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Nonsmooth objective functions are everywhere...
mirc1 F(x)
xXe

Max functions F(x) =sup h(u,x)
ueU

@ robust optimization, stochastic optimization, decomposition methods

@ relaxations of combinatorial problems

Nonsmooth regularization F(x) = f(x) + g(x)

@ image/signal processing, inverse problems

@ sparsity-inducing regularizers in machine learning

Nonsmooth composition F(x) =goc(x)

@ risk-averse optimization, eigenvalue optimization

@ deep learning: nonsmooth activation, implicit layers

Probability functions F(x) =P(h(x,£) <0)

@ optimization under uncertainty, energy optimization




So what ?...

Is nonsmoothness really important ? useful ?

indu|

_Zero Paddin
Why not just ignoring it ?

| ebeis

@ Ex: nonsmoothness in deep learning

Max Pool

(with RELU, max-pooling or implicit layers)

2z abeig

Conv Block
ID Block
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_Cnnv Block
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@ Smoothings by overparameterization, ad hoc, or... g Poal

Flattening

@ Just apply SGD with back-prog

Why not smoothing it ?
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21N}0a)IY2IY [9POIN 0SIONSSY

@ Smoothing by (inf—)convolution (e.g. Moreau regularization)
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My point: nonsmoothness is (nice and) relevant !




Example: /;-regularized least-squares (1/2)
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[llustration (on an instance with d = 2)
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the support of optimal solutions is stable under small perturbations

Nonsmoothness traps solutions in low-dimensional manifolds




Example: /;-regularized least-squares (1/2)
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Example: /;-regularized least-squares (2/2)
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Example: /;-regularized least-squares (2/2)
1 ,
min  Z|[Ax—y|? + M|x|[1  (LASSO)
x€R4 2

2 T T N

—e— Proximal Gradient

&

—— Accelerated Proximal Gradient

N

kS >

(proximal-gradient) algorithms produce iterates...

...that eventually have the same support as the optimal solution

Nonsmoothness attracts (proximal) algorithms




Remark: smooth but stiff problems

Jean-Baptiste Hiriart-Urruty

Claude Lemaréchal
“There is no clear cut between Convex Analysis
. and Minimization
functions that are smooth and Algorithms T

functions that are not.
In-between there is a rather fuzzy
boundary of stiff functions”

) t‘&\m nnnnnn “
J.-B. Hiriart-Urruty C. Lemaréchal :

In sharp contrast with smoothing-like approaches:

@ Toy example from the book (Section VIII.3.3): for a smooth problem, run usual algorithms
nonsmooth methods (prox/level-bundle) >> smooth methods (gradient, conj. grad., g-Newton)
@ Real-life example in energy optimization :

— problem of managment of reservoirs : smooth
— state-of-the-art algos to solve it : nonsmooth

Nonsmoothness can help, even for (difficult) smooth problems




Today’s message

Nonsmoothness is sometimes useful, sometimes unavoidable — and always nice-looking

(Modest) Goals of this talk:

@ Advocacy for nonsmooth optimization

@ Spotlights on 2 applications

@ #1: in electricity generation, handling uncertainty

@ #2: in machine learning, towards resilience and fairness

@ High level: underline ideas, duality, models...

No theorems ! No algorithms | (Almost) No references !




Spotlight #1: handling uncertainty

Nonsmooth optimization

for electricity generation management



Optimization of electricity generation
In France: electricity is (essentially) generated by N EDF units

nuclear 63% renewables 14% oil/gaz/coal 12%

elta |

Question : finding “optimal” daily production schedules

hydro 17%
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Day-to-day optimization of production (“unit-commitment” )

S min Z’- ¢ x; (production costs)
(S|m(;j)|||f|ed) ZI-X,' =d (demand constraints)
mode
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Out of reach for (mixed-integer linear) solvers... But where is the nonsmoothness ?
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nuclear 63% renewables 14% oil/gaz/coal 12% hydro 17%

Question : finding “optimal” daily production schedules

Day-to-day optimization of production (“unit-commitment” )

min Z’- C,'TX,' (production costs)
(S|mé)|||f|ed> EI-X,' =d «ue RT (demand constraints)
mode
(Xl, .. 7X/\/) € Xy X --- X Xy (operational constraints)

Hard optimization problem: large-scale, heterogeneous, complex (> 10° variables, > 10° constraints)

Out of reach for (mixed-integer linear) solvers... But where is the nonsmoothness ? @



Solution: duality, decomposition, and nonsmoothness
.

