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Nonsmooth objective functions are everywhere...
min
x∈C

F (x)

Max functions F (x) = sup
u∈U

h(u, x)

robust optimization, stochastic optimization, decomposition methods

relaxations of combinatorial problems

Nonsmooth regularization F (x) = f (x) + g(x)

image/signal processing, inverse problems

sparsity-inducing regularizers in machine learning

Nonsmooth composition F (x) = g ◦ c(x)
risk-averse optimization, eigenvalue optimization

deep learning: nonsmooth activation, implicit layers

Probability functions F (x) = P
(
h(x , ξ) ⩽ 0

)

optimization under uncertainty, energy optimization
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So what ?...

Is nonsmoothness really important ? useful ?

Why not just ignoring it ?

Ex: nonsmoothness in deep learning

(with RELU, max-pooling or implicit layers)

Just apply SGD with back-prog

Why not smoothing it ?

Smoothing by (inf-)convolution (e.g. Moreau regularization)

Smoothings by overparameterization, ad hoc, or...

My point: nonsmoothness is (nice and) relevant !
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Example: ℓ1-regularized least-squares (1/2)

min
x∈Rd

1

2
∥Ax − y∥2 + λ∥x∥1 (LASSO)

Illustration (on an instance with d = 2)
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the support of optimal solutions is stable under small perturbations

Nonsmoothness traps solutions in low-dimensional manifolds
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Example: ℓ1-regularized least-squares (2/2)

min
x∈Rd

1

2
∥Ax − y∥2 + λ∥x∥1 (LASSO)
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(proximal-gradient) algorithms produce iterates...

...that eventually have the same support as the optimal solution

Nonsmoothness attracts (proximal) algorithms

5



Example: ℓ1-regularized least-squares (2/2)

min
x∈Rd

1

2
∥Ax − y∥2 + λ∥x∥1 (LASSO)

−1 0 1 2 3 4
−1

−0.5

0

0.5

1

1.5

2

1.1

1.1

2.3

2.
3

2.3

3.4

3.4
3
.4

3.4

4.5

4
.5

4.5

5.7

5
.7

5.7

6.8

6.8

8

8

9.1

10.2
11.4

x⋆

Proximal Gradient

Accelerated Proximal Gradient

(proximal-gradient) algorithms produce iterates...

...that eventually have the same support as the optimal solution

Nonsmoothness attracts (proximal) algorithms

5



Remark: smooth but stiff problems

J.-B. Hiriart-Urruty C. Lemaréchal

“There is no clear cut between
functions that are smooth and
functions that are not.
In-between there is a rather fuzzy
boundary of stiff functions”

In sharp contrast with smoothing-like approaches:

Toy example from the book (Section VIII.3.3): for a smooth problem, run usual algorithms

nonsmooth methods (prox/level-bundle) >> smooth methods (gradient, conj. grad., q-Newton)

Real-life example in energy optimization :

– problem of managment of reservoirs : smooth

– state-of-the-art algos to solve it : nonsmooth

Nonsmoothness can help, even for (difficult) smooth problems
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Today’s message

Nonsmoothness is sometimes useful, sometimes unavoidable – and always nice-looking

(Modest) Goals of this talk:

Advocacy for nonsmooth optimization

Spotlights on 2 applications

#1: in electricity generation, handling uncertainty

#2: in machine learning, towards resilience and fairness

High level: underline ideas, duality, models...

No theorems ! No algorithms ! (Almost) No references !
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Spotlight #1: handling uncertainty

Nonsmooth optimization

for electricity generation management



Optimization of electricity generation

In France: electricity is (essentially) generated by N EDF units

nuclear 63% renewables 14% oil/gaz/coal 12% hydro 17%

Question : finding “optimal” daily production schedules

Day-to-day optimization of production (“unit-commitment” )

(
simplified
model

) 



min
∑

i ci
⊤xi (production costs)∑

i xi = d (demand constraints)
(x1, . . . , xN) ∈ X1 × · · · × XN (operational constraints)

Hard optimization problem: large-scale, heterogeneous, complex (⩾ 106 variables, ⩾ 106 constraints)

Out of reach for (mixed-integer linear) solvers... But where is the nonsmoothness ?
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Solution: duality, decomposition, and nonsmoothness

Dual function (concave) θ(u) =





min
N∑

i=1

ci
⊤xi +

T∑

t=1

ut
(
d t −

N∑

i=1

x ti

)

(x1, . . . , xN) ∈ X1 × · · · × XN

Dualizing the coupling constraint
makes it decomposable by units

θ(u) = d⊤u +
N∑

i=1

θi (u)

θi (u) =

{
min (ci − u)⊤xi

xi ∈ Xi

Nonsmooth algorithm:
inexact prox. bundle [Lemaréchal ’75... ’95]

Optimization of electricity 
production 
Executive summary 

Every day, EdF (French Electricity Board) has to 
compute production schedules of its power plants 
for the next day. This is a difficult, large-scale, 
heterogeneous optimization problem. 

