
Toward resilient, responsible predictions/decisions
(a gentle introduction to optimal-transport-based distributionally robust optimization)
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Deep learning can be impressive

Spectacular success of deep learning, in many fields/applications... E.g. in generation

Ex: picture generated with stable diffusion (https://stablediffusionweb.com)

“towards resilient, responsible decisions”
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Don’t forget how fragile deep learning can be !

Example 1: Flying pigs (notebooks of NeurIPS 2018, tutorial on robustness)
12/02/2020 11&13

Page 1 sur 1file:///Users/jerome/Nomade/Talks/20-montpelier-roadef/pics/pig.svg

pig (99%)

“ML is a wonderful tech-

nology: it makes pigs fly”

[Kolter, Madry ’18]

Example 2: Attacks against self-driving cars

Attacks against autonomous vehicles

Eykholt et al, Robust Physical-World Attacks on Deep Learning Visual Classification, CVPR 2018

Zhang et al., CAMOU: Learning Physical Vehicle Camouflages to Adversarially Attack Detectors in the Wild, ICLR 2019

.
https://www.mcafee.com/blogs/other-blogs/mcafee-labs/model-hacking-adas-to-pave-safer-roads-for-autonomous-vehicles/

Nassi et al., Phantom of the ADAS: Securing Advanced Driver-AssistanceSystems from Split-Second Phantom Attacks, 2020
Qayyum, et al., Securing Connected & Autonomous Vehicles: Challenges Posed by Adversarial ML, IEEE Communications, 2019

53/56
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ML may also perform poorly for some people

Example: Global model is trained on average distribution 
across clients (ERM)

Server

From Washington Post (2019) “the accent gap”

By Drew Harwell July 19, 2018 13
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Math. setting

Training data: ξ1, . . . , ξN (in theory: sampled from Ptrain unknown)

e.g. in supervised learning: labeled data ξi = (ai , yi ) feature, label

Train model: f (x , ·) the loss function with x the parameter/decision (ω, β, θ, ...)

e.g. least-square regression: f
(
x , (a, y)

)
= (x⊤a− y)2

Compute x via empirical risk minimization (a.k.a SAA)

(minimize the average loss on training data)

min
x

1

N

N∑
i=1

f (x , ξi )

Prediction with x for different data ξ

– Adversarial attacks (e.g. flying pigs, driving cakes...)

– Presence of bias, e.g. heterogeneous data

– Distributional shifts: Ptrain ̸= Ptest

– Generalization: computations with P̂N and guarantees on Ptrain

Solution: take possible variations into account during training

4
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(Distributionally) robust optimization

Optimize expected loss for the worst probability in a set of perturbations

rather than min
x

E P̂N
[f (x , ξ)] solve instead min

x
max
Q∈U

EQ[f (x , ξ)]

with U a neighborhood of P̂N (called ambiguity set)

U =
{
P̂N

}
: min

x

1

N

N∑
i=1

f (x , ξi ) standard ERM

U defined by moments e.g. [Delage, Ye, ’10] [Jegelka et al. ’19]

U =
{
Q : d(P̂N ,Q) ⩽ ρ

}
for various distances or divergences

E.g. KL-div., χ2-div., max-mean-discrepancy... e.g. [Namkoong, Duchi ’17]

U =
{
Q : W (P̂N ,Q) ⩽ ρ

}
Wasserstein distance [Kuhn et al. ’18] (popular in OT)

modeling vs. computational tractability
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Illustration 1: the gain in robustness

Toy example: basic classification (linear, 2D, 2 classes...)

