Toward resilient, robust, responsible predictions/decisions

(a gentle introduction to optimal-transport-based distributionally robust optimization)

Learning and Optimization in Côte d'Azur (LOCA) – Sept. 2024

Based on joint work with

Waïss Azizian

Franck lutzeler

Yassine Laguel

Florian Vincent

Deep learning can be impressive

Spectacular success of deep learning, in many fields/applications... E.g. in generation

Ex: illustrations generated from the title "towards resilient, robust, responsible decisions"

Deep learning can be impressive

Spectacular success of deep learning, in many fields/applications... E.g. in generation

Ex: illustrations generated from the title "towards resilient, robust, responsible decisions"

with stablediffusionweb.com (in sept 2023)

with chatGPT (yesterday)

Example 1: Flying pigs (notebooks of NeurIPS 2018, tutorial on robustness)

Example 1: Flying pigs (notebooks of NeurIPS 2018, tutorial on robustness)

Example 1: Flying pigs (notebooks of NeurIPS 2018, tutorial on robustness)

"ML is a wonderful technology: it makes pigs fly" [Kolter, Madry '18]

Example 1: Flying pigs (notebooks of NeurIPS 2018, tutorial on robustness)

"ML is a wonderful technology: it makes pigs fly" [Kolter, Madry '18]

Example 2: Attacks against self-driving cars [@ CVPR '19]

Example 1: Flying pigs (notebooks of NeurIPS 2018, tutorial on robustness)

"ML is a wonderful technology: it makes pigs fly" [Kolter, Madry '18]

Example 2: Attacks against self-driving cars [@ ICLR '19]

Example: Global model is deployed on *individual* clients

Train-test mismatch!

Error

Amazon : l'intelligence artificielle qui n'aimait pas les femmes

Tost

Accélérer le recrutement en faisant analyser les CV par une IA : l'idée semblait prometteuse à Amazon. Mais elle s'est mise à sous-noter les femmes candidates à des postes tech.

Fairness issues, e.g.

Upcoming legislation

European Union has recently considered the issue

- April '19 : "Ethics Guidelines for Trustworthy Al"
- June '24 : EU Artificial Intelligence Act passed
- July '26 : High-risk AI will be required

"Accuracy & Robustness consistently throughout their life cycle"

Upcoming legislation

European Union has recently considered the issue

- April '19 : "Ethics Guidelines for Trustworthy Al"
- June '24 : EU Artificial Intelligence Act passed
- July '26 : High-risk AI will be required

"Accuracy & Robustness consistently throughout their life cycle"

EU AI Act
Proposal for a
Regulation of the European Parliament and of the Council Laying Down Harmonsed Rules on Artificial Intelligence (Artificial Intelligence Act) and Amending Certain Union Legislative Acts
2021/0106 (COD)
European
Commission

In this context, our take :

This talk: gentle introduction to WDRO

(Wasserstein) distributionally robust optimization (WDRO) produces resilient, robust, responsible predictions/decisions

Very attractive:

- Natural in many applications (e.g. fairness [Pillutla, Laguel, M., Harchaoui '22])
 back to [Scarf 1958] ! + (...) + recent trend in learning, e.g. [Kuhn et al. '20]
- Statistical/theoretical properties e.g. [Blanchet *et al.* '18] and [Blanchet and Shapiro '23]
- Computable in usual cases e.g. [Kuhn *et al.* '18], [Zhao Guan '18]...
- Interprets up to first-order as a penalization by $\|\nabla_{\xi} f(x,\xi)\|$ e.g. [Gao *et al.* '18]

This talk: gentle introduction to WDRO

(Wasserstein) distributionally robust optimization (WDRO) produces resilient, robust, responsible predictions/decisions

Very attractive:

- Natural in many applications (e.g. fairness [Pillutla, Laguel, M., Harchaoui '22])
 back to [Scarf 1958] ! + (...) + recent trend in learning, e.g. [Kuhn et al. '20]
- Statistical/theoretical properties warning: dimensionality ! (spotlight #1) e.g. [Blanchet *et al.* '18] and [Blanchet and Shapiro '23]
- Computable in usual cases in fact in many cases ! (spotlight #2) e.g. [Kuhn *et al.* '18], [Zhao Guan '18]...
- Interprets up to first-order as a penalization by $\|\nabla_{\xi} f(x,\xi)\|$ e.g. [Gao *et al.* '18]