Challenge overview 

In the mid eighties, a meeting was organized 
between Inria and EdF R&D. The idea was to let 
EdF present some of their applications, to explore 
possible collaborations. Indeed, EdF has a long 
tradition of scientific work, in particular with 
academics. Their production optimization problem 
was presented among others. Its mathematical 
model was clearly established; even the relevant 
software existed, but the solution approach 
needed improvement. The mathematics at stake 
turned out to perfectly fit with Inria competences. 

Implementation of the initiative 

Collaborative work therefore started immediately. 
No difficulty appeared with administrative issues 
such as intellectual property or industrial 
confidentiality. It was a long-term research, so 
deadlines posed no problem either.  

The problem 

The solution approach is by decomposition: each 
power plant (EdF software) optimizes its own 
production on the basis of ``shadow prices'' 
remunerating it; these prices are iteratively 
updated (Inria software) so as to satisfy the 
balance equation. The working horse to compute 
the prices is a nonsmooth optimization algorithm. 
   

 

   

 
 

 

 

 

   
 

The difficulty was to join the EdF and Inria-
software. This turned out to be harder than 
expected. The model appeared as not mature 
enough and significant bugs were revealed. The 

project was basically abandoned and it is only in 
the mid nineties that intensive collaboration could 
resume on a renewed model.  

Results and achievements 

This time, the collaboration was successful and 
the new software became operational a few years 
later. This relatively long delay was due to 
necessary industrial requirements (mainly aimed 
at achieving reasonable reliability). Substantial 
improvements in cost and robustness were 
achieved. EdF is highly satisfied with this 
collaboration, which continues and will probably 
continue for many years. 
 
Current research focuses on developing more 
accurate models of the power plants, entailing 
more delicate price optimization. 
 
Several academic outcomes resulted from this 
operation: 
• to understand better and to improve highly 
sophisticated optimization methods; 
• to assess these methods in the “real world”, 
thereby introducing them for new applications; 
• to exhibit the practical merits of a mathematical 
theory (convex analysis, duality), generally 
considered so far as highly abstract (and taught 
as such in the university cursus). 

Lessons learned 

Beyond science and techniques, a lesson of this 
“success story” is that an academic-industrial 
collaboration should be undertaken with strong 
mutual esteem and confidence, in both directions. 

 
Sandrine Charousset-Brignol (EDF R&D) 
sandrine.charousset@edf.fr 
 
Grace Doukopoulos (EDF R&D) 
grace.doukopoulos@edf.fr  
 
Claude Lemaréchal (INRIA) 
claude.lemarechal@inrialpes.fr 
 
Jérôme Malick (CNRS, LJK) 
jerome.malick@inrialpes.fr  
 
Jérôme Quenu (EDF R&D) 
jerome.quenu@edf.fr 
 
 

           

shadow   
prices 

decentralized 
productions 

 

 Nonsmooth optimization algorithm 

C. Lemarechal S. Charousset A. Renaud

– Research in the 1990’s

– In action in early 2000’s

– Idea still rules in 2020’s

talk of Sandrine at SMAI-MODE 2024
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You know all this better than me...

Modest contributions on some algorithmic aspects

Acceleration of the bundle method (using coarse linearizations) [Malick, Oliveira, Zaourar ’15]

(Level) asynchronous bundle algorithm [Iutzeler, Malick, Oliveira ’18]

Denoising dual solutions (by TV-regularization) [Zaourar, Malick ’13]

Introducing weather uncertainty in the model

– robust version of the problem + bundle method [van Ackooij, Lebbe, Malick ’16]

– 2-stage stochastic version + double decomposition algorithm [van Ackooij, Malick ’15]
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(Level) asynchronous bundle algorithm [Iutzeler, Malick, Oliveira ’18]

Denoising dual solutions (by TV-regularization) [Zaourar, Malick ’13]

Introducing weather uncertainty in the model

– robust version of the problem + bundle method [van Ackooij, Lebbe, Malick ’16]

– 2-stage stochastic version + double decomposition algorithm [van Ackooij, Malick ’15]

...handling uncertainty adds extra nonsmoothness ,
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Two-stage stochastic unit-commitment
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The schedule x is sent to the grid-operator
before being activated

At certain moments in time
the production schedule can be updated

At time τ , we have the observed load ξ1, ..., ξτ
and the current best forecast ξτ+1, ..., ξT

[van Ackooij, Malick ’15] proposes a stochastic 2-stage problem:

{
min c⊤x + E[c(x , ξ)]
x ∈ X ,

∑
i xi = d

where c(x , ξ) =





min c⊤y
y ∈ X ,

∑
i yi = ξ

y coincides with x on 1, . . . , τ

– the first and second stage are full unit-commitment problems
– 2nd stage model: same as 1st stage but with smaller horizon
– fine operational modeling vs difficult to compute
– complexity of c(x , ξ) only allows for simple modeling of randomness

New algo: double decomposition (by units and scenarios) using the same ingredients
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Numerical illustration for stochastic unit-commitment

On a 2013 EDF instance (medium-size)

– deterministic problem : 50k continuous variables, 27k binary variables, 815k constraints

– stochastic version (50 scenarios) : 1,200k continuous var., 700k binary var., 20,000k constraints

Our method allows to solve it (in reasonable time)

Observation: generation transferred from cheap/inflexible to expensive/flexible

Example: production schedules for 2 units: determinist vs stochasticAnn Oper Res
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Fig. 4 Comparison of generation schedules given by our two-stage formulation and the deterministic one. a
Inflexible plant, b flexible plant, c hydro valley 1, d hydro valley 2

Table 3 Numerical results of the
algorithm versus its multi-cuts
version : ratio of the number of
iterations increase (iteration
increase), the difference of oracle
calls per stage normalized by the
total number of iterations for the
first stage (1st stage cost), and the
same difference for the second
stage (2nd stage cost)

Instance Heuristic Iteration
increase (%)

1st stage
cost (%)

2nd stage
cost (%)

Low CTI 30.0 3.66 1.95

CTD 33.3 −19.80 −5.11

RH 25.0 2.97 −1.96

allH −52.5 −9.42 −2.42

Medium CTI 44.4 0.36 6.13

CTD 330.0 4.44 −2.13

RH −38.5 0.82 1.45

allH 44.4 0.36 6.13

High CTI 52.6 −49.37 −12.61

CTD −22.2 −27.27 −6.14

RH 12.5 −1.44 0.60

allH 89.5 −50.61 −12.32

Average 45.72 −12.11 −2.20

123

cheap/inflexible unit (nuclear) expensive/flexible unit (gaz)
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Conclusion on this spotlight

We all agree : electricity managment optimization is huge

Nonsmoothness 1: Lagrangian decomposition

Nonsmoothness 2: robustness against (weather) uncertainties

You have THE expert, cf the book [van Ackooij, Oliveira ’25]

[Azema, Leclère, Van Ackooij ’24]: new approach uncertain UC...

...by on distributionnally robust optimization
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Spotlight #2: towards resilient predictions

Distributionnally robust optimization

to improve fairness and resilience in machine learning



Beyond impressive results of deep learning

Don’t forget how fragile deep learning can be !

Flying pigs (notebooks of NeurIPS 2018, tutorial on robustness)
12/02/2020 11&13

Page 1 sur 1file:///Users/jerome/Nomade/Talks/20-montpelier-roadef/pics/pig.svg

pig (99%)

“ML is a wonderful tech-

nology: it makes pigs fly”

[Kolter, Madry ’18]

Attacks against self-driving cars

Attacks against autonomous vehicles

Eykholt et al, Robust Physical-World Attacks on Deep Learning Visual Classification, CVPR 2018

Zhang et al., CAMOU: Learning Physical Vehicle Camouflages to Adversarially Attack Detectors in the Wild, ICLR 2019

.
https://www.mcafee.com/blogs/other-blogs/mcafee-labs/model-hacking-adas-to-pave-safer-roads-for-autonomous-vehicles/

Nassi et al., Phantom of the ADAS: Securing Advanced Driver-AssistanceSystems from Split-Second Phantom Attacks, 2020
Qayyum, et al., Securing Connected & Autonomous Vehicles: Challenges Posed by Adversarial ML, IEEE Communications, 2019
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ML may perform poorly for some people

Example: Global model is trained on average distribution 
across clients (ERM)

Server

Fairness issues, e.g.
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Upcoming legislation, research, and maths...

European Union has recently considered the issue

– April ’19 : “Ethics Guidelines for Trustworthy AI”

– June ’24 : EU Artificial Intelligence Act passed

– July ’26 : High-risk AI will be required

“Accuracy & Robustness consistently throughout their life cycle”

In this context, current research in my team on (distributionally) robust optimization

is an answer to these issues and future requirements

could be a pillar of trustworthy machine learning and decision-making

is a nice playground for optimization, stats, and learning

18
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Optimization set-up

Training data: ξ1, . . . , ξN (in theory: sampled from Ptrain unknown)

e.g. in supervised learning: labeled data ξi = (ai , yi ) feature, label

Train model: f (x , ·) the loss function with x the parameter/decision (ω, β, θ, ...)

e.g. least-square regression: f
(
x , (a, y)

)
= (x⊤a− y)2

Compute x via empirical risk minimization (a.k.a SAA)

(minimize the average loss on training data)

min
x

1

N

N∑

i=1

f (x , ξi )

Prediction with x for different data ξ

– Adversarial attacks, e.g. flying pigs, driving cakes...