Training data: ξi = (ai , yi ) ∈ R2 × {−1,+1}
sampled from two Gaussian distributions with variances σ = 1 and σ = 5

Testing data: reverse variance σ = 5 and σ = 1

Compute standard separator by min logistic loss f (x , ξ) = log(1 + exp(−y a⊤x))

min
x

1

N

N∑
i=1

log(1 + exp(−yi ai
⊤x))

Compute a robust separator (Wassertein DRO w. c((a, y), (a′, y ′)) = ∥a− a′∥+ κ1y=y′ )

6
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Illustration 2: gain in fairness

Federated learning framework with heterogeneous users (...) [Pillutla, Laguel, M., Harchaoui ’22]
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Experiments: (federated) classification task

ConvNet with EMNIST dataset
(1730 users, 179 images/users)

Histogram over users of test misclassif. error
Models: standard vs. robust
(dashed lines: 10%/90%-quantiles)

•Regularised logistic loss 
•ConvNet

22

Numerical illustration

On the dataset EMNIST

1730 writers 179 images per device

[Caldas et al. 2019]

Models

Distribution of !nal misclassi!cation error

Conformity level 

Distribution of !nal misclassi!cation error for FedAvg

Distribution of !nal misclassi!cation error for

10th percentile for FedAvg 90th percentile

p = 0.5
<latexit sha1_base64="NcRyqU1q7HvM5CG6xRdiEyR/sWI=">AAAB7HicbVBNS8NAEJ31s9avqkcvi0XwFJKq6EUoevFYwbSFNpTNdtMu3WzC7kYoob/BiwdFvPqDvPlv3LY5aOuDgcd7M8zMC1PBtXHdb7Syura+sVnaKm/v7O7tVw4OmzrJFGU+TUSi2iHRTHDJfMONYO1UMRKHgrXC0d3Ubz0xpXkiH804ZUFMBpJHnBJjJT+9cZ3LXqXqOu4MeJl4BalCgUav8tXtJzSLmTRUEK07npuaICfKcCrYpNzNNEsJHZEB61gqScx0kM+OneBTq/RxlChb0uCZ+nsiJ7HW4zi0nTExQ73oTcX/vE5mousg5zLNDJN0vijKBDYJnn6O+1wxasTYEkIVt7diOiSKUGPzKdsQvMWXl0mz5njnTu3holq/LeIowTGcwBl4cAV1uIcG+ECBwzO8whuS6AW9o4956woqZo7gD9DnD61mjfA=</latexit>
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(W)DRO reshapes test histograms – towards more fairness
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(W)DRO, at the intersection of Optim & ML

(Wasserstein) distributionnally robust optimization is very attractive

Natural in many applications (e.g. fairness [Pillutla, Laguel, M., Harchaoui ’22])

back to [Scarf 1958] ! + (...) + recent trend in learning, e.g. [Kuhn et al. ’20]

Statistical/theoretical properties

e.g. [Blanchet et al. ’18] and [Blanchet and Shapiro ’23]

Computable in usual cases

e.g. [Kuhn et al. ’18], [Zhao Guan ’18]...

Interprets up to first-order as a penalization by ∥∇ξf (x , ξ)∥ e.g. [Gao et al. ’18]
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Gentle introduction to WDRO: Outline

1 Just a bit of maths: optimal transport, duality, and formulations

2 Dimension-free statistical guarantees of WDRO

3 Robustify your models with skWDRO !
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Just a bit of maths: optimal transport, duality, and formulations

Optimal transport comes into play

Wasserstein distance (given a cost function c)

W (P,Q) = min
πππ

{ Eπππ[c(ξ, ξ
′)] : πππ with marginals [πππ]1 = P, [πππ]2 = Q }

18 Theoretical Foundations

torovich problem (2.11) is then generalized as

Lc(–, —) def.= min
fiœU(–,—)

⁄

X◊Y
c(x, y)dfi(x, y). (2.15)

This is an infinite-dimensional linear program over a space of measures. If (X ,Y)
are compact spaces and c is continuous, then it is easy to show that it always
has solutions. Indeed U(–, —) is compact for the weak topology of measures (see
Remark 2.2), fi ‘æ s

cdfi is a continuous function for this topology and the con-
straint set is nonempty (for instance, – ¢ — œ U(–, —)). Figure 2.6 shows examples
of discrete and continuous optimal coupling solving (2.15). Figure 2.7 shows other
examples of optimal 1-D couplings, involving discrete and continuous marginals.