Gentle introduction to WDRO: Outline

1 Basics of WDRO: setting, optimal transport, and duality

2 Spotlight #1: Dimension-free statistical guarantees of WDRO

3 Spotlight #2 : Solving WDRO with skWDRO

Gentle introduction to WDRO: Outline

1 Basics of WDRO: setting, optimal transport, and duality

2 Spotlight #1: Dimension-free statistical guarantees of WDRO

3 Spotlight #2 : Solving WDRO with skWDRO

Math. setting

- Training data: ξ_1, \ldots, ξ_N (in theory: sampled from $\mathbb{P}_{\text{train}}$ unknown) e.g. in supervised learning: labeled data $\xi_i = (a_i, y_i)$ feature, label
- Train model: $f(x, \cdot)$ the loss function with x the parameter/decision $(\omega, \beta, \theta, ...)$ e.g. least-square regression: $f(x, (a, y)) = (x^T a - y)^2$
- Compute x via empirical risk minimization (a.k.a SAA) (minimize the average loss on training data)

$$\min_{\mathbf{x}} \frac{1}{N} \sum_{i=1}^{N} f(\mathbf{x}, \xi_i)$$

Math. setting

- Training data: ξ_1, \ldots, ξ_N (in theory: sampled from $\mathbb{P}_{\text{train}}$ unknown) e.g. in supervised learning: labeled data $\xi_i = (a_i, y_i)$ feature, label
- Train model: $f(x, \cdot)$ the loss function with x the parameter/decision $(\omega, \beta, \theta, ...)$ e.g. least-square regression: $f(x, (a, y)) = (x^T a - y)^2$
- Compute x via empirical risk minimization (a.k.a SAA) (minimize the average loss on training data)

$$\min_{\mathbf{x}} \ \frac{1}{N} \sum_{i=1}^{N} f(\mathbf{x}, \xi_i)$$

- Prediction with x for different data ξ
 - Adversarial attacks, e.g. flying pigs, driving cakes...
 - Presence of bias, e.g. heterogeneous data
 - Distributional shifts: $\mathbb{P}_{\mathsf{train}} \neq \mathbb{P}_{\mathsf{test}}$
 - Generalization: computations with $\widehat{\mathbb{P}}_{\textit{N}}$ and guarantees on $\mathbb{P}_{\text{train}}$
- Solution: take possible variations into account during training

Math. setting

- Training data: ξ_1, \ldots, ξ_N (in theory: sampled from $\mathbb{P}_{\text{train}}$ unknown) e.g. in supervised learning: labeled data $\xi_i = (a_i, y_i)$ feature, label
- Train model: $f(x, \cdot)$ the loss function with x the parameter/decision $(\omega, \beta, \theta, ...)$ e.g. least-square regression: $f(x, (a, y)) = (x^{\top}a - y)^2$
- Compute x via empirical risk minimization (a.k.a SAA) (minimize the average loss on training data)

$$\min_{\mathbf{x}} \frac{1}{N} \sum_{i=1}^{N} f(\mathbf{x}, \xi_i) = \mathbb{E}_{\widehat{\mathbb{P}}_N}[f(\mathbf{x}, \xi)] \quad \text{with } \widehat{\mathbb{P}}_N = \frac{1}{N} \sum_{i=1}^{N} \delta_{\xi_i}$$

- Prediction with x for different data ξ
 - Adversarial attacks, e.g. flying pigs, driving cakes...
 - Presence of bias, e.g. heterogeneous data
 - Distributional shifts: $\mathbb{P}_{\text{train}} \neq \mathbb{P}_{\text{test}}$
 - Generalization: computations with $\widehat{\mathbb{P}}_{N}$ and guarantees on \mathbb{P}_{train}
- Solution: take possible variations into account during training

 $\min_{x} \max_{\mathbb{Q} \in \mathcal{U}} \mathbb{E}_{\mathbb{Q}}[f(x,\xi)]$

(Distributionally) robust optimization

Optimize expected loss for the worst probability in a set of perturbations

rather than $\min_{x \in \mathbb{P}_N} \mathbb{E}_{\widehat{\mathbb{P}}_N}[f(x,\xi)]$ solve instead

with \mathcal{U} a neighborhood of $\widehat{\mathbb{P}}_N$ (called ambiguity set)

 $\min_{x} \max_{\mathbb{Q} \in \mathcal{U}} \mathbb{E}_{\mathbb{Q}}[f(x,\xi)]$

(Distributionally) robust optimization

Optimize expected loss for the worst probability in a set of perturbations

rather than $\min_{x} \mathbb{E}_{\widehat{\mathbb{P}}_{N}}[f(x,\xi)]$ solve instead

with \mathcal{U} a neighborhood of $\widehat{\mathbb{P}}_N$ (called ambiguity set)

Trade-off between modeling vs. computational tractability

•
$$\mathcal{U} = \left\{\widehat{\mathbb{P}}_{N}\right\}$$
: $\min_{x} \frac{1}{N} \sum_{i=1}^{N} f(x, \xi_{i})$ standard ERM

• \mathcal{U} defined by moments e.g. [Delage, Ye, '10] [Jegelka *et al.* '19]

•
$$\mathcal{U} = \left\{ \mathbb{Q} : d(\widehat{\mathbb{P}}_N, \mathbb{Q}) \leq \rho \right\}$$
 for various distances or divergences
E.g. KL-div., χ_2 -div., max-mean-discrepancy... e.g. [Namkoong, Duchi '17