– Presence of bias, e.g. heterogeneous data

– Distributional shifts: Ptrain ̸= Ptest

– Generalization: computations with P̂N and guarantees on Ptrain

Solution: take possible variations into account during training

...and nonsmoothness comes into play ,

19
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(Wasserstein) Distributionally Robust Optimization

Rather than min
x

E P̂N
[f (x , ξ)] solve instead min

x
max
Q∈U

EQ[f (x , ξ)]

with U a neighborhood of P̂N

Wasserstein balls as ambiguity sets

U = { Q : W (P̂N ,Q) ⩽ ρ }
W (P̂N ,Q) = min

πππ

{
Eπππ[c(ξ, ξ

′)] : [πππ]1 = P̂N , [πππ]2 = Q
}

WDRO objective function for given x , P̂N , ρ

{
maxQ EQ[f (x , ξ)]

W (P̂N ,Q) ⩽ ρ
⇔





maxQ,πππ EQ[f (x , ξ)]

[πππ]1 = P̂N , [πππ]2 = Q
minπππ Eπππ[c(ξ, ξ

′)] ⩽ ρ

⇔





maxπππ E[πππ]2 [f (x , ξ)]

[πππ]1 = P̂N

Eπππ[c(ξ, ξ
′)] ⩽ ρ

⇔ min
λ⩾0

λρ+ EP̂N
[ maxξ′ {f (x , ξ′)− λc(ξ, ξ′)} ]

...(finite dimension) nonsmooth... computable in some (specific) cases [Kuhn et al. ’18]

...actually many more [Vincent, Azizian, Iutzeler, Malick ’24]
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Illustration: gain in fairness

Federated learning framework with heterogeneous users (...) [Pillutla, Laguel, M., Harchaoui ’22]
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Experiments: (federated) classification task

ConvNet with EMNIST dataset
(1730 users, 179 images/users)

Histogram over users of test misclassif. error
Models: standard vs. robust
(dashed lines: 10%/90%-quantiles)

•Regularised logistic loss 
•ConvNet

22

Numerical illustration

On the dataset EMNIST

1730 writers 179 images per device

[Caldas et al. 2019]

Models

Distribution of !nal misclassi!cation error

Conformity level 

Distribution of !nal misclassi!cation error for FedAvg

Distribution of !nal misclassi!cation error for

10th percentile for FedAvg 90th percentile

p = 0.5
<latexit sha1_base64="NcRyqU1q7HvM5CG6xRdiEyR/sWI=">AAAB7HicbVBNS8NAEJ31s9avqkcvi0XwFJKq6EUoevFYwbSFNpTNdtMu3WzC7kYoob/BiwdFvPqDvPlv3LY5aOuDgcd7M8zMC1PBtXHdb7Syura+sVnaKm/v7O7tVw4OmzrJFGU+TUSi2iHRTHDJfMONYO1UMRKHgrXC0d3Ubz0xpXkiH804ZUFMBpJHnBJjJT+9cZ3LXqXqOu4MeJl4BalCgUav8tXtJzSLmTRUEK07npuaICfKcCrYpNzNNEsJHZEB61gqScx0kM+OneBTq/RxlChb0uCZ+nsiJ7HW4zi0nTExQ73oTcX/vE5mousg5zLNDJN0vijKBDYJnn6O+1wxasTYEkIVt7diOiSKUGPzKdsQvMWXl0mz5njnTu3holq/LeIowTGcwBl4cAV1uIcG+ECBwzO8whuS6AW9o4956woqZo7gD9DnD61mjfA=</latexit>
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(W)DRO reshapes test histograms – towards more fairness
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Numerical illustration

On the dataset EMNIST

1730 writers 179 images per device

[Caldas et al. 2019]

Models

Distribution of !nal misclassi!cation error

Conformity level 

Distribution of !nal misclassi!cation error for FedAvg

Distribution of !nal misclassi!cation error for

10th percentile for FedAvg 90th percentile

p = 0.5
<latexit sha1_base64="NcRyqU1q7HvM5CG6xRdiEyR/sWI=">AAAB7HicbVBNS8NAEJ31s9avqkcvi0XwFJKq6EUoevFYwbSFNpTNdtMu3WzC7kYoob/BiwdFvPqDvPlv3LY5aOuDgcd7M8zMC1PBtXHdb7Syura+sVnaKm/v7O7tVw4OmzrJFGU+TUSi2iHRTHDJfMONYO1UMRKHgrXC0d3Ubz0xpXkiH804ZUFMBpJHnBJjJT+9cZ3LXqXqOu4MeJl4BalCgUav8tXtJzSLmTRUEK07npuaICfKcCrYpNzNNEsJHZEB61gqScx0kM+OneBTq/RxlChb0uCZ+nsiJ7HW4zi0nTExQ73oTcX/vE5mousg5zLNDJN0vijKBDYJnn6O+1wxasTYEkIVt7diOiSKUGPzKdsQvMWXl0mz5njnTu3holq/LeIowTGcwBl4cAV1uIcG+ECBwzO8whuS6AW9o4956woqZo7gD9DnD61mjfA=</latexit>
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(W)DRO reshapes test histograms – towards more fairness
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Main current research topic in my group

