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Deep learning can be impressive
Spectacular success of deep learning, in many fields/applications... E.g. in generation

Ex: illustrations generated from the title “towards resilient, robust, responsible decisions”
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Don’t forget how fragile deep learning can be !

Example 1: Flying pigs (notebooks of NeurlPS 2018, tutorial on robustness)
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Example 1: Flying pigs (notebooks of NeurlPS 2018, tutorial on robustness)

“ML is a wonderful tech-
nology: it makes pigs fly”
[Kolter, Madry 18]
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ML may also perform poorly for some people

Example: Global model is trained on average distribution
across clients (ERM)
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ML may also perform poorly for some people

Example: Global model is deployed on individual clients -

Train-test
mismatch!

Have a good
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Amazon : 'intelligence artificielle qui
n’aimait pas les femmes
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e Washington Post

Fairness issues, e.g.




Upcoming legislation

European Union has recently considered the issue

— April '19 : “Ethics Guidelines for Trustworthy Al"
— June '24 : EU Atrtificial Intelligence Act passed
— July '26 : High-risk Al will be required

“Accuracy & Robustness consistently throughout their life cycle”
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Upcoming legislation

European Union has recently considered the issue [ |
— April '19 : “Ethics Guidelines for Trustworthy Al" EU Al Act

Artificial Intsligence (Artificial nteligence Act)
'd Amending Cartain Union Legislative Acts

— June 24 : EU Artificial Intelligence Act passed

— July '26 : High-risk Al will be required

European
Commission

“Accuracy & Robustness consistently throughout their life cycle”

In this context, our take :

distributionally robust optimization  (topic of this talk ©) )

— is an answer to these issues and future requirements

— could be a pillar of trustworthy machine learning and decision-making




This talk: gentle introduction to WDRO

(Wasserstein) distributionally robust optimization (WDRO)

produces resilient, robust, responsible predictions/decisions

Very attractive:

@ Natural in many applications (e.g. fairness [Pillutla, Laguel, M., Harchaoui '22])
back to [Scarf 1958] | + (...) + recent trend in learning, e.g. [Kuhn et al. '20]

@ Statistical /theoretical properties
e.g. [Blanchet et al. '18] and [Blanchet and Shapiro '23]

@ Computable in usual cases
e.g. [Kuhn et al. '18], [Zhao Guan '18]...

@ Interprets up to first-order as a penalization by ||V¢f(x,£)|| e.g. [Gao et al. '18]
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(Wasserstein) distributionally robust optimization (WDRO)

produces resilient, robust, responsible predictions/decisions

Very attractive:

@ Natural in many applications (e.g. fairness [Pillutla, Laguel, M., Harchaoui '22])
back to [Scarf 1958] | + (...) + recent trend in learning, e.g. [Kuhn et al. '20]

@ Statistical /theoretical properties — warning: dimensionality | (spotlight #1)
e.g. [Blanchet et al. '18] and [Blanchet and Shapiro '23]

o Computable in usual cases — in fact in many cases ! (spotlight #2)
e.g. [Kuhn et al. '18], [Zhao Guan '18]...

@ Interprets up to first-order as a penalization by ||V¢f(x,&)| e.g. [Gao et al. 18]



Gentle introduction to WDRO: Outline

o Basics of WDRO: setting, optimal transport, and duality

Q Spotlight #1: Dimension-free statistical guarantees of WDRO

© Spotlight #2 : Solving WDRO with skWDRO
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Basics of WDRO: setting, optimal transport, and duality

Math. setting

@ Training data:  &p,...,¢&n (in theory: sampled from Py,in unknown)

e.g. in supervised learning: labeled data & = (a;, y;) feature, label

@ Train model: f(x,-) the loss function with x the parameter/decision (w, 3,9, ...)
T

e.g. least-square regression: f(x,(a,y)) = (x' a— y)?
@ Compute x via empirical risk minimization (a.k.a SAA)
(minimize the average loss on training data)
N

mxin %Z f(x,&)

i=1
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@ Prediction with x for different data &
— Adversarial attacks, e.g. flying pigs, driving cakes...
— Presence of bias, e.g. heterogeneous data
— Distributional shifts: Pirain 7# Prest

— Generalization: computations with Py and guarantees on Piyain

@ Solution: take possible variations into account during training
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@ Training data: E1y..-,EN (in theory: sampled from Py,in unknown)

e.g. in supervised learning: labeled data & = (a;, y;) feature, label

@ Train model: f(x,-) the loss function with x the parameter/decision (w, 3,9, ...)

e.g. least-square regression: f(x,(a,y)) = (x"a—y)?