@ Dual function (concave) Q(U) — Z G X+ Z (
(xl,.. ,XN) € X1

N
-2
i=1
- X XN

)

10



Solution: duality, decomposition, and nonsmoothness
.

@ Dual function (concave) Q(U) — Z G X+ Z (

(Xl,.. XN) € X1

@ Dualizing the coupling constraint
makes it decomposable by units

u)=d u+ E 0;(u)
i=1
: T
0:(u) = { min (¢ —u) x;

x; € X;

N
-3%)
+ X XNI:1
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Solution: duality, decomposition, and nonsmoothness

N
@ Dual function (concave) Q(U) = Z G X+ Z ( ZX’)

i=1

(Xl,.. XN)GXl - X Xy

@ Dualizing the coupling constraint
makes it decomposable by units | Nonsmooth optimization algorithm |
shadow decentralized
O(u) = du+ Z 0i(u) prices l T productions
min ’Z(lc —u) X .

0;(u) = j '

x; € X;

@ Nonsmooth algorithm:
inexact prox. bundle [Lemaréchal '75... '95]

— Research in the 1990’s

— In action in early 2000's

— ldea still rules in 2020's
talk of Sandrine at SMAI-MODE 2024

il

C. Lemarechal S. Charousset A. Renaud



You know all this better than me...

Modest contributions on some algorithmic aspects
@ Acceleration of the bundle method (using coarse linearizations) [Malick, Oliveira, Zaourar '15]
@ (Level) asynchronous bundle algorithm [lutzeler, Malick, Oliveira '18]
@ Denoising dual solutions (by TV-regularization) [Zaourar, Malick '13]

@ Introducing weather uncertainty in the model

— robust version of the problem + bundle method [van Ackooij, Lebbe, Malick '16]
— 2-stage stochastic version + double decomposition algorithm [van Ackooij, Malick '15]

=0
o adaptative




You know all this better than me...

Modest contributions on some algorithmic aspects

@ Acceleration of the bundle method (using coarse linearizations) [Malick, Oliveira, Zaourar '15]

@ (Level) asynchronous bundle algorithm [lutzeler, Malick, Oliveira '18]

@ Denoising dual solutions (by TV-regularization) [Zaourar, Malick "13]

@ Introducing weather uncertainty in the model

— robust version of the problem + bundle method [van Ackooij, Lebbe, Malick '16]
— 2-stage stochastic version + double decomposition algorithm [van Ackooij, Malick '15]

...handling uncertainty adds extra nonsmoothness (2)

V.

=0
o adaptative

40
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Time periods
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Two-stage stochastic unit-commitment

@ The schedule x is sent to the grid-operator o5
before being activated

s
@ At certain moments in time 7y
the production schedule can be updated B

@ At time 7, we have the observed load &1, ..., &, o3
and the current best forecast £;41,...,&T

40 60
Time Steps

@ [van Ackooij, Malick '15] proposes a stochastic 2-stage problem:

. T
. T min c'y
{mn SRR e cn =8 yex. S
’ i y coincides with x on 1,...,7

— the first and second stage are full unit-commitment problems

2nd stage model: same as 1st stage but with smaller horizon

fine operational modeling vs difficult to compute

complexity of ¢(x,&) only allows for simple modeling of randomness

@ New algo: double decomposition (by units and scenarios) using the same ingredients

12



Numerical illustration for stochastic unit-commitment

@ On a 2013 EDF instance (medium-size)

— deterministic problem : 50k continuous variables, 27k binary variables, 815k constraints

— stochastic version (50 scenarios) : 1,200k continuous var., 700k binary var., 20,000k constraints

@ Our method allows to solve it (in reasonable time)

@ Observation: generation transferred from cheap/inflexible to expensive/flexible

@ Example: production schedules for 2 units: determinist vs stochastic

A
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I
®» 8 B R
38 8 3 &
- N
@ 3
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3
Generated Power (MW)
3
B