•
$$\mathcal{U} = \left\{ \mathbb{Q} : W(\widehat{\mathbb{P}}_N, \mathbb{Q}) \leqslant \rho \right\}$$
 Wasserstein distance [Kuhn *et al.* '18] – focus of this talk

Wasserstein distance (given a cost function *c*)

$$W(\mathbb{P},\mathbb{Q}) = \min_{\pi} \{ \mathbb{E}_{\pi}[c(\xi,\xi')] : \pi \text{ with marginals } [\pi]_1 = \mathbb{P}, \ [\pi]_2 = \mathbb{Q} \}$$

Wasserstein distance (given a cost function *c*)

$$W(\mathbb{P},\mathbb{Q}) = \min_{\pi} \{ \mathbb{E}_{\pi}[c(\xi,\xi')] : \pi \text{ with marginals } [\pi]_1 = \mathbb{P}, [\pi]_2 = \mathbb{Q} \}$$

Discrete case

Wasserstein distance (given a cost function *c*)

$$\mathcal{W}(\mathbb{P},\mathbb{Q}) = \min_{\pi} \{ \mathbb{E}_{\pi}[c(\xi,\xi')] : \pi \text{ with marginals } [\pi]_1 = \mathbb{P}, \ [\pi]_2 = \mathbb{Q} \}$$

 $\mathcal{U} = \{ \mathbb{Q} : W(\widehat{\mathbb{P}}_N, \mathbb{Q}) \leq \rho \}$

Wasserstein distance (given a cost function *c*)

$$\mathcal{W}(\mathbb{P},\mathbb{Q}) = \min_{\pi} \{ \mathbb{E}_{\pi}[c(\xi,\xi')] : \pi \text{ with marginals } [\pi]_1 = \mathbb{P}, [\pi]_2 = \mathbb{Q} \}$$

Many ways to choose c (square distance, ℓ_p -distance...) – originality of our work: general cE.g. classification tasks $c(\xi, \xi') = ||x - x'||_2^2 + \kappa \mathbf{1}_{\{y \neq y'\}}$ with $\xi = (x, y)$

for given x, $\widehat{\mathbb{P}}_{N}$, ρ

$$\begin{cases} \max_{\mathbb{Q}} \mathbb{E}_{\mathbb{Q}}[f(x,\xi)] \\ W(\widehat{\mathbb{P}}_{N},\mathbb{Q}) \leqslant \rho \end{cases} \Leftrightarrow \begin{cases} \max_{\mathbb{Q},\pi} \mathbb{E}_{\mathbb{Q}}[f(x,\xi)] \\ [\pi]_{1} = \widehat{\mathbb{P}}_{N}, [\pi]_{2} = \mathbb{Q} \\ \min_{\pi} \mathbb{E}_{\pi}[c(\xi,\xi')] \leqslant \rho \end{cases}$$

for given x, $\widehat{\mathbb{P}}_N$, ρ

$$\begin{cases} \max_{\mathbb{Q}} \mathbb{E}_{\mathbb{Q}}[f(\mathbf{x},\xi)] \\ W(\widehat{\mathbb{P}}_{N},\mathbb{Q}) \leqslant \rho \end{cases} \Leftrightarrow \begin{cases} \max_{\mathbb{Q},\pi} \mathbb{E}_{\mathbb{Q}}[f(\mathbf{x},\xi)] \\ [\pi]_{1} = \widehat{\mathbb{P}}_{N}, [\pi]_{2} = \mathbb{Q} \\ \min_{\pi} \mathbb{E}_{\pi}[c(\xi,\xi')] \leqslant \rho \end{cases} \Leftrightarrow \begin{cases} \max_{\pi} \mathbb{E}_{[\pi]_{2}}[f(\mathbf{x},\xi)] \\ [\pi]_{1} = \widehat{\mathbb{P}}_{N} \\ \mathbb{E}_{\pi}[c(\xi,\xi')] \leqslant \rho \end{cases}$$

for given **x**, $\widehat{\mathbb{P}}_{N}$, ρ

$$\begin{cases} \max_{\mathbb{Q}} \mathbb{E}_{\mathbb{Q}}[f(x,\xi)] \\ W(\widehat{\mathbb{P}}_{N},\mathbb{Q}) \leq \rho \end{cases} \Leftrightarrow \begin{cases} \max_{\mathbb{Q},\pi} \mathbb{E}_{\mathbb{Q}}[f(x,\xi)] \\ [\pi]_{1} = \widehat{\mathbb{P}}_{N}, [\pi]_{2} = \mathbb{Q} \\ \min_{\pi} \mathbb{E}_{\pi}[c(\xi,\xi')] \leq \rho \end{cases} \Leftrightarrow \begin{cases} \max_{\pi} \mathbb{E}_{[\pi]_{2}}[f(x,\xi)] \\ [\pi]_{1} = \widehat{\mathbb{P}}_{N} \\ \mathbb{E}_{\pi}[c(\xi,\xi')] \leq \rho \end{cases}$$

