
Toward resilient, robust, responsible predictions/decisions
(a gentle introduction to optimal-transport-based distributionally robust optimization)
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Deep learning can be impressive

Spectacular success of deep learning, in many fields/applications... E.g. in generation

Ex: illustrations generated from the title “towards resilient, robust, responsible decisions”

with stablediffusionweb.com

(in sept 2023)
with chatGPT

(yesterday)
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Don’t forget how fragile deep learning can be !

Example 1: Flying pigs (notebooks of NeurIPS 2018, tutorial on robustness)
12/02/2020 11&13

Page 1 sur 1file:///Users/jerome/Nomade/Talks/20-montpelier-roadef/pics/pig.svg

pig (99%)

“ML is a wonderful tech-

nology: it makes pigs fly”

[Kolter, Madry ’18]

Example 2: Attacks against self-driving cars

Attacks against autonomous vehicles

Eykholt et al, Robust Physical-World Attacks on Deep Learning Visual Classification, CVPR 2018

Zhang et al., CAMOU: Learning Physical Vehicle Camouflages to Adversarially Attack Detectors in the Wild, ICLR 2019

.
https://www.mcafee.com/blogs/other-blogs/mcafee-labs/model-hacking-adas-to-pave-safer-roads-for-autonomous-vehicles/

Nassi et al., Phantom of the ADAS: Securing Advanced Driver-AssistanceSystems from Split-Second Phantom Attacks, 2020
Qayyum, et al., Securing Connected & Autonomous Vehicles: Challenges Posed by Adversarial ML, IEEE Communications, 2019
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ML may also perform poorly for some people

Example: Global model is trained on average distribution 
across clients (ERM)

Server

Fairness issues, e.g.
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Upcoming legislation

European Union has recently considered the issue

– April ’19 : “Ethics Guidelines for Trustworthy AI”

– June ’24 : EU Artificial Intelligence Act passed

– July ’26 : High-risk AI will be required

“Accuracy & Robustness consistently throughout their life cycle”

In this context, our take :

distributionally robust optimization (topic of this talk , )

– is an answer to these issues and future requirements

– could be a pillar of trustworthy machine learning and decision-making
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This talk: gentle introduction to WDRO

(Wasserstein) distributionally robust optimization (WDRO)

produces resilient, robust, responsible predictions/decisions

Very attractive:

Natural in many applications (e.g. fairness [Pillutla, Laguel, M., Harchaoui ’22])

back to [Scarf 1958] ! + (...) + recent trend in learning, e.g. [Kuhn et al. ’20]

Statistical/theoretical properties

e.g. [Blanchet et al. ’18] and [Blanchet and Shapiro ’23]

Computable in usual cases

e.g. [Kuhn et al. ’18], [Zhao Guan ’18]...

Interprets up to first-order as a penalization by ∥∇ξf (x , ξ)∥ e.g. [Gao et al. ’18]
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Gentle introduction to WDRO: Outline

1 Basics of WDRO: setting, optimal transport, and duality

2 Spotlight #1: Dimension-free statistical guarantees of WDRO

3 Spotlight #2 : Solving WDRO with skWDRO
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Basics of WDRO: setting, optimal transport, and duality

Math. setting

Training data: ξ1, . . . , ξN (in theory: sampled from Ptrain unknown)

e.g. in supervised learning: labeled data ξi = (ai , yi ) feature, label

Train model: f (x , ·) the loss function with x the parameter/decision (ω, β, θ, ...)

e.g. least-square regression: f
(
x , (a, y)

)
= (x⊤a− y)2

Compute x via empirical risk minimization (a.k.a SAA)

(minimize the average loss on training data)

min
x

1

N

N∑
i=1

f (x , ξi )

Prediction with x for different data ξ

– Adversarial attacks, e.g. flying pigs, driving cakes...