Generated Power (MW)
s B
g B8

®
3

1 50 1
—— Det. Schedule —— Det. Schedule
—— 2Stage Schedule —— 2Stage Schedule

20 40 60 80 100 0 20 40 60 80 100

cheap/inflexible unit (nuclear) expensive/flexible unit (gaz)

o
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Conclusion on this spotlight

@ We all agree : electricity managment optimization is huge

@ Nonsmoothness 1: Lagrangian decomposition @

@ Nonsmoothness 2: robustness against (weather) uncertainties

14



Conclusion on this spotlight

We all agree : electricity managment optimization is huge

Nonsmoothness 1: Lagrangian decomposition @

Nonsmoothness 2: robustness against (weather) uncertainties

You have THE expert, cf the book [van Ackooij, Oliveira '25]

[Azema, Leclére, Van Ackooij '24]: new approach uncertain UC...

...by on distributionnally robust optimization

Wim Stefanus van Ackooij
Welington Luis de Oliveira

mhods

of Non-smooth

Optimization
in Stochastic
Programming

From Conceptual Algorithms
toReal-World Applications

14



Spotlight #2: towards resilient predictions

Distributionnally robust optimization

to improve fairness and resilience in machine learning



Beyond impressive results of deep learning

’ Don't forget how fragile deep learning can be !

Flying pigs (notebooks of NeurlPS 2018, tutorial on robustness)

pig (99%)

16



Beyond impressive results of deep learning

’ Don't forget how fragile deep learning can be !

Flying pigs (notebooks of NeurlPS 2018, tutorial on robustness)

100

pig (99%)

16



Beyond impressive results of deep learning

’ Don't forget how fragile deep learning can be ! ‘

Flying pigs (notebooks of NeurlPS 2018, tutorial on robustness)

"ML is a wonderful tech-
nology: it makes pigs fly”
[Kolter, Madry '18]

pig (99%) airliner (96%)



Beyond impressive results of deep learning

Don't forget how fragile deep learning can be !

Flying pigs (notebooks of NeurlPS 2018, tutorial on robustness)

o

100

pig (99%) airliner (96%)

Attacks against self-driving cars [@ CVPR '18]

“ML is a wonderful tech-
nology: it makes pigs fly”
[Kolter, Madry 18]
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Beyond impressive results of deep learning

’ Don't forget how fragile deep learning can be ! ‘

Flying pigs (notebooks of NeurlPS 2018, tutorial on robustness)

“ML is a wonderful tech-
nology: it makes pigs fly”
[Kolter, Madry 18]

pig (99%) airliner (96%)

Attacks against self-driving cars [@ ICLR "19]
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ML may perform poorly for some people

Example: Global model is trained on average distribution 4
across clients (ERM)

.

17
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Global model is deployed on individual clients :
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ML may perform poorly for some people

Example: Global model is deployed on individual clients '

Train-test
mismatch!

\ > Haveagood o &

Q ot day  weekend &

Count

Error

Amazon : I'intelligence artificielle qui

Fairness issues, e.g.

4 ACCENT GAP
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ML may perform poorly for some people

Example: Global model is deployed on individual clients

> Haveagood e B

@ o iy | weskars

)

Amazon : I'intelligence artificielle qui
naimait pas les femmes

Fairness issues, e.g.

Train-test
mismatch!

Count

Error

e Washington Post



Upcoming legislation, research, and maths...

European Union has recently considered the issue

— April '19 : "Ethics Guidelines for Trustworthy Al"
— June 24 : EU Artificial Intelligence Act passed
— July '26 : High-risk Al will be required

“Accuracy & Robustness consistently throughout their life cycle”

£ ]
EU Al Act

European
Commission

18



Upcoming legislation, research, and maths...

European Union has recently considered the issue 2
— April '19 : "Ethics Guidelines for Trustworthy Al" EU Al Act

Pt

— June 24 : EU Artificial Intelligence Act passed

— July '26 : High-risk Al will be required

European
Commission

“Accuracy & Robustness consistently throughout their life cycle”

In this context, current research in my team on (distributionally) robust optimization
@ is an answer to these issues and future requirements
@ could be a pillar of trustworthy machine learning and decision-making

@ is a nice playground for optimization, stats, and learning

18



Optimization set-up

@ Training data:  &1,...,¢&n (in theory: sampled from Py,jn unknown)

e.g. in supervised learning: labeled data & = (a;,y;) feature, label

@ Train model: f(x,-) the loss function with x the parameter/decision (w, 3,9, ...)

e.g. least-square regression: f(x,(a,y)) = (x" a — y)?