@ Compute x via empirical risk minimization (a.k.a SAA)
(minimize the average loss on training data)

N

1 o 1
min NZf(x,g,):ElgN[f(x,g)] with PN:N;55,.

i=1 =
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— Presence of bias, e.g. heterogeneous data
— Distributional shifts: Pirain 7# Prest
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Basics of WDRO: setting, optimal transport, and duality

(Distributionally) robust optimization

Optimize expected loss for the worst probability in a set of perturbations
rather than mXin Es [f(x, 9] solve instead mXin max Eg[f(x, )]

with I/ a neighborhood of Py (called ambiguity set)



Basics of WDRO: setting, optimal transport, and duality

(Distributionally) robust optimization
Optimize expected loss for the worst probability in a set of perturbations
rather than mXin Es [f(x, 9] solve instead mXin max Eg[f(x, )]

with I/ a neighborhood of Py (called ambiguity set)
Trade-off between modeling vs. computational tractability
N 1N
o U= {]PN} : mXin N Zl f(x,&) standard ERM
@ U defined by moments e.g. [Delage, Ye, '10] [Jegelka et al. '19]

o U = {Q : d(@,\,,@) < p} for various distances or divergences
E.g. KL-div., xo-div., max-mean-discrepancy... e.g. [Namkoong, Duchi '17]

o U= {Q : W(@N,Q) < p} Wasserstein distance [Kuhn et al. '18] — focus of this talk
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Basics of WDRO: setting, optimal transport, and duality

Optimal transport comes into play

Wasserstein distance (given a cost function c)

W(P,Q) = mﬂin{ Ex[c(&,€)] : m with marginals [r]; = P, [r], =Q }
XN X ST
o o f
° H“T |
[ } @ — Q 1‘
O [ X
Discrete case Semi-discrete case

U={Q: W(EnNQ) <p}

Many ways to choose ¢ (square distance, £,-distance...) — originality of our work: general ¢

E.g. classification tasks ¢(£,&') = [|x — X'||3 + kl{,z,y with £ = (x,y)



Basics of WDRO: setting, optimal transport, and duality

WDRO objective function
for given x, I@N, P
{maXQAEQ[f(X,f)] N { maxQ,x LEQ[f(X’ &)l

wy =Py, [r]o =Q
W(Py,Q) < p [m]in,r E,,[c([f,]§’)] Y4
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WDRO objective function

for given x, I@N, P

WPy, Q) <p [ =Fy,[1l=Q < [r]s =Pn

{maXQAEQ[f(X,g)] - { maxgx Eq[f(x,¢)] { maxy B, [f(x, €)]
ming Ex[c(€,8)] < p Erlc(§, &) <p
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Basics of WDRO: setting, optimal transport, and duality

WDRO objective function

for given x, I@N, P

maxg.x Eg[f(x,&)] maxg Eix, [f(x, €] -
e SR R RS A &
NS P ming Ex[c(¢,€)] < p Exlc(&,€)] < p

& min Ap+ Eg, [maxe {f(x,&') = Ac(§,€)}]
to be compared with  Eg [f(x,¢)]

...does not involve explicitly the transport plan
...computable in some (specific) cases [Kuhn et al. '18]
...actually many more; see spotlight #?2

...does it worth it 7 see spotlight #1

BTW: robustness brings nonsmoothness ©



Basics of WDRO: setting, optimal transport, and duality

lllustration 1: the gain in robustness

Toy example: basic classification (linear, 2D, 2 classes...)

e Training data: & = (a;,y;) € R? x {—1,+1}
sampled from two Gaussian distributions with variances 0 =1 and 0 =5

@ Testing data: reverse variance c =5and 0 =1

e Compute standard separator by min logistic loss f(x, &) = log(1 4 exp(—y a' x))