– Presence of bias, e.g. heterogeneous data

– Distributional shifts: Ptrain ̸= Ptest

– Generalization: computations with P̂N and guarantees on Ptrain

Solution: take possible variations into account during training
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Basics of WDRO: setting, optimal transport, and duality

(Distributionally) robust optimization

Optimize expected loss for the worst probability in a set of perturbations

rather than min
x

E P̂N
[f (x , ξ)] solve instead min

x
max
Q∈U

EQ[f (x , ξ)]

with U a neighborhood of P̂N (called ambiguity set)

Trade-off between modeling vs. computational tractability

U =
{
P̂N

}
: min

x

1

N

N∑
i=1

f (x , ξi ) standard ERM

U defined by moments e.g. [Delage, Ye, ’10] [Jegelka et al. ’19]

U =
{
Q : d(P̂N ,Q) ⩽ ρ

}
for various distances or divergences

E.g. KL-div., χ2-div., max-mean-discrepancy... e.g. [Namkoong, Duchi ’17]

U =
{
Q : W (P̂N ,Q) ⩽ ρ

}
Wasserstein distance [Kuhn et al. ’18] – focus of this talk
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Basics of WDRO: setting, optimal transport, and duality

Optimal transport comes into play

Wasserstein distance (given a cost function c)

W (P,Q) = min
πππ

{ Eπππ[c(ξ, ξ
′)] : πππ with marginals [πππ]1 = P, [πππ]2 = Q }

18 Theoretical Foundations

torovich problem (2.11) is then generalized as

Lc(–, —) def.= min
fiœU(–,—)

⁄

X◊Y
c(x, y)dfi(x, y). (2.15)

This is an infinite-dimensional linear program over a space of measures. If (X ,Y)
are compact spaces and c is continuous, then it is easy to show that it always
has solutions. Indeed U(–, —) is compact for the weak topology of measures (see
Remark 2.2), fi ‘æ s

cdfi is a continuous function for this topology and the con-
straint set is nonempty (for instance, – ¢ — œ U(–, —)). Figure 2.6 shows examples
of discrete and continuous optimal coupling solving (2.15). Figure 2.7 shows other
examples of optimal 1-D couplings, involving discrete and continuous marginals.

�
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�

�

Figure 2.6: Left: “continuous” coupling fi solving (2.14) between two 1-D measures with density. The
coupling is localized along the graph of the Monge map (x, T (x)) (displayed in black). Right: “discrete”
coupling T solving (2.11) between two discrete measures of the form (2.3). The positive entries Ti,j are
displayed as black disks at position (i, j) with radius proportional to Ti,j .

�

�

�

�

� �

�

�

�

�
�

�

�

�

�

�

�

�

��

Figure 2.7: Four simple examples of optimal couplings between 1-D distributions, represented as
maps above (arrows) and couplings below. Inspired by Lévy and Schwindt [2018].

Discrete case Semi-discrete case

U = { Q : W (P̂N ,Q) ⩽ ρ }

Many ways to choose c (square distance, ℓp-distance...) – originality of our work: general c

E.g. classification tasks c(ξ, ξ′) = ∥x − x ′∥22 + κ1{y ̸=y ′} with ξ = (x , y)

8
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Basics of WDRO: setting, optimal transport, and duality

WDRO objective function

for given x , P̂N , ρ

{
maxQ EQ[f (x , ξ)]

W (P̂N ,Q) ⩽ ρ
⇔


maxQ,πππ EQ[f (x , ξ)]

[πππ]1 = P̂N , [πππ]2 = Q
minπππ Eπππ[c(ξ, ξ

′)] ⩽ ρ

⇔


maxπππ E[πππ]2 [f (x , ξ)]

[πππ]1 = P̂N

Eπππ[c(ξ, ξ
′)] ⩽ ρ

⇔ min
λ⩾0

λρ+ EP̂N
[ maxξ′ {f (x , ξ′)− λc(ξ, ξ′)} ]

to be compared with EP̂N
[f (x , ξ)]

...does not involve explicitly the transport plan

...computable in some (specific) cases [Kuhn et al. ’18]

...actually many more; see spotlight #2

...does it worth it ? see spotlight #1

BTW: robustness brings nonsmoothness ♡

9
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Basics of WDRO: setting, optimal transport, and duality

Illustration 1: the gain in robustness

Toy example: basic classification (linear, 2D, 2 classes...)