$$\Leftrightarrow \min_{\lambda \ge 0} \lambda \rho + \mathbb{E}_{\widehat{\mathbb{P}}_{N}}[\max_{\xi'} \{f(x,\xi') - \lambda c(\xi,\xi')\}]$$

to be compared with $\mathbb{E}_{\widehat{\mathbb{P}}_{N}}[f(\mathbf{x},\xi)]$

for given **x**, $\widehat{\mathbb{P}}_N$, ρ

$$\begin{cases} \max_{\mathbb{Q}} \mathbb{E}_{\mathbb{Q}}[f(x,\xi)] \\ W(\widehat{\mathbb{P}}_{N},\mathbb{Q}) \leqslant \rho \end{cases} \Leftrightarrow \begin{cases} \max_{\mathbb{Q},\pi} \mathbb{E}_{\mathbb{Q}}[f(x,\xi)] \\ [\pi]_{1} = \widehat{\mathbb{P}}_{N}, [\pi]_{2} = \mathbb{Q} \\ \min_{\pi} \mathbb{E}_{\pi}[c(\xi,\xi')] \leqslant \rho \end{cases} \Leftrightarrow \begin{cases} \max_{\pi} \mathbb{E}_{[\pi]_{2}}[f(x,\xi)] \\ [\pi]_{1} = \widehat{\mathbb{P}}_{N} \\ \mathbb{E}_{\pi}[c(\xi,\xi')] \leqslant \rho \end{cases}$$

$$\Leftrightarrow \min_{\lambda \ge 0} \lambda \rho + \mathbb{E}_{\widehat{\mathbb{P}}_{N}}[\max_{\xi'} \{f(x,\xi') - \lambda c(\xi,\xi')\}]$$

to be compared with $\mathbb{E}_{\widehat{\mathbb{P}}_{N}}[f(\mathbf{x},\xi)]$

...does not involve explicitly the transport plan

...computable in some (specific) cases [Kuhn et al. '18]

for given $\mathbf{x}, \widehat{\mathbb{P}}_N, \rho$

$$\begin{pmatrix} \max_{\mathbb{Q}} \mathbb{E}_{\mathbb{Q}}[f(x,\xi)] \\ W(\widehat{\mathbb{P}}_{N},\mathbb{Q}) \leqslant \rho \end{pmatrix} \Leftrightarrow \begin{cases} \max_{\mathbb{Q},\pi} \mathbb{E}_{\mathbb{Q}}[f(x,\xi)] \\ [\pi]_{1} = \widehat{\mathbb{P}}_{N}, [\pi]_{2} = \mathbb{Q} \\ \min_{\pi} \mathbb{E}_{\pi}[c(\xi,\xi')] \leqslant \rho \end{cases} \Leftrightarrow \begin{cases} \max_{\pi} \mathbb{E}_{[\pi]_{2}}[f(x,\xi)] \\ [\pi]_{1} = \widehat{\mathbb{P}}_{N} \\ \mathbb{E}_{\pi}[c(\xi,\xi')] \leqslant \rho \end{cases}$$

$$\Leftrightarrow \min_{\lambda \ge 0} \lambda \rho + \mathbb{E}_{\widehat{\mathbb{P}}_{N}}[\max_{\xi'} \{f(x,\xi') - \lambda c(\xi,\xi')\}]$$

to be compared with $\mathbb{E}_{\widehat{\mathbb{P}}_{N}}[f(\mathbf{x},\xi)]$

...does not involve explicitly the transport plan ...computable in some (specific) cases [Kuhn et al. '18] ...actually many more; see spotlight #2...does it worth it ? see spotlight #1

for given $\mathbf{x}, \widehat{\mathbb{P}}_N, \rho$ \mathbb{T} [f(x, c)]1

$$\left\{ \begin{array}{l} \max_{\mathbb{Q}} \mathbb{E}_{\mathbb{Q}}[f(\mathsf{x},\xi)] \\ W(\widehat{\mathbb{P}}_{N},\mathbb{Q}) \leqslant \rho \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} \max_{\mathbb{Q},\boldsymbol{\pi}} \mathbb{E}_{\mathbb{Q}}[f(\mathsf{x},\xi)] \\ [\boldsymbol{\pi}]_{1} = \widehat{\mathbb{P}}_{N}, [\boldsymbol{\pi}]_{2} = \mathbb{Q} \\ \min_{\boldsymbol{\pi}} \mathbb{E}_{\boldsymbol{\pi}}[\boldsymbol{c}(\xi,\xi')] \leqslant \rho \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} \max_{\boldsymbol{\pi}} \mathbb{E}_{[\boldsymbol{\pi}]_{2}}[f(\mathsf{x},\xi)] \\ [\boldsymbol{\pi}]_{1} = \widehat{\mathbb{P}}_{N} \\ \mathbb{E}_{\boldsymbol{\pi}}[\boldsymbol{c}(\xi,\xi')] \leqslant \rho \end{array} \right.$$