N
1
min Z log(1 + exp(—y; /" x))
@ Compute a robust separator by Wassertein DRO

Training data Testing data

5
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Basics of WDRO: setting, optimal transport, and duality

lllustration 1: the gain in robustness

Toy example: basic classification (linear, 2D, 2 classes...)

e Training data: & = (a;,y;) € R? x {—1,+1}
sampled from two Gaussian distributions with variances 0 =1 and 0 =5

@ Testing data: reverse variance 0 =5 and 0 =1

e Compute standard separator by min logistic loss f(x, &) = log(1 + exp(—y a' x))
LN
mXin N Z; log(1 + exp(—y; a;' x))
@ Compute a robust separator by Wassertein DRO

Training giata Testing data Logistic Regression WDRO Logistic Regression

10



Basics of WDRO: setting, optimal transport, and duality

lllustration 2: gain in fairness

Federated learning framework with heterogeneous users (...) [Pillutla, Laguel, M., Harchaoui '22]
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lllustration 2: gain in fairness

Federated learning framework with heterogeneous users (...) [Pillutla, Laguel, M., Harchaoui '22]
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. . . 0.050
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Basics of WDRO: setting, optimal transport, and duality

lllustration 2: gain in fairness

Federated learning framework with heterogeneous users (...) [Pillutla, Laguel, M., Harchaoui '22]
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Error #
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Error

Count
Count

Error

0.150
Experiments: (federated) classification task 0.125 -
ConvNet with EMNIST dataset 0-1007
(1730 users, 179 images/users) 0.075

. . . 0.050 -
Histogram over users of test misclassif. error
Models: standard vs. robust 0.0251
(dashed lines: 10%/90%-quantiles) 0.000

0.0 0.1 0.2 0.3 0.4 0.!

(W)DRO reshapes test histograms — towards more fairness
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Gentle introduction to WDRO: Outline

Q Spotlight #1: Dimension-free statistical guarantees of WDRO



Spotlight #1: Di ion-free statistical

Existing statistical guarantees of WDRO

@ Suppose &1,...,En ~ Puain (where € € RY)
N
. L 1 .
@ Computations with Py = NZ(&, and guarantees with Pyain 7
i=1

@ We manipulate the WDRO risk : Ry(x) = max  Eg[f(x,¢)]
W(Py,Q)<p

~

@ Obviously, if p,N large enough such that W (Pyain, Pn) < p, then

R/)(X) > ]E]Ptrain [f(x’ 5)]
—— —_——
can compute & optimize cannot access

o To be compared with  E; [f(x,)] = Ep,,, [f(x, )] + O(ﬁ)

of WDRO
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Spotlight #1: Di ion-free statistical

Existing statistical guarantees of WDRO

@ Suppose &1,...,En ~ Puain (where € € RY)
N
. L 1 .
@ Computations with Py = NZ 0¢; and guarantees with Pypin ?
i=1

@ We manipulate the WDRO risk : Ry(x) = max  Eg[f(x,¢)]
W(Pn,Q)<p
@ Obviously, if p,N large enough such that W(Ptrain,@,\,) < p, then
R/)(X) > ]EPtrain [f(x’ 5)]
—— —_————
can compute & optimize cannot access

o To be compared with  E; [f(x,&)] > Ep,,, [f(x,§)] + O(5)

It requires p oc 1/+v/N [Fournier and Guillin '15]  (issue)

Not optimal: p o< 1/v/N suffices

— asymptotically [Blanchet et al '22]
— in particular cases [Shafieez-Adehabadeh et a/ '19]
— or with error terms [Gao '22]

of WDRO

12



Spotlight #1: Di ion-free statistical of WDRO

Extended exact generalization guarantees of WDRO

Our approach: a direct “optim.” approach (work to get a concentration on the dual function)

Theorem ([Azizian, lutzeler, M. '23], [Le, M. '24])

Assumptions: parametric family f(x,-) + compactness on x + compactness on £ + non-degeneracy

For 6 € (0,1), ifp> O(\/ %) then w.p.1—79,

Generalization guarantee: R,(x) = Ep,,, [f(x,&)]
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Spotlight #1: Di ion-free statistical of WDRO

Extended exact generalization guarantees of WDRO

Our approach: a direct “optim.” approach (work to get a concentration on the dual function)