Training data: ξi = (ai , yi ) ∈ R2 × {−1,+1}
sampled from two Gaussian distributions with variances σ = 1 and σ = 5

Testing data: reverse variance σ = 5 and σ = 1

Compute standard separator by min logistic loss f (x , ξ) = log(1 + exp(−y a⊤x))

min
x

1

N

N∑
i=1

log(1 + exp(−yi ai
⊤x))

Compute a robust separator by Wassertein DRO
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Basics of WDRO: setting, optimal transport, and duality

Illustration 2: gain in fairness

Federated learning framework with heterogeneous users (...) [Pillutla, Laguel, M., Harchaoui ’22]
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Experiments: (federated) classification task

ConvNet with EMNIST dataset
(1730 users, 179 images/users)

Histogram over users of test misclassif. error
Models: standard vs. robust
(dashed lines: 10%/90%-quantiles)

•Regularised logistic loss 
•ConvNet

22

Numerical illustration

On the dataset EMNIST

1730 writers 179 images per device

[Caldas et al. 2019]

Models

Distribution of !nal misclassi!cation error

Conformity level 

Distribution of !nal misclassi!cation error for FedAvg

Distribution of !nal misclassi!cation error for

10th percentile for FedAvg 90th percentile
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(W)DRO reshapes test histograms – towards more fairness
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Gentle introduction to WDRO: Outline

1 Basics of WDRO: setting, optimal transport, and duality

2 Spotlight #1: Dimension-free statistical guarantees of WDRO

3 Spotlight #2 : Solving WDRO with skWDRO



Spotlight #1: Dimension-free statistical guarantees of WDRO

Existing statistical guarantees of WDRO

Suppose ξ1, . . . , ξN ∼ Ptrain (where ξ ∈ Rd)

Computations with P̂N =
1

N

N∑
i=1

δξi and guarantees with Ptrain ?

We manipulate the WDRO risk : Rρ(x) = max
W (P̂N ,Q)⩽ρ

EQ[f (x , ξ)]

Obviously, if ρ,N large enough such that W (Ptrain, P̂N) ⩽ ρ, then

Rρ(x)︸ ︷︷ ︸
can compute & optimize

⩾ EPtrain [f (x , ξ)]︸ ︷︷ ︸
cannot access

To be compared with EP̂N
[f (x , ξ)] ⩾ EPtrain [f (x , ξ)] + O

(
1√
N

)

It requires ρ ∝ 1/ d
√
N [Fournier and Guillin ’15] (issue)

Not optimal: ρ ∝ 1/
√
N suffices

– asymptotically [Blanchet et al ’22]
– in particular cases [Shafieez-Adehabadeh et al ’19]
– or with error terms [Gao ’22]
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Spotlight #1: Dimension-free statistical guarantees of WDRO

Extended exact generalization guarantees of WDRO

Our approach: a direct “optim.” approach (work to get a concentration on the dual function)

Theorem ([Azizian, Iutzeler, M. ’23], [Le, M. ’24])

Assumptions: parametric family f (x , ·) + compactness on x + compactness on ξ + non-degeneracy

For δ ∈ (0, 1), if ρ ⩾ O
(√

log 1/δ
N

)

= ρn

then w.p. 1− δ,

Generalization guarantee: Rρ(x) ⩾ EPtrain [f (x , ξ)]

Distribution shifts:

W (Ptrain,Q)2 ⩽ ρ
(
ρ− ρn

)
it holds Rρ(x) ⩾ EQ [f (x , ξ)]

Asymptotic tightness:

W (Ptrain,Q)2 ⩽ ρ
(
ρ+ ρn

)
it holds Rρ(x) ⩽ maxQ EQ [f (x , ξ)]

Universal result: deep learning, kernels, family of invertible mappings (e.g. normalizing flows)

Retrieve existing results in linear/logistic regressions [Shafieez-Adehabadeh et al ’19]
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Spotlight #1: Dimension-free statistical guarantees of WDRO

Theorem illustrated

On logistic regression:

for each ρ, sample 200 training datasets

solve the WDRO problem on each of them [Blanchet et al ’22]

plot the proba of Rρ(x)− EPtrain [f (x)] ⩾ 0 (average, standard deviation)

the training robust loss is indeed an upper-bound on the true loss
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Spotlight #1: Dimension-free statistical guarantees of WDRO

Robustness illustrated

Logistic regression again:

(train/test histograms)

Vanilla (ERM) model

– over-promises

– under-performs

Robust (WDRO) model

– (too?) conservative

– (way!) better testing loss

Better performances at testing

8 / 20

Great ! But how to compute such models !?