$$\Leftrightarrow \min_{\lambda \ge 0} \lambda \rho + \mathbb{E}_{\widehat{\mathbb{P}}_{N}}[\max_{\xi'} \{f(x,\xi') - \lambda c(\xi,\xi')\}]$$

to be compared with $\mathbb{E}_{\widehat{\mathbb{P}}_{N}}[f(\mathbf{x},\xi)]$

...does not involve explicitly the transport plan ...computable in some (specific) cases [Kuhn et al. '18] ...actually many more; see spotlight #2...does it worth it ? see spotlight #1

BTW: robustness brings nonsmoothness \heartsuit

Illustration 1: the gain in robustness

Toy example: basic classification (linear, 2D, 2 classes...)

- Training data: ξ_i = (a_i, y_i) ∈ ℝ² × {-1, +1} sampled from two Gaussian distributions with variances σ = 1 and σ = 5
- Testing data: reverse variance $\sigma = 5$ and $\sigma = 1$
- Compute standard separator by min logistic loss $f(x,\xi) = \log(1 + \exp(-y a^{T}x))$

$$\min_{x} \frac{1}{N} \sum_{i=1}^{N} \log(1 + \exp(-y_i a_i^{\top} x))$$

• Compute a robust separator by Wassertein DRO

Illustration 1: the gain in robustness

Toy example: basic classification (linear, 2D, 2 classes...)

- Training data: ξ_i = (a_i, y_i) ∈ ℝ² × {-1, +1} sampled from two Gaussian distributions with variances σ = 1 and σ = 5
- Testing data: reverse variance $\sigma = 5$ and $\sigma = 1$
- Compute standard separator by min logistic loss $f(x,\xi) = \log(1 + \exp(-y a^{T}x))$

$$\min_{x} \frac{1}{N} \sum_{i=1}^{N} \log(1 + \exp(-y_i a_i^{\top} x))$$

• Compute a robust separator by Wassertein DRO

Illustration 2: gain in fairness

Federated learning framework with heterogeneous users (...) [Pillutla, Laguel, M., Harchaoui '22]

Illustration 2: gain in fairness

Federated learning framework with heterogeneous users (...) [Pillutla, Laguel, M., Harchaoui '22]

Experiments: (federated) classification task

ConvNet with EMNIST dataset

(1730 users, 179 images/users)

Histogram over users of test misclassif. error Models: standard vs. robust (dashed lines: 10%/90%-quantiles)

Illustration 2: gain in fairness

Federated learning framework with heterogeneous users (...) [Pillutla, Laguel, M., Harchaoui '22]

(W)DRO reshapes test histograms – towards more fairness

Gentle introduction to WDRO: Outline

1 Basics of WDRO: setting, optimal transport, and duality

2 Spotlight #1: Dimension-free statistical guarantees of WDRO

3 Spotlight #2 : Solving WDRO with skWDRO

Existing statistical guarantees of WDRO

• Suppose
$$\xi_1, \ldots, \xi_N \sim \mathbb{P}_{\mathsf{train}}$$
 (where $\xi \in \mathbb{R}^d$)

- Computations with $\widehat{\mathbb{P}}_{N} = \frac{1}{N} \sum_{i=1}^{N} \delta_{\xi_{i}}$ and guarantees with $\mathbb{P}_{\text{train}}$?
- We manipulate the WDRO risk : $R_{\rho}(x) = \max_{W(\widehat{\mathbb{P}}_{N}, \mathbb{Q}) \leqslant \rho} \mathbb{E}_{\mathbb{Q}}[f(x, \xi)]$
- Obviously, if ρ, N large enough such that $W(\mathbb{P}_{train}, \widehat{\mathbb{P}}_N) \leqslant \rho$, then

• To be compared with $\mathbb{E}_{\widehat{\mathbb{P}}_{N}}[f(x,\xi)] \ge \mathbb{E}_{\mathbb{P}_{train}}[f(x,\xi)] + O(\frac{1}{\sqrt{N}})$

Existing statistical guarantees of WDRO

• Suppose
$$\xi_1, \ldots, \xi_N \sim \mathbb{P}_{\mathsf{train}}$$
 (where $\xi \in \mathbb{R}^d$)