�

�

� �

�

�

Figure 2.6: Left: “continuous” coupling fi solving (2.14) between two 1-D measures with density. The
coupling is localized along the graph of the Monge map (x, T (x)) (displayed in black). Right: “discrete”
coupling T solving (2.11) between two discrete measures of the form (2.3). The positive entries Ti,j are
displayed as black disks at position (i, j) with radius proportional to Ti,j .
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Figure 2.7: Four simple examples of optimal couplings between 1-D distributions, represented as
maps above (arrows) and couplings below. Inspired by Lévy and Schwindt [2018].

Discrete case Semi-discrete case

U = { Q : W (P̂N ,Q) ⩽ ρ }

9
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Just a bit of maths: optimal transport, duality, and formulations

Optimal transport comes into play

Wasserstein distance (given a cost function c)

W (P,Q) = min
πππ

{ Eπππ[c(ξ, ξ
′)] : πππ with marginals [πππ]1 = P, [πππ]2 = Q }

18 Theoretical Foundations

torovich problem (2.11) is then generalized as

Lc(–, —) def.= min
fiœU(–,—)

⁄

X◊Y
c(x, y)dfi(x, y). (2.15)

This is an infinite-dimensional linear program over a space of measures. If (X ,Y)
are compact spaces and c is continuous, then it is easy to show that it always
has solutions. Indeed U(–, —) is compact for the weak topology of measures (see
Remark 2.2), fi ‘æ s

cdfi is a continuous function for this topology and the con-
straint set is nonempty (for instance, – ¢ — œ U(–, —)). Figure 2.6 shows examples
of discrete and continuous optimal coupling solving (2.15). Figure 2.7 shows other
examples of optimal 1-D couplings, involving discrete and continuous marginals.
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Figure 2.6: Left: “continuous” coupling fi solving (2.14) between two 1-D measures with density. The
coupling is localized along the graph of the Monge map (x, T (x)) (displayed in black). Right: “discrete”
coupling T solving (2.11) between two discrete measures of the form (2.3). The positive entries Ti,j are
displayed as black disks at position (i, j) with radius proportional to Ti,j .
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Figure 2.7: Four simple examples of optimal couplings between 1-D distributions, represented as
maps above (arrows) and couplings below. Inspired by Lévy and Schwindt [2018].
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Just a bit of maths: optimal transport, duality, and formulations

WDRO objective function

for given x , P̂N , ρ

{
maxQ EQ[f (x , ξ)]

W (P̂N ,Q) ⩽ ρ
⇔


maxQ,πππ EQ[f (x , ξ)]

[πππ]1 = P̂N , [πππ]2 = Q
minπππ Eπππ[c(ξ, ξ

′)] ⩽ ρ

⇔


maxπππ E[πππ]2 [f (x , ξ)]

[πππ]1 = P̂N

Eπππ[c(ξ, ξ
′)] ⩽ ρ

⇔ min
λ⩾0

λρ+ EP̂N
[ maxξ′ {f (x , ξ′)− λc(ξ, ξ′)} ]

to be compared with EP̂N
[f (x , ξ)]

...does not involve explicitly the transport plan

...computable in some (specific) cases [Kuhn et al. ’18]

...actually many more; see spotlight #2

...does it worth it ? see spotlight #1

10



Just a bit of maths: optimal transport, duality, and formulations

WDRO objective function

for given x , P̂N , ρ

{
maxQ EQ[f (x , ξ)]

W (P̂N ,Q) ⩽ ρ
⇔


maxQ,πππ EQ[f (x , ξ)]

[πππ]1 = P̂N , [πππ]2 = Q
minπππ Eπππ[c(ξ, ξ

′)] ⩽ ρ

⇔


maxπππ E[πππ]2 [f (x , ξ)]

[πππ]1 = P̂N

Eπππ[c(ξ, ξ
′)] ⩽ ρ

⇔ min
λ⩾0

λρ+ EP̂N
[ maxξ′ {f (x , ξ′)− λc(ξ, ξ′)} ]

to be compared with EP̂N
[f (x , ξ)]