@ Compute x via empirical risk minimization (a.k.a SAA)

(minimize the average loss on training data)

1N
min ; f(x,&)

19
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(minimize the average loss on training data)
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min ’z:; f(x,&)

Prediction with x for different data &
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— Presence of bias, e.g. heterogeneous data

— Distributional shifts: Prain 7 Prest

Generalization: computations with Py and guarantees on Pyain
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...and nonsmoothness comes into play )
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Optimization set-up

@ Training data:  &1,...,¢&n (in theory: sampled from Py,jn unknown)

e.g. in supervised learning: labeled data & = (a;,y;) feature, label

@ Train model: f(x,-) the loss function with x the parameter/decision (w, 3,9, ...)

e.g. least-square regression: f(x,(a,y)) = (x" a — y)?

@ Compute x via empirical risk minimization (a.k.a SAA)

(minimize the average loss on training data)

N N
1 ith By =
min N;f(x’fi) =E; [f(x,€)]  with PN:NZ; 9,

@ Prediction with x for different data &

Adversarial attacks, e.g. flying pigs, driving cakes...
Presence of bias, e.g. heterogeneous data
Distributional shifts: Prrain 7 Prest

Generalization: computations with Py and guarantees on Pyain

@ Solution: take possible variations into account during training

...and nonsmoothness comes into play )
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(Wasserstein) Distributionally Robust Optimization

Rather than mXin Es [f(x, 9] solve instead mXin max Eo[f(x,£)]

with I/ a neighborhood of ]?DN
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(Wasserstein) Distributionally Robust Optimization

Rather than mXin Es [f(x, 9] solve instead mXin max Eo[f(x,£)]

with U/ a neighborhood of Py

Wasserstein balls as ambiguity sets
U={Q: W(EyQ <p}
W(En, Q) = min{ Eele(¢, €] : [l = P, [l = @}

WDRO objective function for given x, I@N, p

maxg Eg[f(x,£)] maxgx Eq[f(x, )] maxe B, [F(x, €)]
{ W((@EADNEQQ) <p < { [ty =Py, [r=Q <« [x]; = Py

ming Er[c(&, &) < p Er[c(& &N <p
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(Wasserstein) Distributionally Robust Optimization

Rather than mXin Es [f(x, 9] solve instead mXin max Eo[f(x,£)]

with I/ a neighborhood of ]?DN

Wasserstein balls as ambiguity sets
U={Q: W(EyQ <p}
W(En, Q) = min{ Eele(¢, €] : [l = P, [l = @}

WDRO objective function for given x, @/\/. p

maxg.x Eg[f(x,)] maxe Epx, [f(x, )]
maxg Egq[f(x,&)] @{ Q_AQ _ { _p @
~ [t]i =Py, [m2=Q < [r]s =Pn
{ W(]PN,Q) <p min, EW[C(E,ﬁ’)] <p E‘,‘-[C(g,f/)] <p

< &ngg )\P +1EH3N[max§/ {f(x’é'/) _ )\C(£7€/)}]

...(finite dimension) nonsmooth... computable in some (specific) cases [Kuhn et al. '18]

...actually many more [Vincent, Azizian, lutzeler, Malick '24]
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lllustration: gain in fairness

Federated learning framework with heterogeneous users (...) [Pillutla, Laguel, M., Harchaoui '22]
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lllustration: gain in fairness

Federated learning framework with heterogeneous users (...)