15
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Spotlight #2 : Solving WDRO with skWDRO

Solving WDRO ?

Recall: dual WDRO objective is nonsmooth (in ℓ2 case)

Rρ(f ) = min
λ⩾0

λρ+ E P̂N
[ maxξ′ {f (ξ′)− λ∥ξ − ξ′∥2} ]

Specific cases can still be formulated as convex optimization [Kuhn et al. ’18]

Our approach: approximation by smoothing ! Smoothed WDRO counterpart:

Rε
ρ(f ) = min

λ⩾0
λρ+ E P̂N

ε log

(
Eξ′∼N (ξ,σ2) exp

( f (ξ′)− λ∥ξ − ξ′∥2
ε

))
Nice interpretation as entropy-regularized WDRO (similar but still different from Sinkhorn...)

Nice approximation results, e.g. :

Theorem (approximation bounds for WDRO [Azizian, Iutzeler, M. ’21])

Under mild assumptions (non-degeneracy, f lipschitz), then

0 ⩽ Rρ(f )− Rε
ρ(f ) ⩽

(
C ε log

1

ε

)
d
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Spotlight #2 : Solving WDRO with skWDRO

Numerical optimization

Smoothed dual WDRO problem: minimizing a differentiable objective function

min
x

min
λ⩾0

λρ+
1

N

N∑
i=1

ε log

(
Eξ′∼N (ξi ,σ2) exp

( f (x , ξ′)− λ∥ξ − ξ′∥2
ε

))
Our approach: use Pytorch tools (automatic backward diff. & adaptive SDG-like methods)

Not so easy, because of the inner expectation...

Requires some (hard) work on computational aspects, e.g.

Control the biais of the lower bound, after sampling ξ′j ∼ N (ξi , σ
2)

min
x

min
λ⩾0

λρ+
1

N

N∑
i=1

ε log

 1

M

M∑
j=1

exp
( f (x , ξ′j )− λ∥ξ − ξ′j∥2

ε

)
Objective still sharply peaked (so high variance in the gradient estimate...)

Use importance sampling: sample the ξ′j shifted towards the gradient

17
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Our approach: use Pytorch tools (automatic backward diff. & adaptive SDG-like methods)

Not so easy, because of the inner expectation...

Requires some (hard) work on computational aspects, e.g.

Control the biais of the lower bound, after sampling ξ′j ∼ N (ξi , σ
2)

min
x

min
λ⩾0

λρ+
1

N

N∑
i=1

ε log

 1

M

M∑
j=1

exp
( f (x , ξ′j )− λ∥ξ − ξ′j∥2

ε

)
Objective still sharply peaked (so high variance in the gradient estimate...)

Use importance sampling: sample the ξ′j shifted towards the gradient
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Spotlight #2 : Solving WDRO with skWDRO

Python Toolbox skWDRO

Control on the approximations

Importance sampling for the inner integral

Careful logsumexp

Numerically stable backward pass

Heuristics to set ε and σ

Efficient heuristic to set starting λ

All-in-one API

User-friendly interfaces
(Pytorch and Scikitlearn)

Robust training of stochastic
models with SkWDRO

Florian Vincent   (Inria, LJK — Grenoble)

We present SkWDRO, a library for distributionally robust optimization of machine learning and stochastic programming problems.
Robustness in distribution is achieved by replacing the empirical data 𝜉 ∼ ℙ̂𝑁  (seen as a distribution) by surrogates 𝜁 ∼ ℚ where ℚ is

the worst distribution for the objective such that s 𝑊(ℙ̂𝑁 , ℚ) < 𝜌 , i.e. its Wasserstein distance [1] remains close to the emprical
distribution. This enables to enhance generalization properties and to capture distributional shifts.