...does not involve explicitly the transport plan

...computable in some (specific) cases [Kuhn et al. ’18]

...actually many more; see spotlight #2

...does it worth it ? see spotlight #1

10



Just a bit of maths: optimal transport, duality, and formulations

WDRO objective function

for given x , P̂N , ρ

{
maxQ EQ[f (x , ξ)]

W (P̂N ,Q) ⩽ ρ
⇔


maxQ,πππ EQ[f (x , ξ)]

[πππ]1 = P̂N , [πππ]2 = Q
minπππ Eπππ[c(ξ, ξ

′)] ⩽ ρ

⇔


maxπππ E[πππ]2 [f (x , ξ)]

[πππ]1 = P̂N

Eπππ[c(ξ, ξ
′)] ⩽ ρ

⇔ min
λ⩾0

λρ+ EP̂N
[ maxξ′ {f (x , ξ′)− λc(ξ, ξ′)} ]

to be compared with EP̂N
[f (x , ξ)]

...does not involve explicitly the transport plan

...computable in some (specific) cases [Kuhn et al. ’18]

...actually many more; see spotlight #2

...does it worth it ? see spotlight #1

10



Just a bit of maths: optimal transport, duality, and formulations

WDRO objective function

for given x , P̂N , ρ

{
maxQ EQ[f (x , ξ)]

W (P̂N ,Q) ⩽ ρ
⇔


maxQ,πππ EQ[f (x , ξ)]

[πππ]1 = P̂N , [πππ]2 = Q
minπππ Eπππ[c(ξ, ξ

′)] ⩽ ρ

⇔


maxπππ E[πππ]2 [f (x , ξ)]

[πππ]1 = P̂N

Eπππ[c(ξ, ξ
′)] ⩽ ρ

⇔ min
λ⩾0

λρ+ EP̂N
[ maxξ′ {f (x , ξ′)− λc(ξ, ξ′)} ]

to be compared with EP̂N
[f (x , ξ)]

...does not involve explicitly the transport plan

...computable in some (specific) cases [Kuhn et al. ’18]

...actually many more; see spotlight #2

...does it worth it ? see spotlight #1

10



Just a bit of maths: optimal transport, duality, and formulations

WDRO objective function

for given x , P̂N , ρ

{
maxQ EQ[f (x , ξ)]

W (P̂N ,Q) ⩽ ρ
⇔


maxQ,πππ EQ[f (x , ξ)]

[πππ]1 = P̂N , [πππ]2 = Q
minπππ Eπππ[c(ξ, ξ

′)] ⩽ ρ

⇔


maxπππ E[πππ]2 [f (x , ξ)]

[πππ]1 = P̂N

Eπππ[c(ξ, ξ
′)] ⩽ ρ

⇔ min
λ⩾0

λρ+ EP̂N
[ maxξ′ {f (x , ξ′)− λc(ξ, ξ′)} ]

to be compared with EP̂N
[f (x , ξ)]

...does not involve explicitly the transport plan

...computable in some (specific) cases [Kuhn et al. ’18]

...actually many more; see spotlight #2

...does it worth it ? see spotlight #1

10



Gentle introduction to WDRO: Outline

1 Just a bit of maths: optimal transport, duality, and formulations

2 Dimension-free statistical guarantees of WDRO

3 Robustify your models with skWDRO !



Dimension-free statistical guarantees of WDRO

Existing statistical guarantees of WDRO

Suppose ξ1, . . . , ξN ∼ Ptrain (where ξ ∈ Rd)

Computations with P̂N =
1

N

N∑
i=1

δξi and guarantees with Ptrain ?