Low
Error

Count

High
Error

Error

Experiments: (federated) classification task

ConvNet with EMNIST dataset
(1730 users, 179 images/users)

Histogram over users of test misclassif. error
Models: standard vs. robust
(dashed lines: 10%/90%-quantiles)

Count

[Pillutla, Laguel, M., Harchaoui '22]
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lllustration: gain in fairness

Federated learning framework with heterogeneous users (...) [Pillutla, Laguel, M., Harchaoui '22]

Low

Error #
High
Error

Count
Count

Error

0.150
Experiments: (federated) classification task 0.125 -
ConvNet with EMNIST dataset 0-1007
(1730 users, 179 images/users) 0.075

. . . 0.050 -
Histogram over users of test misclassif. error
Models: standard vs. robust 0.0251
(dashed lines: 10%/90%-quantiles) 0.000

0.0 0.1 0.2

0.3

(W)DRO reshapes test histograms — towards more fairness

0.4
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Main current research topic in my group

Our work

@ Applications in federated learning [Laguel, Pillutla, Harchaoui, Malick '23]
@ (abstract, entropic) regularizations of WDRO [Azizian, lutzeler, Malick '22]
@ Statistical guarantees [Azizian, lutzeler, Malick 23] [Le, Malick '24]

@ Numerical work for an easy-to-use toolbox skWDRO [Vincent, Azizian, lutzeler, Malick '24]

R

Y. Laguel F. lutzeler Tam Le W. Azizian F. Vincent
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@ Applications in federated learning [Laguel, Pillutla, Harchaoui, Malick '23]
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Easy to use, with few lines of code

Scikitlearn

Pytorch
main():

device = "cuda" if pt.cuda.is available() else "cpu"

el
model yShallowNet([1, 50, 30, 10, 1]).to(device)

rho = pt.tensor(le-1).to(device)

x = pt.sort(pt.flatten(
pt.linspace(0., 1., 10, device=device).unsqueeze(0)\
+ pt.randn(10000, 10, device=device) * le-1

)) [0]

y = f(x) + pt.randn(100000, device=device) 2e-2

dataset DatalLoader(TensorDataset(x.unsqueeze(-1), y.unsqueeze(-1)), batch_size=5000, shuffle=True)

e

dual_loss = dualize primal_loss(
.MSELoss (reduction="'none"),

X.unsqueeze(-1),
y.unsqueeze(-1)

model = train(dual_loss, dataset, 1000)

You can easily robustify your own models with skWDRO !




Conclusion on this spotlight

@ Deep learning works very well... unless it does not.
@ Need for more robustness (resilience, fairness...) — brought by max/nonsmoothness
@ Wasserstein DRO is a nice playground

@ Advertizing: skWDRO

robustify our model with skWDRO !

scikitlearn interface + pytorch wrapper

Try it out !

24



A final slide

Main take-aways
@ Nonsmooth optimization rocks

@ Electricity managment optimization is huge

Handling size and uncertainty leads to nonsmooth optimization

@ Deep learning works very well... unless it does not

Handling robustness leads to nonsmooth optimization

@ More work is needed resilience, fairness...
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A final slide

Main take-aways
@ Nonsmooth optimization rocks

@ Electricity managment optimization is huge

Handling size and uncertainty leads to nonsmooth optimization

@ Deep learning works very well... unless it does not

Handling robustness leads to nonsmooth optimization

@ More work is needed resilience, fairness...

thank you all )
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Robust unit-commitment
penalisation cost ¢(d; d — ) (€)
3

A simple robust approach
(VanAckooij Lebbe Malick '15)

— get rid of bound constraint

2

1

{ d—z (MWh)

— penalize instead the worst gap P ’l,ll e

underproduction overproduction

min x + mox S, (S - €)
ce=
xeX

Complex model of uncertainty set = (vs = finite or = = [diin, doax] ")

dy (demand at time t) (GWh)

The model of Minoux 2012
— is finite but of high cardinality

— expresses temporal dependencies

— preserves a fast computability

0 8 16 240 32 40 48 56 64 72 80 8% 96



Beyond flying pigs

One-pixel attack
[© NeurlPS '19]

keep in mind how fragile deep
learning techniques can be

Teapot(24.99%)
Joystick(37.39%)
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Setting: federated learning in a nutschell

Standard learning: get all the data and learn your model on it

Efficient... but is privacy invasive (hospitals, compagnies...)

Idea : move the model not the data !