Our work

Applications in federated learning [Laguel, Pillutla, Harchaoui, Malick ’23]

(abstract, entropic) regularizations of WDRO [Azizian, Iutzeler, Malick ’22]

Statistical guarantees [Azizian, Iutzeler, Malick ’23] [Le, Malick ’24]

Numerical work for an easy-to-use toolbox skWDRO [Vincent, Azizian, Iutzeler, Malick ’24]

Y. Laguel F. Iutzeler Tam Le W. Azizian F. Vincent
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Easy to use, with few lines of code

Scikitlearn

Pytorch

NN with pytorch
63 def main():

64     device = "cuda" if pt.cuda.is_available() else "cpu"

65     model = MyShallowNet([1, 50, 30, 10, 1]).to(device)

66

67     rho = pt.tensor(1e-1).to(device)

68

69     x = pt.sort(pt.flatten(

70         pt.linspace(0., 1., 10, device=device).unsqueeze(0)\

71         + pt.randn(10000, 10, device=device) * 1e-1

72     ))[0]

73     y = f(x) + pt.randn(100000, device=device) * 2e-2

74     dataset = DataLoader(TensorDataset(x.unsqueeze(-1), y.unsqueeze(-1)), batch_size=5000, shuffle=True)

75

76     # New line: "dualize" the loss
77     dual_loss = dualize_primal_loss(

78             nn.MSELoss(reduction='none'),

79             model,

80             rho,

81             x.unsqueeze(-1),

82             y.unsqueeze(-1)

83         )

84

85     model = train(dual_loss, dataset, 1000) # type: ignore
86     model.eval()

87

88     # Plot stuff
89

90 if __name__ == '__main__':

91     pt.set_float32_matmul_precision('high')

92     main()

F. Vincent Robustify with SkWDRO 07/03/2024 14 / 22

You can easily robustify your own models with skWDRO !
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Conclusion on this spotlight

Deep learning works very well... unless it does not.

Need for more robustness (resilience, fairness...) – brought by max/nonsmoothness

Wasserstein DRO is a nice playground

Advertizing: skWDRO

Perspectives

• Try heavier problems
(image datasets, etc).

• Investigate numerical
behaviour of regularization.

The library allows you to
robustify any decision model
provided one can translate it
in PyTorch.

Try it out!

florian.vincent(at)univ-grenoble-alpes.fr

F. Vincent Robustify with SkWDRO 07/03/2024 23 / 22

Try it out !

robustify our model with skWDRO !

scikitlearn interface + pytorch wrapper
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A final slide

Main take-aways

Nonsmooth optimization rocks

Electricity managment optimization is huge

Handling size and uncertainty leads to nonsmooth optimization

Deep learning works very well... unless it does not

Handling robustness leads to nonsmooth optimization

More work is needed resilience, fairness...

thank you all ,
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Robust unit-commitment

A simple robust approach
(VanAckooij Lebbe Malick ’15)

– get rid of bound constraint

– penalize instead the worst gap

2 DEFINITION AND MOTIVATION

1

2

3

�1

1 2 3�1�2�3

underproduction overproduction

penalisation cost  (d; d� x) (e)

d� x (MWh)

Figure 2 – A simple one-dimensional two-segments penalization function.
Here we define  as  (d; x) =

PT
t=1  t(d; x) with  t(d; x) = max(↵(dt � xt), �(dt � xt)) with

↵ < 0 and � > 0 and |↵| > |�|. In this definition of  (d; x) we see that underproduction will cost
more than overproduction, this reflects the fact that if we have more electricity than requested,
we can sell this. And in the other case, we will have to buy electricity on the market at high
prices.

following definition of  .
(this definition may seem complex but it is not important for the comprehension of the next
sections)

 (x) = sup
d2D

TX

t=1

max
i=1,...,6

(ai(dt � (Ax)t) + bi), (2)

where ai, bi 2 R and A 2MT,n⇥T (R).

Having this in mind we can now define the so-called (2-stage) robust optimization model I
have studied :

min
x2Rn⇥T

f(x) +  (x)

s.t. x 2 X1

(3)

As we can see, we now have an optimization problem which contains itself another optimi-
zation problem ( (x) = sup

d2D
. . .). This is the principle of the « two-stage » optimization : in the

« first-stage » we minimize other the set X1 and with the obtained schedule we observe which d
is selected during the « second-stage » by maximizing other the uncertainty set D. Computing
 (·; x) is then seen as the recourse action.