We manipulate the WDRO risk : Rρ(x) = max
W (P̂N ,Q)⩽ρ

EQ[f (x , ξ)]

Obviously, if ρ,N large enough such that W (Ptrain, P̂N) ⩽ ρ, then

Rρ(x)︸ ︷︷ ︸
can compute & optimize

⩾ EPtrain [f (x , ξ)]︸ ︷︷ ︸
cannot access

To be compared with EP̂N
[f (x , ξ)] ⩾ EPtrain [f (x , ξ)] + O

(
1√
N

)

It requires ρ ∝ 1/ d
√
N [Fournier and Guillin ’15] (issue)

Not optimal: ρ ∝ 1/
√
N suffices

– asymptotically [Blanchet et al ’22]
– in particular cases [Shafieez-Adehabadeh et al ’19]
– or with error terms [Gao ’22]
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Dimension-free statistical guarantees of WDRO

Extended exact generalization guarantees of WDRO

Our approach: a direct “optim.” approach (work to get a concentration on the dual function)

Theorem ([Azizian, Iutzeler, M. ’23], [Le, M. ’24])

Assumptions: parametric family f (θ, ·) + compactness on θ + compactness on ξ + non-degeneracy

For δ ∈ (0, 1), if ρ ⩾ O
(√

log 1/δ
N

)

= ρn

then w.p. 1− δ,

Generalization guarantee: Rρ(x) ⩾ EPtrain [f (x , ξ)]

Distribution shifts:

W (P,Q)2 ⩽ ρ
(
ρ− ρn

)
it holds Rρ(x) ⩾ EQ [f (x , ξ)]

Asymptotic tightness:

W (P,Q)2 ⩽ ρ
(
ρ+ ρn

)
it holds Rρ(x) ⩽ maxQ EQ [f (x , ξ)]

Universal result: deep learning, kernels, family of invertible mappings (e.g. normalizing flows)

Retrieve existing results in linear/logistic regressions [Shafieez-Adehabadeh et al ’19]
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Dimension-free statistical guarantees of WDRO

Theorem illustrated

On logistic regression:

for each ρ, sample 200 training datasets

solve the WDRO problem on each of them [Blanchet et al ’22]

plot the proba of Rρ(x)− EPtrain [f (x)] ⩾ 0 (average, standard deviation)

the training robust loss is indeed an upper-bound on the true loss
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Dimension-free statistical guarantees of WDRO

Robustness illustrated

Logistic regression again:

(train/test histograms)

Vanilla (ERM) model

– over-promises

– under-performs

Robust (WDRO) model

– (too?) conservative

– (way!) better testing loss

Better performances at testing

8 / 20

How can we compute such models !?

We want the same at home !
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Gentle introduction to WDRO: Outline

1 Just a bit of maths: optimal transport, duality, and formulations

2 Dimension-free statistical guarantees of WDRO

3 Robustify your models with skWDRO !



Robustify your models with skWDRO !

Original approach

Dual WDRO is nonsmooth (which complicates resolution [Kuhn et al. ’18])

Rρ(f ) = min
λ⩾0

λρ+ EP[ maxξ′ {f (ξ′)− λ∥ξ − ξ′∥2} ]

What about smoothing ?! Smoothed counterpart

Rε
ρ(f ) = min

λ⩾0
λρ+ EP ε log

(
Eξ′∼N (ξ,σ2) exp

( f (ξ′)− λ∥ξ − ξ′∥2
ε

))

Nice interpretation as entropy-regularized WDRO

Nice approximation results, e.g. :

Theorem (approximation bounds for WDRO [Azizian, Iutzeler, M. ’21])

Under mild assumptions (non-degeneracy, lipschitz), if the support of P is contained in a compact
convex set Ξ ⊂ Rd , then

0 ⩽ Rρ(f )− Rε
ρ(f ) ⩽

(
C ε log

1

ε

)
d

15
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Robustify your models with skWDRO !

Hard work on computational aspects

Importance sampling for the inner integral

Careful logsumexp

Heuristics to set ε and σ

Numerically stable backward pass

Efficient heuristic to set starting λ

All-in-one API, easy to define the problem

User-friendly interfaces

Robust training of stochastic
models with SkWDRO

Florian Vincent   (Inria, LJK — Grenoble)

We present SkWDRO, a library for distributionally robust optimization of machine learning and stochastic programming problems.
Robustness in distribution is achieved by replacing the empirical data 𝜉 ∼ ℙ̂𝑁  (seen as a distribution) by surrogates 𝜁 ∼ ℚ where ℚ is

the worst distribution for the objective such that s 𝑊(ℙ̂𝑁 , ℚ) < 𝜌 , i.e. its Wasserstein distance [1] remains close to the emprical
distribution. This enables to enhance generalization properties and to capture distributional shifts.