Theorem ([Azizian, lutzeler, M. '23], [Le, M. '24])

Assumptions: parametric family f(x,-) + compactness on x + compactness on & + non-degeneracy
For 6 € (0,1), ifp> O(w#) =p, then w.p.1-9,
Generalization guarantee: R,(x) = Ep,,, [f(x,&)]
Distribution shifts:

W (Perain, Q) < p(p — pn) it holds  R,(x) > Eg [f(x, )]
Asymptotic tightness:

W (Ptrain, Q)2 < p(p+ pn) it holds  R,(x) < maxg Eq [f(x,£)]

@ Universal result: deep learning, kernels, family of invertible mappings (e.g. normalizing flows)

@ Retrieve existing results in linear/logistic regressions [Shafieez-Adehabadeh et al '19]

13



Spotlight #1: Di ion-free statistical of WDRO

Theorem illustrated
On logistic regression:
o for each p, sample 200 training datasets
@ solve the WDRO problem on each of them [Blanchet et al '22]
@ plot the proba of R,(x) — Ep,,,[f(x)] > 0 (average, standard deviation)

@ the training robust loss is indeed an upper-bound on the true loss

Logistic Regression

10{ — Standard WDRO

0.8 1

0.6 4

0.4

0.2

0.0 4

1072 1072 1071
Radius p

14



Robustness illustrated

Logistic regression again:

(train/test histograms)

Vanilla (ERM) model

— over-promises

— under-performs

Robust (WDRO) model

— (too?) conservative

— (way!) better testing loss

light #1: Di

free statistical

train [} —> testé

Vanilla X

train | =gy test

Robust /

loss value

\4

of WDRO

15



Spotlight #1: Di ion-free statistical of WDRO

Robustness illustrated

Logistic regression again:

(train/test histograms)

Vanilla (ERM) model

train [ ——> testé Vanilla X

— over-promises

— under-performs

Robust (WDRO) model

) train | =——)pd test Robust /
— (too?) conservative

— (way!) better testing loss

loss value

Great ! But how to compute such models !?

15



Gentle introduction to WDRO: Outline

© Spotlight #2 : Solving WDRO with skWDRO



Spotlight #2 : Solving WDRO with skWDRO

Solving WDRO ?
Recall: dual WDRO objective is nonsmooth (in 4, case)
Rp(F) =min Ap+Eg [maxe {£(¢) = All¢ = '[I}]

Specific cases can still be formulated as convex optimization [Kuhn et al. '18]
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Spotlight #2 : Solving WDRO with skWDRO

Solving WDRO ?
Recall: dual WDRO objective is nonsmooth (in 4, case)
Ro(f) = min Ap+Eg, [maxe {f(§') = All§ ¢}
Specific cases can still be formulated as convex optimization [Kuhn et al. '18]
Our approach: approximation by smoothing | Smoothed WDRO counterpart:

FE) = AllE - £’|I2>>

£

R3(f) = T}ua Ap+ Eg, clog <]E£/NN(€,O.Z) exp (

Nice interpretation as entropy-regularized WDRO (similar but still different from Sinkhorn...)
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Spotlight #2 : Solving WDRO with skWDRO

Solving WDRO ?
Recall: dual WDRO objective is nonsmooth (in 4, case)
Rp(F) =min Ap+Eg [maxe {£(¢) = All¢ = '[I}]

Specific cases can still be formulated as convex optimization [Kuhn et al. '18]

Our approach: approximation by smoothing | Smoothed WDRO counterpart:

. . F€) — Alls — €117
R3(f) = &n;a Ap+ Eg, clog <]E§/NN(€,O.Z) exp ( 5 )
Nice interpretation as entropy-regularized WDRO (similar but still different from Sinkhorn...)
Nice approximation results, e.g. :
Theorem (approximation bounds for WDRO [Azizian, lutzeler, M. '21])

Under mild assumptions (non-degeneracy, f lipschitz), then

1
0 < Ry(f) = R3(f) < (Celog_)d

16



Spotlight #2 : Solving WDRO with skWDRO

Numerical optimization

Smoothed dual WDRO problem: minimizing a differentiable objective function

N
. . 1
min T)lra Ap+ N Z elog <E5/NN(£”02) exp (

i=1

3

F(x, &) = AllE = €/|2>>

Our approach: use Pytorch tools (automatic backward diff. & adaptive SDG-like methods)