Usual learning algorithm : FedAvg [McMahan et al 2017]
(based on old ideas, e.g. [Mangasarian 1995])

Step 1 of 3: Server broadcasts Step 2 of 3: Clients perform some Step 3 of 3: Aggregate client
global model to sampled clients local SGD steps on their local data updates securely

‘ Server ’

oH B
AN F Y N

28



DRO/superquantile in action in federated learning

Only step 3 differs between Standard ERM approach and our DRO approach

Step 3 of 3: Aggregate updates
contributed by all clients

Step 3 of 3: Aggregate updates
contributed by tail clients only

Count

\ox
200

Tail

Loss

DRO approach is fully compatible with secure aggregation and differential privacy [Pillutla,
Laguel, M., Harchaoui '22]
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Convergence analysis

Analysis when F; are smooth (and nonconvex)

Challenges: non-smoothness of Ry, biais due to local participation,...

Theorem ([Pillutla, Laguel, M., Harchaoui "23])
Suppose F; are G-Lipschitz and with gradients L-Lipshitz

ALG?2 ALGN\?Y® AL
B VO3 ()| < /S + (1 - )3 (t) L2

with t: nb comm. rounds, T: nb local updates, and A: initial error

where ®(x) = inf {K’g(y) + gHy - x||2} (Moreau® enveloppe) [Davis Drus. '21]
y

Ry an approximation of Ry with unbiased gradient [Levy et al '21]

+ result of linear convergence when F; are convex (add smoothing and regularization)

30



WDRO objective to be minimized

Dual WDRO is nonsmooth (which complicates resolution [Kuhn et al. '18])
Ru(F) = min Ao+ E-[maxe {F(¢) — Al¢ — ¢/}

What about smoothing ? Smoothed counterpart

Ry (f) = min Ap + e Eplog <E§'~w0(~lf)e c )

(Nice interpretation as entropy-regularized WDRO)

Theorem (approximation bounds for WDRO [Azizian, lutzeler, M. '21])

Under mild assumptions (non-degeneracy, lipschitz), if the support of P is contained in a compact
convex set = C RY, then

0 < Ry(F)— Ri(F) < (Calogé>d
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Entropic regularization: OT vs. WDRO

[log & du p<v

KL (Kullback-Leiber) divergence: KL(u|v) = { )
+00 otherwise

OT: Sinkhorn distance, very popular from [Cuturi '13]
min{ Er[||¢ — &[] + ¢ KL(m|mo) : w with marginals [r]; = Pand [r], = Q}

WDRO: entropic regularization, seemingly new [Azizian, lutzeler, M. '21]

maxy  Epn, [f(§)]—¢ KL(m[mo)
[, =P
Ex[ll€ — &'[?]+6 KL(m|m0) < p

in OT, take My =P®Q but in WDRO, [mg]2 not fixed !

Subtility: Vs _le=gly?

[r]i =P, [r, =Q=m < m mo(d€, dg’) oc P(d€) Iereze

d¢’
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Quantile by secure aggregation

Per-client loss

Noisy client loss histogram
I ‘ I =+ N 5(0,6°1,)

" L Lo L
L b Lo Lok L
e

Histogram

(1 —6)-Quantile
4

Noisy
histogram

~ (1 — )-Quantile
*

Count

Count
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Existing statistical guarantees of WDRO

Suppose &1, ..., én ~ Puain (where & € RY)
N
. L 1 .
Computations with Py = N E ¢, and guarantees with Py,in 7

i=1
We manipulate the WDRO risk : R,(x) = max  Eg[f(x,¢)]
W(Pn,Q)<p
Obviously, if p,N large enough such that W(Ptrain,@,\,) < p, then
R/’(X) 2 IEIFBtrain [f(X, 5)]
—— —_—
can compute & optimize cannot access

It requires p oc 1/v/N [Fournier and Guillin '15]  (issue)

Not optimal: p o< 1/v/N suffices

— asymptotically [Blanchet et al '22]
— in particular cases [Shafieez-Adehabadeh et al '19]
— or with error terms [Gao '22]
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Extended exact generalization guarantees of WDRO

Our approach: a direct “optim.” approach (work to get a concentration on the dual function)

Theorem ([Azizian, lutzeler, M. '23], [Le, M. '24])

Assumptions: parametric family f(x,-) + compactness on x + compactness on £ + non-degeneracy

For 6 € (0,1), ifp> O(\/ %) then w.p.1—79,

Generalization guarantee: R,(x) = Ep,,, [f(x,&)]
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Extended exact generalization guarantees of WDRO

Our approach: a direct “optim.” approach (work to get a concentration on the dual function)

Theorem ([Azizian, lutzeler, M. '23], [Le, M. '24])