Depending on the shape of the set D it is possible to establish an oracle for the function  ,
i.e, a numerical algorithm that computes the value of and a sub-gradient of  at x.

2.3 The uncertainty set D and link with two-stage optimization

Here the second-stage is simple and explicit via  , which differs from other approaches (the
one of [14] in particular). Note that Dom( ) = Rn⇥T ; this is said that complete recourse decisions
exist with respect to market conditions, which is a strong assumption (not met in practice).

There are at least three options for the uncertainty set D ✓ RT :

1. the set D has an infinite cardinal and is defined as a band around the average demand :
D = {d 2 RT , maxt=1...T |dt �Dt|  k} with D the average load and k > 0. In this case, it
is possible to provide an explicit description of (x), giving a simpler penalization function2.

2 see A.2 for details of calculations 6/24

{
min c⊤x + max

ξ∈Ξ

∑T
t=1 ψ

(∑
i x

t
i − ξt

)

x ∈ X

Complex model of uncertainty set Ξ (vs Ξ finite or Ξ = [dmin, dmax]
T )
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Time t (hour)

dt (demand at time t) (GWh)

in (G, V ) equivalent
to some d ∈ D ⊂ RT

The model of Minoux 2012

– is finite but of high cardinality

– expresses temporal dependencies

– preserves a fast computability
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Beyond flying pigs

One-pixel attack

[@ NeurIPS ’19]

keep in mind how fragile deep
learning techniques can be
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Setting: federated learning in a nutschell

Standard learning: get all the data and learn your model on it

Efficient... but is privacy invasive (hospitals, compagnies...)

Idea : move the model not the data !

Usual learning algorithm : FedAvg [McMahan et al 2017]

(based on old ideas, e.g. [Mangasarian 1995])

Usual Approach to Federated Learning

Step 1 of 3: Server broadcasts 
global model to sampled clients

Step 2 of 3: Clients perform some 
local SGD steps on their local data

Server

Step 3 of 3: Aggregate client 
updates securely

Server

Parallel Gradient Distribution [Mangasarian. SICON (1995)]                 
Iterative Parameter Mixing [McDonald et al. ACL (2009)]

BMUF [Chen & Huo. ICASSP (2016)] 
Local SGD [Stich. ICLR (2019)]

The FedAvg Algorithm [McMahan et al. (2017)]:

Server

28



DRO/superquantile in action in federated learning

Only step 3 differs between Standard ERM approach and our DRO approach

Step 3 of 3: Aggregate updates 
contributed by tail clients only

Step 3 of 3: Aggregate updates 
contributed by all clients

ERM Algorithm (FedAvg):

Server Server

Loss

C
ou

nt
Tail

Simplicial-FL Algorithm:

min
w

!θ( (F1(w), ⋯, Fn(w)) )min
w

1
n

n

∑
i=1

Fi(w)

DRO approach is fully compatible with secure aggregation and differential privacy [Pillutla,

Laguel, M., Harchaoui ’22]
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Convergence analysis

Analysis when Fi are smooth (and nonconvex)

Challenges: non-smoothness of Rθ, biais due to local participation,...

Theorem ([Pillutla, Laguel, M., Harchaoui ’23])

Suppose Fi are G-Lipschitz and with gradients L-Lipshitz

E∥∇Φ2L
θ (xt)∥2 ⩽

√
∆LG 2

t
+ (1− τ)1/3

(
∆LG

t

)2/3

+
∆L

t

with t: nb comm. rounds, τ : nb local updates, and ∆: initial error

where Φµ
θ (x) = inf

y

{
R̄θ(y) +

µ

2
∥y − x∥2

}
(Moreau♡ enveloppe) [Davis Drus. ’21]

R̄θ an approximation of Rθ with unbiased gradient [Levy et al ’21]

+ result of linear convergence when Fi are convex (add smoothing and regularization)
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WDRO objective to be minimized

Dual WDRO is nonsmooth (which complicates resolution [Kuhn et al. ’18])

Rρ(f ) = min
λ⩾0

λρ+ EP[ maxξ′ {f (ξ′)− λ∥ξ − ξ′∥2} ]

What about smoothing ? Smoothed counterpart

Rε
ρ(f ) = min

λ⩾0
λρ+ εEP log

(
Eξ′∼π0(·|ξ)e

f (ξ′)−λ∥ξ−ξ′∥2
ε

)

(Nice interpretation as entropy-regularized WDRO)

Theorem (approximation bounds for WDRO [Azizian, Iutzeler, M. ’21])

Under mild assumptions (non-degeneracy, lipschitz), if the support of P is contained in a compact
convex set Ξ ⊂ Rd , then