17



Spotlight #2 : Solving WDRO with skWDRO

Numerical optimization

Smoothed dual WDRO problem: minimizing a differentiable objective function

N

o 1 f(x, &) — AlE—¢I?
min T)lra Ap+ N ; elog <E5/NN(£”02) exp ( 5 )

Our approach: use Pytorch tools (automatic backward diff. & adaptive SDG-like methods)

Not so easy, because of the inner expectation...
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Spotlight #2 : Solving WDRO with skWDRO

Numerical optimization

Smoothed dual WDRO problem: minimizing a differentiable objective function

N

o 1 f(x, &) — AlE—¢I?
min T)lra Ap+ N ; elog <E£'~N({,,02) exp ( 5 )

Our approach: use Pytorch tools (automatic backward diff. & adaptive SDG-like methods)
Not so easy, because of the inner expectation...

Requires some (hard) work on computational aspects, e.g.

@ Control the biais of the lower bound, after sampling §J’- ~ N(&,02)

N M ! ]2
o 1 1 f(x, &) — AlE = &l
i iy Moy 3 clos | gy 3 e (T )

Objective still sharply peaked (so high variance in the gradient estimate...)

@ Use importance sampling: sample the fj’- shifted towards the gradient

17



Spotlight #2 : Solving WDRO with skWDRO

Python Toolbox skWDRO

WDRO
@ Control on the approximations s O e
w(Fv.Q)<p solver
@ Importance sampling for the inner integral A Scikit-learn *“*-
tractable formulation needed

o Careful logsumexp
ERM

minE, L, (&) Approximates

@ Numerically stable backward pass

Includes -

Robustifies

@ Heuristics to set € and o

| Entropic WDRO

min A
9,220 4

+E o F.(\, Ly ()

o Efficient heuristic to set starting A Interface

[Wrapping interface‘
PyTorch )

@ All-in-one API

@ User-friendly interfaces
(Pytorch and Scikitlearn)

Wrap

Try it out !

More (to come) in [Vincent, Azizian, lutzeler, M. '24]
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Spotlight #2 : Solving WDRO with skWDRO

Easy to use, with few lines of code

Scikitlearn

Pytorch
def main():
device "cuda" if pt.cuda.is available() else "cpu"
model = MyShallowNet([1, 50, 30, 10, 1]).to(device)

rho = pt.tensor(le-1).to(device)

x = pt.sort(pt.flatten(
pt.linspace(0., 1., 10, device=device).unsqueeze(0)\
+ pt.randn(10 , 10, dev evice) * 1
)) 101
y = f(x) + pt.randn(100000, device=device)
dataset = Dataloader(TensorDataset(x.unsqueeze(-1), y.unsqueeze(-1)), batch_size=5000, shuffle=True)

dual_loss = dualize primal_loss(
SELoss (reduction="none'),

X.unsqueeze(-1),
y.unsqueeze(-1)

model = train(dual_loss, dataset, 1000)

You can easily robustify your own models with skWDRO !
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Spotlight #2 : Solving WDRO with skWDRO

To sum up, in one slide...

Main take-aways
@ ML works well, unless it does not. Work needed. Optimization is in the game
@ Distributionally robust optimization is rich, active topic
@ Spotlight #1: WDRO has nice generalization properties

@ Spotlight #2: WDRO in practice with skWDRO (via scitkitlearn + Pytorch wrappers)
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What’s next ?
@ Beyond Wasserstein neighborhoods... new models, new applications !

@ How to deal with difficult constraints 7 (0-1 variables, mixed-integer sets...)

@ (after heterogeneous federated learning) real-life applications with impact ? More fairness 7
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What’s next ?
@ Beyond Wasserstein neighborhoods... new models, new applications !
@ How to deal with difficult constraints 7 (0-1 variables, mixed-integer sets...)

@ (after heterogeneous federated learning) real-life applications with impact ? More fairness 7

thank you all )
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Advances in Neural Information Processing Systems (NeurlPS), 2023
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