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The multireference alignment model

True signal: 𝑥𝑥 ∈ 𝐂𝐂𝐿𝐿

𝑀𝑀 observations:

𝜉𝜉𝑖𝑖 = 𝑅𝑅ℓ𝑖𝑖𝑥𝑥 + 𝜎𝜎𝜎𝜎

With 𝑛𝑛 ∼ 𝑁𝑁(0, 𝐼𝐼𝐿𝐿), i.i.d.
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High SNR is easy
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There is a fundamental limit to our
ability to align one pair of observations
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Einstein-from-noise
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It is preferable to avoid the need for an initial guess.



Importantly, we don’t need to 
estimate the shifts—only the signal
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Length 𝐿𝐿 = 32, #observations 𝑀𝑀 = 100,000, noise level 𝜎𝜎 = 1
(window height is 1)



The invariant features approach

Estimate the signal from statistics which are 
invariant under cyclic shifts.

For example, to estimate the mean of the signal, we
do not need to estimate the shifts:

�𝜇𝜇𝑥𝑥 =
1
𝑀𝑀
�
𝑖𝑖=1

𝑀𝑀

𝜇𝜇𝜉𝜉𝑖𝑖

Estimates first Fourier coefficient, variance 𝑂𝑂 𝜎𝜎2

𝑀𝑀
.

7

𝜉𝜉𝑖𝑖 = 𝑅𝑅ℓ𝑖𝑖𝑥𝑥 + 𝜎𝜎𝜎𝜎



Invariant feature 2: power spectrum

Let 𝑦𝑦 = DFT(𝑥𝑥) (discrete Fourier transform).

The power spectrum of 𝑥𝑥 is:

𝑃𝑃𝑥𝑥 = 𝑦𝑦 2

Invariant because: DFT 𝑅𝑅𝑡𝑡𝑥𝑥 𝑘𝑘 = 𝑦𝑦𝑘𝑘𝑒𝑒
−2𝜋𝜋𝜋𝜋𝜋𝜋𝐿𝐿 𝑘𝑘.

(𝑃𝑃𝑥𝑥 is the DFT of the auto-correlation of 𝑥𝑥.)
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𝜉𝜉𝑖𝑖 = 𝑅𝑅ℓ𝑖𝑖𝑥𝑥 + 𝜎𝜎𝜎𝜎



Invariant feature 2: power spectrum

𝑦𝑦 = DFT(𝑥𝑥), 𝑃𝑃𝑥𝑥 = 𝑦𝑦 2

𝐄𝐄 𝑃𝑃𝑅𝑅𝑡𝑡𝑥𝑥+𝜎𝜎𝜎𝜎 = 𝑃𝑃𝑥𝑥 + 𝐿𝐿𝐿𝐿2

�𝑃𝑃𝑥𝑥 =
1
𝑀𝑀
�
𝑖𝑖=1

𝑀𝑀

𝑃𝑃𝜉𝜉𝑖𝑖 − 𝐿𝐿𝐿𝐿2

Unbiased estimator with variance 𝑂𝑂 𝜎𝜎4

𝑀𝑀
.

Sufficient to estimate the Fourier moduli.
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𝜉𝜉𝑖𝑖 = 𝑅𝑅ℓ𝑖𝑖𝑥𝑥 + 𝜎𝜎𝜎𝜎



Invariant feature 3: bispectrum

Let 𝑦𝑦 = DFT(𝑥𝑥). The bispectrum of 𝑥𝑥 is:

𝐵𝐵𝑥𝑥 𝑘𝑘𝑘 = 𝑦𝑦𝑘𝑘𝑦𝑦ℓ𝑦𝑦ℓ−𝑘𝑘

Invariant because: DFT 𝑅𝑅𝑡𝑡𝑥𝑥 𝑘𝑘 = 𝑦𝑦𝑘𝑘𝑒𝑒
−2𝜋𝜋𝜋𝜋𝜋𝜋𝐿𝐿 𝑘𝑘.

(𝐵𝐵𝑥𝑥 is the 2D-DFT of the triple-correlation of 𝑥𝑥.)
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𝜉𝜉𝑖𝑖 = 𝑅𝑅ℓ𝑖𝑖𝑥𝑥 + 𝜎𝜎𝜎𝜎



Invariant feature 3: bispectrum

𝑦𝑦 = DFT(𝑥𝑥), bispectrum 𝐵𝐵𝑥𝑥 𝑘𝑘𝑘 = 𝑦𝑦𝑘𝑘𝑦𝑦ℓ𝑦𝑦ℓ−𝑘𝑘
If 𝑥𝑥 has zero mean, then

𝐄𝐄 𝐵𝐵𝑅𝑅𝑡𝑡𝑥𝑥+𝜎𝜎𝜎𝜎 = 𝐵𝐵𝑥𝑥

�𝐵𝐵𝑥𝑥−𝜇𝜇𝑥𝑥 =
1
𝑀𝑀
�
𝑖𝑖=1

𝑀𝑀

𝐵𝐵𝜉𝜉𝑖𝑖−�𝜇𝜇𝑥𝑥

Unbiased estimator with variance 𝑂𝑂 𝜎𝜎6

𝑀𝑀
.