Baseline: (ERM) Primal: (WDRO) Dual: (WDRO∗)

min
𝜃
 𝔼𝜉∼ℙ̂𝑁𝐿𝜃(𝜉)

⟶⟶⟶⟶⟶⟶⟶⟶⟶⟶⟶⟶⟶⟶⟶⟶⟶⟶⟶⟶⟶⟶ min
𝜃
  sup
𝑊(ℚ,ℙ̂𝑁)<𝜌

𝔼𝜁∼ℚ𝐿𝜃(𝜁) min
𝜃,𝜆≥0

 𝜆𝜌 + 𝔼𝜉∼ℙ̂𝑁
⎣
⎢
⎡
⚠

sup
𝜁

{𝐿𝜃(𝜁) − 𝜆 ‖𝜉 − 𝜁‖22}
⎦
⎥
⎤

Internals of SkWDRO
The library relies on the entropic regularization [2] of this prob-
lem’s dual to obtain a more tractable formula [3]:

min
𝜃,𝜆≥0

𝜆𝜌 + 𝔼𝜉∼ℙ̂𝑁𝜀 log𝔼𝜁∼𝒩(𝜉,𝜎)[𝑒
𝐿𝜃(𝜁)−𝜆 ‖𝜁−𝜉‖22

𝜀 ]
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

≕𝐹𝜀(𝜆,𝐿𝜃(⋅))

Appealing advantages:
• it is smooth,
• it does not involve explicitely the optimal transport plan

from the Wasserstein distance,
• it preserves statistical properties [4].

Requiring particular care in some regards:
• two additional hyperparameters to tune 𝜎 and 𝜀,
• a dual variable 𝜆 is introduced and needs to be optimized,
• the inner expectation may require a lot of 𝜁  samples.

A special care has been taken in the library to tackle those spe-
cific numerical questions, especially to improve the sampling
algorithm and chose 𝜎 and 𝜀.

Illustration on logistic regression
Train
ERM

Test
on unseen data

Separate two
gaussians

Train
SkWDRO

Test
on unseen data

𝜃∗(ERM)

𝜃∗(DRO)

Figure 1: In blue/green the train/test losses distributions for the
ERM, and in red/purple below for the train/test losses of SkWDRO.

Interfaces
• Scikit-learn interfaces: Popular machine learning losses (lo-

gistic and linear regression) are available as sklearn estima-
tors and benefit from the whole scikit-learn environment (CV,
pipelines, etc).

• PyTorch wrapper: PyTorch wrapper: torches modules can be
robustified and trained in the same way as their ERM counter-
parts.

WDRO
min
𝜃

sup
ℚ distrib.

𝑊(ℙ̂𝑁,ℚ)<𝜌

𝔼𝜁∼ℚ𝐿𝜃(𝜁)

⚠

tractable formulation needed

Specific/Entropic
solver

Scikit-learn

ERM
min
𝜃
𝔼𝜉∼ℙ̂𝑁𝐿𝜃(𝜉)

SkWDRO

Entropic WDRO
min
𝜃,𝜆≥0

𝜆𝜌

+𝔼𝜉∼ℙ̂𝑁𝐹𝜀(𝜆, 𝐿𝜃(⋅))

Wrapping interface
PyTorch

Interface

Robustifies

Robustifies

Wrap

Approximates

Interface

Includes

The interface wraps a user-specified objective function 𝐿𝜃(⋅)
written in the python library PyTorch, and yields a robust coun-
terpart with a minimal amount of additional code.

The library can already be tested on the fol-
lowing pre-implemented examples:
• linear and logistic regressions,
• portfolio management,
• localization problems (“Weber”),
• a shallow neural network.

Feel welcome to fill issues in the github pro-
ject:

https://github.com/iutzeler/skwdro

[1] G. Peyré and M. Cuturi, Computational Optimal Transport: With Applications to
Data Science, Foundations and Trends in Machine Learning 11, 355 (2019)

[2] J. Wang, R. Gao, and Y. Xie, Sinkhorn Distributionally Robust Optimization,
(2023)

[3] W. Azizian, F. Iutzeler, and J. Malick, Regularization for Wasserstein Distribu-
tionally Robust Optimization, ESAIM: COCV (2023)

[4] W. Azizian, F. Iutzeler, and J. Malick, Exact Generalization Guarantees for (Reg-
ularized) Wasserstein Distributionally Robust Models, in NeurIPS 2023 (2023)

Perspectives

• Try heavier problems
(image datasets, etc).