- Computations with $\widehat{\mathbb{P}}_{N} = \frac{1}{N} \sum_{i=1}^{N} \delta_{\xi_{i}}$ and guarantees with $\mathbb{P}_{\text{train}}$?
- We manipulate the WDRO risk : $R_{\rho}(x) = \max_{W(\widehat{\mathbb{P}}_{N}, \mathbb{Q}) \leqslant \rho} \mathbb{E}_{\mathbb{Q}}[f(x, \xi)]$
- Obviously, if ρ, N large enough such that $W(\mathbb{P}_{train}, \widehat{\mathbb{P}}_N) \leq \rho$, then

- To be compared with $\mathbb{E}_{\widehat{\mathbb{P}}_N}[f(x,\xi)] \ge \mathbb{E}_{\mathbb{P}_{\text{train}}}[f(x,\xi)] + O(\frac{1}{\sqrt{N}})$
- It requires $ho \propto 1/\sqrt[d]{N}$ [Fournier and Guillin '15] (issue)
- Not optimal: $ho \propto 1/\sqrt{N}$ suffices
 - asymptotically [Blanchet et al '22]
 - in particular cases [Shafieez-Adehabadeh et al '19]
 - or with error terms [Gao '22]

Our approach: a direct "optim." approach (work to get a concentration on the dual function)

Theorem ([Azizian, lutzeler, M. '23], [Le, M. '24])

Assumptions: parametric family $f(x, \cdot)$ + compactness on x + compactness on ξ + non-degeneracy

For $\delta \in (0,1)$, if $\rho \ge O\left(\sqrt{\frac{\log 1/\delta}{N}}\right)$ then w.p. $1-\delta$,

Generalization guarantee: $R_o(x) \ge \mathbb{E}_{\mathbb{P}_{train}}[f(x,\xi)]$

Our approach: a direct "optim." approach (work to get a concentration on the dual function)

Theorem ([Azizian, lutzeler, M. '23], [Le, M. '24])

Assumptions: parametric family $f(x, \cdot) + compactness$ on x + compactness on $\xi + non-degeneracy$

For
$$\delta \in (0,1)$$
, if $\rho \geqslant O\left(\sqrt{rac{\log 1/\delta}{N}}\right) =
ho_n$ then w.p. $1 - \delta$,

Generalization guarantee: $R_{\rho}(x) \geqslant \mathbb{E}_{\mathbb{P}_{train}}[f(x,\xi)]$

Distribution shifts:

$$W(\mathbb{P}_{train}, \mathbb{Q})^2 \leq \rho(\rho - \rho_n)$$
 it holds $R_{\rho}(x) \geq \mathbb{E}_{\mathbb{Q}}[f(x, \xi)]$

Our approach: a direct "optim." approach (work to get a concentration on the dual function)

Theorem ([Azizian, lutzeler, M. '23], [Le, M. '24])

Assumptions: parametric family $f(x, \cdot)$ + compactness on x + compactness on ξ + non-degeneracy

For $\delta \in (0,1)$, if $\rho \ge O\left(\sqrt{\frac{\log 1/\delta}{N}}\right) = \rho_n$ then w.p. $1 - \delta$,

Generalization guarantee: $R_{
ho}(x) \geqslant \mathbb{E}_{\mathbb{P}_{train}}[f(x,\xi)]$

Distribution shifts:

 $W(\mathbb{P}_{train}, \mathbb{Q})^2 \leq \rho(\rho - \rho_n)$ it holds $R_{\rho}(x) \geq \mathbb{E}_{\mathbb{Q}}[f(x, \xi)]$

Asymptotic tightness:

 $W(\mathbb{P}_{train}, \mathbb{Q})^2 \leqslant \rho(\rho + \rho_n)$ it holds $R_{\rho}(x) \leqslant \max_{\mathbb{Q}} \mathbb{E}_{\mathbb{Q}}[f(x, \xi)]$

Our approach: a direct "optim." approach (work to get a concentration on the dual function)

Theorem ([Azizian, lutzeler, M. '23], [Le, M. '24])

Assumptions: parametric family $f(x, \cdot)$ + compactness on x + compactness on ξ + non-degeneracy

For $\delta \in (0,1)$, if $\rho \ge O\left(\sqrt{\frac{\log 1/\delta}{N}}\right) = \rho_n$ then w.p. $1 - \delta$,

Generalization guarantee: $R_{
ho}(x) \geqslant \mathbb{E}_{\mathbb{P}_{train}}[f(x,\xi)]$

Distribution shifts:

 $W(\mathbb{P}_{train}, \mathbb{Q})^2 \leqslant \rho(\rho - \rho_n)$ it holds $R_{\rho}(x) \geqslant \mathbb{E}_{\mathbb{Q}}[f(x, \xi)]$

Asymptotic tightness:

$$W(\mathbb{P}_{train}, \mathbb{Q})^2 \leqslant \rho(\rho + \rho_n)$$
 it holds $R_{\rho}(x) \leqslant \max_{\mathbb{Q}} \mathbb{E}_{\mathbb{Q}}[f(x, \xi)]$