0 ⩽ Rρ(f )− Rε
ρ(f ) ⩽

(
C ε log

1

ε

)
d
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Entropic regularization: OT vs. WDRO

KL (Kullback-Leiber) divergence: KL(µ|ν) =
{∫

log dµ
dν dµ µ≪ ν

+∞ otherwise

OT: Sinkhorn distance, very popular from [Cuturi ’13]

min
πππ

{
Eπππ[∥ξ − ξ′∥2] + εKL(πππ|π0) : πππ with marginals [πππ]1 = P and [πππ]2 = Q

}

WDRO: entropic regularization, seemingly new [Azizian, Iutzeler, M. ’21]





maxπππ E[πππ]2 [f (ξ)]−εKL(πππ|π0)
[πππ]1 = P
Eπππ[∥ξ − ξ′∥2]+δKL(πππ|π0) ⩽ ρ

Subtility:
in OT, take π0 = P⊗Q
[πππ]1 = P, [πππ]2 = Q ⇒ πππ ≪ π0

vs
but in WDRO, [π0]2 not fixed !

π0(dξ, dξ
′) ∝ P(dξ) Iξ′∈Ξe

− ∥ξ−ξ′∥2
σ dξ′
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Quantile by secure aggregation

Loss

C
ou

nt

Tail

-Quantile(1 − θ)
Histogram

Per-client loss

∑

Noisy client loss histogram

h′ i = hi + #ℤ(0,σ2Ib)

Loss

C
ou

nt

Tail≈

-Quantile≈ (1 − θ)
 Noisy  

histogram

∑

42
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Existing statistical guarantees of WDRO

Suppose ξ1, . . . , ξN ∼ Ptrain (where ξ ∈ Rd)

Computations with P̂N =
1

N

N∑

i=1

δξi and guarantees with Ptrain ?

We manipulate the WDRO risk : Rρ(x) = max
W (P̂N ,Q)⩽ρ

EQ[f (x , ξ)]

Obviously, if ρ,N large enough such that W (Ptrain, P̂N) ⩽ ρ, then

Rρ(x)︸ ︷︷ ︸
can compute & optimize

⩾ EPtrain [f (x , ξ)]︸ ︷︷ ︸
cannot access

It requires ρ ∝ 1/ d
√
N [Fournier and Guillin ’15] (issue)

Not optimal: ρ ∝ 1/
√
N suffices

– asymptotically [Blanchet et al ’22]
– in particular cases [Shafieez-Adehabadeh et al ’19]
– or with error terms [Gao ’22]
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Extended exact generalization guarantees of WDRO

Our approach: a direct “optim.” approach (work to get a concentration on the dual function)

Theorem ([Azizian, Iutzeler, M. ’23], [Le, M. ’24])

Assumptions: parametric family f (x , ·) + compactness on x + compactness on ξ + non-degeneracy

For δ ∈ (0, 1), if ρ ⩾ O
(√

log 1/δ
N

)

= ρn

then w.p. 1− δ,

Generalization guarantee: Rρ(x) ⩾ EPtrain [f (x , ξ)]

Distribution shifts:

W (Ptrain,Q)2 ⩽ ρ
(
ρ− ρn

)
it holds Rρ(x) ⩾ EQ [f (x , ξ)]

Asymptotic tightness:

W (Ptrain,Q)2 ⩽ ρ
(
ρ+ ρn

)
it holds Rρ(x) ⩽ maxQ EQ [f (x , ξ)]

Universal result: deep learning, kernels, family of invertible mappings (e.g. normalizing flows)

Retrieve existing results in linear/logistic regressions [Shafieez-Adehabadeh et al ’19]
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Numerical optimization

Smoothed dual WDRO problem: minimizing a differentiable objective function

min
x

min
λ⩾0

λρ+
1

N

N∑

i=1

ε log

(
Eξ′∼N (ξi ,σ2) exp

( f (x , ξ′)− λ∥ξ − ξ′∥2
ε

))

Our approach: use Pytorch tools (automatic backward diff. & adaptive SDG-like methods)

Not so easy, because of the inner expectation...

Requires some (hard) work on computational aspects, e.g.

Control the biais of the lower bound, after sampling ξ′j ∼ N (ξi , σ
2)

min
x

min
λ⩾0

λρ+
1

N

N∑

i=1

ε log


 1

M

M∑

j=1

exp
( f (x , ξ′j )− λ∥ξ − ξ′j∥2

ε

)



Objective still sharply peaked (so high variance in the gradient estimate...)