• Investigate numerical
behaviour of regularization.

The library allows you to
robustify any decision model
provided one can translate it
in PyTorch.

Try it out!

florian.vincent(at)univ-grenoble-alpes.fr

F. Vincent Robustify with SkWDRO 07/03/2024 23 / 22

Try it out !

More (to come) in [Vincent, Azizian, Iutzeler, M. ’24]
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Spotlight #2 : Solving WDRO with skWDRO

Easy to use, with few lines of code

Scikitlearn

Pytorch

NN with pytorch
63 def main():

64     device = "cuda" if pt.cuda.is_available() else "cpu"

65     model = MyShallowNet([1, 50, 30, 10, 1]).to(device)

66

67     rho = pt.tensor(1e-1).to(device)

68

69     x = pt.sort(pt.flatten(

70         pt.linspace(0., 1., 10, device=device).unsqueeze(0)\

71         + pt.randn(10000, 10, device=device) * 1e-1

72     ))[0]

73     y = f(x) + pt.randn(100000, device=device) * 2e-2

74     dataset = DataLoader(TensorDataset(x.unsqueeze(-1), y.unsqueeze(-1)), batch_size=5000, shuffle=True)

75

76     # New line: "dualize" the loss
77     dual_loss = dualize_primal_loss(

78             nn.MSELoss(reduction='none'),

79             model,

80             rho,

81             x.unsqueeze(-1),

82             y.unsqueeze(-1)

83         )

84

85     model = train(dual_loss, dataset, 1000) # type: ignore
86     model.eval()

87

88     # Plot stuff
89

90 if __name__ == '__main__':

91     pt.set_float32_matmul_precision('high')

92     main()

F. Vincent Robustify with SkWDRO 07/03/2024 14 / 22

You can easily robustify your own models with skWDRO !
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Spotlight #2 : Solving WDRO with skWDRO

To sum up, in one slide...

Main take-aways

ML works well, unless it does not. Work needed. Optimization is in the game

Distributionally robust optimization is rich, active topic

Spotlight #1: WDRO has nice generalization properties

Spotlight #2: WDRO in practice with skWDRO (via scitkitlearn + Pytorch wrappers)

What’s next ?

Beyond Wasserstein neighborhoods... new models, new applications !

How to deal with difficult constraints ? (0-1 variables, mixed-integer sets...)

(after heterogeneous federated learning) real-life applications with impact ? More fairness ?

thank you all ,
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Spotlight #2 : Solving WDRO with skWDRO

Work presented here

Y. Laguel, K. Pillutla, J. Malick, Z. Harchaoui

Federated Learning with Heterogeneous Data: A Superquantile Optimization Approach
Machine Learning Research, 2022

A. Waiss, F. Iutzeler, J. Malick

Regularization for Wasserstein distributionnally robust optimization
ESAIM: Control, Optimization, and Calculus of Variations, 2023

W. Azizian, F. Iutzeler, J. Malick

Exact Generalization Guarantees for (Regularized) Wasserstein Distributionally Robust Models
Advances in Neural Information Processing Systems (NeurIPS), 2023

T. Le, J. Malick

Universal generalization guarantees for Wasserstein distributionally robust models
Still an hope for NeurIPS, 2024

Perspectives

• Try heavier problems
(image datasets, etc).

• Investigate numerical
behaviour of regularization.

The library allows you to
robustify any decision model
provided one can translate it
in PyTorch.

Try it out!

florian.vincent(at)univ-grenoble-alpes.fr

F. Vincent Robustify with SkWDRO 07/03/2024 23 / 22

F. Vincent, W. Azizian, F. Iutzeler, J. Malick

skwdro: a library for Wasserstein distributionally robust machine learning
To be submitted, 2024
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