- Universal result: deep learning, kernels, family of invertible mappings (e.g. normalizing flows)
- Retrieve existing results in linear/logistic regressions [Shafieez-Adehabadeh et al '19]

Theorem illustrated

On logistic regression:

- for each $\rho,$ sample 200 training datasets
- solve the WDRO problem on each of them [Blanchet et al '22]
- plot the proba of $R_{\rho}(x) \mathbb{E}_{\mathbb{P}_{train}}[f(x)] \ge 0$ (average, standard deviation)
- the training robust loss is indeed an upper-bound on the true loss

Robustness illustrated

Logistic regression again: (train/test histograms) Vanilla (ERM) model – over-promises – under-performs

Robust (WDRO) model

- (too?) conservative
- (way!) better testing loss

Robustness illustrated

Great ! But how to compute such models !?

Gentle introduction to WDRO: Outline

1 Basics of WDRO: setting, optimal transport, and duality

2 Spotlight #1: Dimension-free statistical guarantees of WDRO

3 Spotlight #2 : Solving WDRO with skWDRO

Solving WDRO ?

Recall: dual WDRO objective is nonsmooth (in ℓ_2 case)

$$R_{\rho}(f) = \min_{\lambda \ge 0} \lambda \rho + \mathbb{E}_{\widehat{\mathbb{P}}_{N}}[\max_{\xi'} \{f(\xi') - \lambda \| \xi - \xi' \|^{2}\}]$$

Specific cases can still be formulated as convex optimization [Kuhn et al. '18]

Solving WDRO ?

Recall: dual WDRO objective is nonsmooth (in ℓ_2 case)

$$R_{\rho}(f) = \min_{\lambda \ge 0} \lambda \rho + \mathbb{E}_{\widehat{\mathbb{P}}_{N}}[\max_{\xi'} \{f(\xi') - \lambda \|\xi - \xi'\|^{2}\}]$$

Specific cases can still be formulated as convex optimization [Kuhn *et al.* '18] Our approach: approximation by smoothing ! Smoothed WDRO counterpart:

$$R_{\rho}^{\varepsilon}(f) = \min_{\lambda \geqslant 0} \ \lambda \rho + \mathbb{E}_{\widehat{\mathbb{P}}_{N}} \ \varepsilon \log \left(\mathbb{E}_{\xi' \sim \mathcal{N}(\xi, \sigma^{2})} \exp \left(\frac{f(\xi') - \lambda \|\xi - \xi'\|^{2}}{\varepsilon} \right) \right)$$

Nice interpretation as entropy-regularized WDRO (similar but still different from Sinkhorn...)

Solving WDRO ?

Recall: dual WDRO objective is nonsmooth (in ℓ_2 case)

$$R_{\rho}(f) = \min_{\lambda \ge 0} \lambda \rho + \mathbb{E}_{\widehat{\mathbb{P}}_{N}}[\max_{\xi'} \{f(\xi') - \lambda \|\xi - \xi'\|^{2}\}]$$

Specific cases can still be formulated as convex optimization [Kuhn *et al.* '18] Our approach: approximation by smoothing ! Smoothed WDRO counterpart:

$$R_{\rho}^{\varepsilon}(f) = \min_{\lambda \geqslant 0} \ \lambda \rho + \mathbb{E}_{\widehat{\mathbb{P}}_{N}} \ \varepsilon \log \left(\mathbb{E}_{\xi' \sim \mathcal{N}(\xi, \sigma^{2})} \exp \left(\frac{f(\xi') - \lambda \|\xi - \xi'\|^{2}}{\varepsilon} \right) \right)$$

Nice interpretation as entropy-regularized WDRO (similar but still different from Sinkhorn...) Nice approximation results, e.g. :

Theorem (approximation bounds for WDRO [Azizian, lutzeler, M. '21]) Under mild assumptions (non-degeneracy, f lipschitz), then

$$0 \leqslant R_{
ho}(f) - R_{
ho}^{arepsilon}(f) \leqslant \left(C \varepsilon \log rac{1}{arepsilon}
ight) d$$

Numerical optimization

Smoothed dual WDRO problem: minimizing a differentiable objective function

$$\min_{x} \min_{\lambda \geqslant 0} \lambda \rho + \frac{1}{N} \sum_{i=1}^{N} \varepsilon \log \left(\mathbb{E}_{\xi' \sim \mathcal{N}(\xi_i, \sigma^2)} \exp \left(\frac{f(x, \xi') - \lambda \|\xi - \xi'\|^2}{\varepsilon} \right) \right)$$

Our approach: use Pytorch tools (automatic backward diff. & adaptive SDG-like methods)

Numerical optimization

Smoothed dual WDRO problem: minimizing a differentiable objective function

$$\min_{x} \min_{\lambda \ge 0} \lambda \rho + \frac{1}{N} \sum_{i=1}^{N} \varepsilon \log \left(\mathbb{E}_{\xi' \sim \mathcal{N}(\xi_i, \sigma^2)} \exp \left(\frac{f(x, \xi') - \lambda \|\xi - \xi'\|^2}{\varepsilon} \right) \right)$$

Our approach: use Pytorch tools (automatic backward diff. & adaptive SDG-like methods)

Not so easy, because of the inner expectation...

