points:
global optima corresponding to each shift

= Local convergence is quadratic

1
« Global convergence: O (5_3) worst-case



Numerical experiments

Relative

_ ”Rtxest o xtrue“2
RMSE(xtrue) xest) = min
shift t ”Xtrue ”2
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| L = 41,0 = 1, averaged over 3 repeats, Gaussian noise
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| L=41,M = 10 000, averaged over 10 repeats, Gaussian noise
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#observations M
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L = 251, averaged over 25 repeats, Gaussian noise

Noise level o




Looking ahead: Cryo-EM
1 [ Electron
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Looking ahead: Cryo-EM

E. coli 508 ribosomal subunit

Images provided by Dr. Fred Sigworth, Yale Medical School
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Kam’s method

Expand the molecule’s 3D-DFT in spherical harmonics:
Bk, 0,0) = Z Z Y76, )
=0 m=—4

Zvi Kam showed in ‘70s how to compute an analog of the
power spectrum without estimating viewing directions:

Co(ky, ky) = Z Apm (k1) Ap m (ky), or: Cp = ApA,
=—¢
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