Assumptions: parametric family f(x,-) + compactness on x + compactness on £ + non-degeneracy
For 6 € (0,1), ifp> O(w%) =p, then w.p.1-9,

Generalization guarantee: R,(x) = Ep,,, [f(x,&)]

Distribution shifts:

W (Ptrain, Q)2 < P(p - Pn) it holds  R,(x) = Eq [f(x,£)]
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Extended exact generalization guarantees of WDRO

Our approach: a direct “optim.” approach (work to get a concentration on the dual function)

Theorem ([Azizian, lutzeler, M. '23], [Le, M. '24])

Assumptions: parametric family f(x,-) + compactness on x + compactness on & + non-degeneracy
For 6 € (0,1), ifp> O(w%) =p, then w.p.1-9,
Generalization guarantee: R,(x) = Ep,,, [f(x,&)]
Distribution shifts:

W (Perain, Q) < p(p — pn) it holds  R,(x) > Eg [f(x, )]
Asymptotic tightness:

W (Ptrain, Q)2 < p(p+ pn) it holds  R,(x) < maxg Eq [f(x,£)]
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Extended exact generalization guarantees of WDRO

Our approach: a direct “optim.” approach (work to get a concentration on the dual function)

Theorem ([Azizian, lutzeler, M. '23], [Le, M. '24])

Assumptions: parametric family f(x,-) + compactness on x + compactness on & + non-degeneracy
For 6 € (0,1), ifp> O(w%) =p, then w.p.1-9,
Generalization guarantee: R,(x) = Ep,,, [f(x,&)]
Distribution shifts:

W (Perain, Q) < p(p — pn) it holds  R,(x) > Eg [f(x, )]
Asymptotic tightness:

W(Pt,a,-n,(@)2 < p(p + p,,) it holds  R,(x) < maxgEq [f(x, &)]

@ Universal result: deep learning, kernels, family of invertible mappings (e.g. normalizing flows)

@ Retrieve existing results in linear/logistic regressions [Shafieez-Adehabadeh et al '19]
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Numerical optimization

Smoothed dual WDRO problem: minimizing a differentiable objective function

N
. . 1
min T)lra Ap+ N Z elog <E5/NN(£”02) exp (

i=1

3

F(x, &) = AllE = €/|2>>

Our approach: use Pytorch tools (automatic backward diff. & adaptive SDG-like methods)

36



Numerical optimization

Smoothed dual WDRO problem: minimizing a differentiable objective function

N
. . 1
min T)lra Ap+ N Z elog <E5/NN(£”02) exp (

i=1

3

F(x, &) = AllE = €/|2>>

Our approach: use Pytorch tools (automatic backward diff. & adaptive SDG-like methods)

Not so easy, because of the inner expectation...
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Numerical optimization

Smoothed dual WDRO problem: minimizing a differentiable objective function

N

o 1 f(x, &) — AlE—¢I?
min T)lra Ap+ N ; elog <E£'~N({,,02) exp ( 5 )

Our approach: use Pytorch tools (automatic backward diff. & adaptive SDG-like methods)
Not so easy, because of the inner expectation...

Requires some (hard) work on computational aspects, e.g.

@ Control the biais of the lower bound, after sampling §J’- ~ N(&,02)

N M ! ]2
o 1 1 f(x, &) — AlE = &l
i iy Moy 3 clos | gy 3 e (T )

Objective still sharply peaked (so high variance in the gradient estimate...)

@ Use importance sampling: sample the fj’- shifted towards the gradient
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Python Toolbox skWDRO

WDRO
Control on the approximations s O e
w(Fv.Q)<p solver
Importance sampling for the inner integral A Scikit-learn *“*-
tractable formulation needed

Careful logsumexp

ERM
mjn ]EEN@.’V Ln (f)

Numerically stable backward pass

Includes é

Approximates

Robustifies

Heuristics to set € and o

| Entropic WDRO

min A
9,220 4

+]Eg~PNFe(/\:Ln('))

Efficient heuristic to set starting A Interface

[Wrapping interface‘
PyTorch )

All-in-one API

User-friendly interfaces
(Pytorch and Scikitlearn)

Wrap

Try it out !

More in [Vincent, Azizian, lutzeler, M. '24]
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