Numerical optimization

Smoothed dual WDRO problem: minimizing a differentiable objective function

$$\min_{x} \min_{\lambda \ge 0} \lambda \rho + \frac{1}{N} \sum_{i=1}^{N} \varepsilon \log \left(\mathbb{E}_{\xi' \sim \mathcal{N}(\xi_i, \sigma^2)} \exp \left(\frac{f(x, \xi') - \lambda \|\xi - \xi'\|^2}{\varepsilon} \right) \right)$$

 $\label{eq:our_approach} Our \ {\rm approach:} \ {\rm use} \ {\rm Pytorch} \ {\rm tools} \ ({\rm automatic} \ {\rm backward} \ {\rm diff.} \ \& \ {\rm adaptive} \ {\rm SDG-like} \ {\rm methods})$

Not so easy, because of the inner expectation...

Requires some (hard) work on computational aspects, e.g.

• Control the biais of the lower bound, after sampling $\xi'_i \sim \mathcal{N}(\xi_i, \sigma^2)$

$$\min_{x} \min_{\lambda \ge 0} \lambda \rho + \frac{1}{N} \sum_{i=1}^{N} \varepsilon \log \left(\frac{1}{M} \sum_{j=1}^{M} \exp \left(\frac{f(x, \xi'_j) - \lambda \|\xi - \xi'_j\|^2}{\varepsilon} \right) \right)$$

Objective still sharply peaked (so high variance in the gradient estimate...)

• Use importance sampling: sample the ξ'_i shifted towards the gradient

Python Toolbox skWDR0

- Control on the approximations
- Importance sampling for the inner integral
- Careful logsumexp
- Numerically stable backward pass
- \bullet Heuristics to set ε and σ
- Efficient heuristic to set starting λ
- All-in-one API
- User-friendly interfaces (Pytorch and Scikitlearn)

Try it out ! More (to come) in [Vincent, Azizian, lutzeler, M. '24]

Easy to use, with few lines of code

Scikitlearn

from sklearn.linear_model import LogisticRegression # scikit-learn's standard version
from skwdro.linear_models import LogisticRegression as WDROLogisticRegression # WDRO version

You can easily robustify your own models with skWDRO !

To sum up, in one slide...

Main take-aways

- ML works well, unless it does not. Work needed. Optimization is in the game
- Distributionally robust optimization is rich, active topic
- Spotlight #1: WDRO has nice generalization properties
- Spotlight #2: WDRO in practice with skWDRO (via scitkitlearn + Pytorch wrappers)

To sum up, in one slide...

Main take-aways

- ML works well, unless it does not. Work needed. Optimization is in the game
- Distributionally robust optimization is rich, active topic
- Spotlight #1: WDRO has nice generalization properties
- Spotlight #2: WDRO in practice with skWDRO (via scitkitlearn + Pytorch wrappers)

What's next ?

- Beyond Wasserstein neighborhoods... new models, new applications !
- How to deal with difficult constraints ? (0-1 variables, mixed-integer sets...)
- (after heterogeneous federated learning) real-life applications with impact ? More fairness ?

To sum up, in one slide...

Main take-aways

- ML works well, unless it does not. Work needed. Optimization is in the game
- Distributionally robust optimization is rich, active topic
- Spotlight #1: WDRO has nice generalization properties
- Spotlight #2: WDRO in practice with skWDRO (via scitkitlearn + Pytorch wrappers)

What's next ?

- Beyond Wasserstein neighborhoods... new models, new applications !
- How to deal with difficult constraints ? (0-1 variables, mixed-integer sets...)
- (after heterogeneous federated learning) real-life applications with impact ? More fairness ?

Work presented here

Y. Laguel, K. Pillutla, J. Malick, Z. Harchaoui

Federated Learning with Heterogeneous Data: A Superquantile Optimization Approach Machine Learning Research, 2022

A. Waiss, F. lutzeler, J. Malick

Regularization for Wasserstein distributionnally robust optimization ESAIM: Control, Optimization, and Calculus of Variations, 2023

W. Azizian, F. lutzeler, J. Malick

Exact Generalization Guarantees for (Regularized) Wasserstein Distributionally Robust Models Advances in Neural Information Processing Systems (NeurIPS), 2023

T. Le, J. Malick

Universal generalization guarantees for Wasserstein distributionally robust models Still an hope for NeurIPS, 2024

F. Vincent, W. Azizian, F. lutzeler, J. Malick

skwdro: a library for Wasserstein distributionally robust machine learning To be submitted, 2024