Can we recover Fourier phases from the  bispectrum?
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𝜉𝜉𝑖𝑖 = 𝑅𝑅ℓ𝑖𝑖𝑥𝑥 + 𝜎𝜎𝜎𝜎



Invertibility (up to shifts)

The bispectrum alone is sufficient to recover
the signal, under support conditions on the DFT.

If 𝑥𝑥 ∈ 𝐂𝐂𝐿𝐿, this is sufficient:

𝑦𝑦𝑘𝑘 ≠ 0 for 𝑘𝑘 ∈ 1, … ,𝐾𝐾 with 𝐾𝐾 ≥ 𝐿𝐿+1
2

𝑦𝑦𝑘𝑘 = 0 for 𝑘𝑘 ∈ 𝐾𝐾 + 1, … , 𝐿𝐿 − 1
𝑦𝑦0 free
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𝜉𝜉𝑖𝑖 = 𝑅𝑅ℓ𝑖𝑖𝑥𝑥 + 𝜎𝜎𝜎𝜎



In principle, there is no limit on 𝜎𝜎

The map 𝛟𝛟: 𝑥𝑥 ↦ 𝜇𝜇𝑥𝑥 ,𝑃𝑃𝑥𝑥,𝐵𝐵𝑥𝑥 is smooth.

If 𝑦𝑦 = DFT 𝑥𝑥 is non-vanishing, J𝛟𝛟 is invertible at 𝑥𝑥.

Thus, J𝛟𝛟−1 exists, that is, sensitivity is finite.

Variance on 𝜇𝜇𝑥𝑥,𝑃𝑃𝑥𝑥,𝐵𝐵𝑥𝑥 is 𝑂𝑂 𝜎𝜎6

𝑀𝑀
, so,

if 𝑀𝑀 grows as 𝜎𝜎6, arbitrary precision in principle.
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𝑂𝑂(fun(𝐿𝐿))

𝑂𝑂(𝑀𝑀𝐿𝐿2)

MRA from invariant features

Input 𝑀𝑀 observations 𝜉𝜉𝑖𝑖 , noise level 𝜎𝜎
Output estimate of the signal, �𝑥𝑥

1. Estimate invariant features
Compute 𝜇̂𝜇𝑥𝑥, �𝑃𝑃𝑥𝑥 , �𝐵𝐵𝑥𝑥−𝜇𝜇𝑥𝑥

2. Combine to estimate 𝑦𝑦 = DFT(𝑥𝑥)
a. Estimate 𝑦𝑦0 from 𝜇̂𝜇𝑥𝑥
b. Estimate |𝑦𝑦𝑘𝑘| from �𝑃𝑃𝑥𝑥 for 𝑘𝑘 ≠ 0
c. Estimate phases of 𝑦𝑦𝑘𝑘 from �𝐵𝐵𝑥𝑥−𝜇𝜇𝑥𝑥 for 𝑘𝑘 ≠ 0

3. Return �𝑥𝑥, the inverse DFT of the estimated 𝑦𝑦

14

𝜉𝜉𝑖𝑖 = 𝑅𝑅ℓ𝑖𝑖𝑥𝑥 + 𝜎𝜎𝜎𝜎



Bispectrum inversion (phases only)

This is the part we focus on:

Given a bispectrum estimator

�𝐵𝐵𝑘𝑘𝑘 ≈ 𝑦𝑦𝑘𝑘𝑦𝑦ℓ𝑦𝑦ℓ−𝑘𝑘,

how can we recover the phases of 𝑦𝑦?
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Frequency marching

Phase estimation is trivial in the absence of noise.
Let �𝑦𝑦 = phase(𝑦𝑦) and �𝐵𝐵 = phase(𝐵𝐵), then:

�𝐵𝐵𝑘𝑘𝑘 = �𝑦𝑦𝑘𝑘 �𝑦𝑦ℓ �𝑦𝑦ℓ−𝑘𝑘

1. Pick �𝑦𝑦1 in 𝑒𝑒0 ∼ 𝑒𝑒
2𝜋𝜋𝜋𝜋
𝐿𝐿

2. To find �𝑦𝑦2, use �𝐵𝐵12 = �𝑦𝑦1 �𝑦𝑦2 �𝑦𝑦1
3. To find �𝑦𝑦3, use �𝐵𝐵13 = �𝑦𝑦1 �𝑦𝑦3 �𝑦𝑦2
4. To find �𝑦𝑦4, use �𝐵𝐵14 = �𝑦𝑦1 �𝑦𝑦4 �𝑦𝑦3 and �𝐵𝐵24 = �𝑦𝑦2 �𝑦𝑦4 �𝑦𝑦2
5. Etc.
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�𝐵𝐵𝑘𝑘𝑘 ≈ �𝑦𝑦𝑘𝑘 �𝑦𝑦ℓ �𝑦𝑦ℓ−𝑘𝑘
𝑇𝑇 �𝑦𝑦 𝑘𝑘𝑘 = �𝑦𝑦ℓ−𝑘𝑘 (circulant)