Use importance sampling: sample the ξ′j shifted towards the gradient
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Python Toolbox skWDRO

Control on the approximations

Importance sampling for the inner integral

Careful logsumexp

Numerically stable backward pass

Heuristics to set ε and σ

Efficient heuristic to set starting λ

All-in-one API

User-friendly interfaces
(Pytorch and Scikitlearn)

Robust training of stochastic
models with SkWDRO

Florian Vincent   (Inria, LJK — Grenoble)

We present SkWDRO, a library for distributionally robust optimization of machine learning and stochastic programming problems.
Robustness in distribution is achieved by replacing the empirical data 𝜉 ∼ ℙ̂𝑁  (seen as a distribution) by surrogates 𝜁 ∼ ℚ where ℚ is

the worst distribution for the objective such that s 𝑊(ℙ̂𝑁 , ℚ) < 𝜌 , i.e. its Wasserstein distance [1] remains close to the emprical
distribution. This enables to enhance generalization properties and to capture distributional shifts.

Baseline: (ERM) Primal: (WDRO) Dual: (WDRO∗)

min
𝜃
 𝔼𝜉∼ℙ̂𝑁𝐿𝜃(𝜉)

⟶⟶⟶⟶⟶⟶⟶⟶⟶⟶⟶⟶⟶⟶⟶⟶⟶⟶⟶⟶⟶⟶ min
𝜃
  sup
𝑊(ℚ,ℙ̂𝑁)<𝜌

𝔼𝜁∼ℚ𝐿𝜃(𝜁) min
𝜃,𝜆≥0

 𝜆𝜌 + 𝔼𝜉∼ℙ̂𝑁
⎣
⎢
⎡
⚠

sup
𝜁

{𝐿𝜃(𝜁) − 𝜆 ‖𝜉 − 𝜁‖22}
⎦
⎥
⎤

Internals of SkWDRO
The library relies on the entropic regularization [2] of this prob-
lem’s dual to obtain a more tractable formula [3]:

min
𝜃,𝜆≥0

𝜆𝜌 + 𝔼𝜉∼ℙ̂𝑁𝜀 log𝔼𝜁∼𝒩(𝜉,𝜎)[𝑒
𝐿𝜃(𝜁)−𝜆 ‖𝜁−𝜉‖22

𝜀 ]
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

≕𝐹𝜀(𝜆,𝐿𝜃(⋅))

Appealing advantages:
• it is smooth,
• it does not involve explicitely the optimal transport plan

from the Wasserstein distance,
• it preserves statistical properties [4].

Requiring particular care in some regards:
• two additional hyperparameters to tune 𝜎 and 𝜀,
• a dual variable 𝜆 is introduced and needs to be optimized,
• the inner expectation may require a lot of 𝜁  samples.

A special care has been taken in the library to tackle those spe-
cific numerical questions, especially to improve the sampling
algorithm and chose 𝜎 and 𝜀.

Illustration on logistic regression
Train
ERM

Test
on unseen data

Separate two
gaussians

Train
SkWDRO

Test
on unseen data

𝜃∗(ERM)

𝜃∗(DRO)

Figure 1: In blue/green the train/test losses distributions for the
ERM, and in red/purple below for the train/test losses of SkWDRO.

Interfaces
• Scikit-learn interfaces: Popular machine learning losses (lo-

gistic and linear regression) are available as sklearn estima-
tors and benefit from the whole scikit-learn environment (CV,
pipelines, etc).

• PyTorch wrapper: PyTorch wrapper: torches modules can be
robustified and trained in the same way as their ERM counter-
parts.

WDRO
min
𝜃

sup
ℚ distrib.

𝑊(ℙ̂𝑁,ℚ)<𝜌

𝔼𝜁∼ℚ𝐿𝜃(𝜁)

⚠

tractable formulation needed

Specific/Entropic
solver

Scikit-learn

ERM
min
𝜃
𝔼𝜉∼ℙ̂𝑁𝐿𝜃(𝜉)

SkWDRO

Entropic WDRO
min
𝜃,𝜆≥0

𝜆𝜌

+𝔼𝜉∼ℙ̂𝑁𝐹𝜀(𝜆, 𝐿𝜃(⋅))

Wrapping interface
PyTorch

Interface

Robustifies

Robustifies

Wrap

Approximates

Interface

Includes

The interface wraps a user-specified objective function 𝐿𝜃(⋅)
written in the python library PyTorch, and yields a robust coun-
terpart with a minimal amount of additional code.

The library can already be tested on the fol-
lowing pre-implemented examples:
• linear and logistic regressions,
• portfolio management,
• localization problems (“Weber”),
• a shallow neural network.

Feel welcome to fill issues in the github pro-
ject:

https://github.com/iutzeler/skwdro
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Perspectives

• Try heavier problems
(image datasets, etc).

• Investigate numerical
behaviour of regularization.

The library allows you to
robustify any decision model
provided one can translate it
in PyTorch.

Try it out!

florian.vincent(at)univ-grenoble-alpes.fr
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Try it out !
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