�𝐵𝐵 ≈ �𝑦𝑦 �𝑦𝑦∗ ∘ 𝑇𝑇( �𝑦𝑦)
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Phases-from-bispectrum
as non-convex optimization
Since �𝐵𝐵 ≈ �𝑦𝑦 �𝑦𝑦∗ ∘ 𝑇𝑇( �𝑦𝑦), try to solve:

min
𝑧𝑧∈𝐂𝐂𝐿𝐿

𝑊𝑊 ∘ �𝐵𝐵 − 𝑧𝑧𝑧𝑧∗ ∘ 𝑇𝑇(𝑧𝑧) F
2

subject to: 𝑧𝑧𝑘𝑘 = 1 for each 𝑘𝑘

𝑊𝑊 ∘ �𝐵𝐵 − 𝑧𝑧𝑧𝑧∗ ∘ 𝑇𝑇(𝑧𝑧) F
2= … F

2 + … F
2 − 2 𝑊𝑊(2) ∘ �𝐵𝐵, 𝑧𝑧𝑧𝑧∗ ∘ 𝑇𝑇(𝑧𝑧)
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Phases-from-bispectrum
as non-convex optimization
With 𝑀𝑀 𝑧𝑧 = 𝑊𝑊(2) ∘ �𝐵𝐵 ∘ 𝑇𝑇(𝑧𝑧):

max
𝑧𝑧∈𝐂𝐂𝐿𝐿

𝑧𝑧,𝑀𝑀 𝑧𝑧 𝑧𝑧

subject to: 𝑧𝑧𝑘𝑘 = 1 for each 𝑘𝑘

Closely related to phase synchronization.
Difference: cubic data instead of quadratic.
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Commercial: phase synchronization

max
𝑧𝑧∈𝐂𝐂𝐿𝐿

𝑧𝑧,𝑀𝑀𝑀𝑀

subject to: 𝑧𝑧𝑘𝑘 = 1 for each 𝑘𝑘

Near optimal bounds with Joe Zhong (ORFE)
arXiv:1703.06605

The proof involves ℓ∞ perturbation bounds
for eigenvectors.
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Solve locally using the geometry of 
the set of phases (torus)
With 𝑀𝑀 𝑧𝑧 = 𝐵𝐵 ∘ 𝑇𝑇(𝑧𝑧):

max
𝑧𝑧∈𝐂𝐂𝐿𝐿

𝑧𝑧,𝑀𝑀 𝑧𝑧 𝑧𝑧

subject to: 𝑧𝑧𝑘𝑘 = 1 for each 𝑘𝑘

Apply Riemannian trust-regions
Random initialization
Converges to a second-order KKT point
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Non-convexity and convergence

In the noiseless case, empirically,
there are 𝐿𝐿 second-order KKT points:
global optima corresponding to each shift

Local convergence is quadratic
Global convergence: 𝑂𝑂 1

𝜀𝜀3
worst-case

22

max
𝑧𝑧∈𝐂𝐂𝐿𝐿

𝑧𝑧,𝑀𝑀 𝑧𝑧 𝑧𝑧
subject to: 𝑧𝑧𝑘𝑘 = 1 for each 𝑘𝑘

arXiv:1605.08101



Numerical experiments

Relative error metric:

RMSE 𝑥𝑥true, 𝑥𝑥est = min
shift 𝑡𝑡

𝑅𝑅𝑡𝑡𝑥𝑥est − 𝑥𝑥true 2

𝑥𝑥true 2
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𝐿𝐿 = 41,𝜎𝜎 = 1, averaged over 3 repeats, Gaussian noise



𝐿𝐿 = 41,𝑀𝑀 = 10 000, averaged over 10 repeats, Gaussian noise



𝐿𝐿 = 251, averaged over 25 repeats, Gaussian noise



Looking ahead: Cryo-EM
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Electron 
beam



Looking ahead: Cryo-EM

E. coli 50S ribosomal subunit
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Kam’s method

Expand the molecule’s 3D-DFT in spherical harmonics:

�𝜙𝜙 𝑘𝑘,𝜃𝜃,𝜑𝜑 = �
ℓ=0

𝐿𝐿

�
𝑚𝑚=−ℓ

ℓ

𝐴𝐴ℓ,𝑚𝑚 𝑘𝑘 𝑌𝑌ℓ𝑚𝑚 𝜃𝜃,𝜑𝜑

Zvi Kam showed in ‘70s how to compute an analog of the 
power spectrum without estimating viewing directions:

𝐶𝐶ℓ 𝑘𝑘1,𝑘𝑘2 = �
𝑚𝑚=−ℓ

ℓ

𝐴𝐴ℓ,𝑚𝑚 𝑘𝑘1 𝐴𝐴ℓ,𝑚𝑚
∗ 𝑘𝑘2 , or:𝐶𝐶ℓ = 𝐴𝐴ℓ𝐴𝐴ℓ∗
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