Baseline: (ERM) Primal: (WDRO) Dual: (WDRO∗)

min
𝜃
 𝔼𝜉∼ℙ̂𝑁𝐿𝜃(𝜉)

⟶⟶⟶⟶⟶⟶⟶⟶⟶⟶⟶⟶⟶⟶⟶⟶⟶⟶⟶⟶⟶⟶ min
𝜃
  sup
𝑊(ℚ,ℙ̂𝑁)<𝜌

𝔼𝜁∼ℚ𝐿𝜃(𝜁) min
𝜃,𝜆≥0

 𝜆𝜌 + 𝔼𝜉∼ℙ̂𝑁
⎣
⎢
⎡
⚠

sup
𝜁

{𝐿𝜃(𝜁) − 𝜆 ‖𝜉 − 𝜁‖22}
⎦
⎥
⎤

Internals of SkWDRO
The library relies on the entropic regularization [2] of this prob-
lem’s dual to obtain a more tractable formula [3]:

min
𝜃,𝜆≥0

𝜆𝜌 + 𝔼𝜉∼ℙ̂𝑁𝜀 log𝔼𝜁∼𝒩(𝜉,𝜎)[𝑒
𝐿𝜃(𝜁)−𝜆 ‖𝜁−𝜉‖22

𝜀 ]
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

≕𝐹𝜀(𝜆,𝐿𝜃(⋅))

Appealing advantages:
• it is smooth,
• it does not involve explicitely the optimal transport plan

from the Wasserstein distance,
• it preserves statistical properties [4].

Requiring particular care in some regards:
• two additional hyperparameters to tune 𝜎 and 𝜀,
• a dual variable 𝜆 is introduced and needs to be optimized,
• the inner expectation may require a lot of 𝜁  samples.

A special care has been taken in the library to tackle those spe-
cific numerical questions, especially to improve the sampling
algorithm and chose 𝜎 and 𝜀.

Illustration on logistic regression
Train
ERM

Test
on unseen data

Separate two
gaussians

Train
SkWDRO

Test
on unseen data

𝜃∗(ERM)

𝜃∗(DRO)

Figure 1: In blue/green the train/test losses distributions for the
ERM, and in red/purple below for the train/test losses of SkWDRO.

Interfaces
• Scikit-learn interfaces: Popular machine learning losses (lo-

gistic and linear regression) are available as sklearn estima-
tors and benefit from the whole scikit-learn environment (CV,
pipelines, etc).

• PyTorch wrapper: PyTorch wrapper: torches modules can be
robustified and trained in the same way as their ERM counter-
parts.

WDRO
min
𝜃

sup
ℚ distrib.

𝑊(ℙ̂𝑁,ℚ)<𝜌

𝔼𝜁∼ℚ𝐿𝜃(𝜁)

⚠

tractable formulation needed

Specific/Entropic
solver

Scikit-learn

ERM
min
𝜃
𝔼𝜉∼ℙ̂𝑁𝐿𝜃(𝜉)

SkWDRO

Entropic WDRO
min
𝜃,𝜆≥0

𝜆𝜌

+𝔼𝜉∼ℙ̂𝑁𝐹𝜀(𝜆, 𝐿𝜃(⋅))

Wrapping interface
PyTorch

Interface

Robustifies

Robustifies

Wrap

Approximates

Interface

Includes

The interface wraps a user-specified objective function 𝐿𝜃(⋅)
written in the python library PyTorch, and yields a robust coun-
terpart with a minimal amount of additional code.

The library can already be tested on the fol-
lowing pre-implemented examples:
• linear and logistic regressions,
• portfolio management,
• localization problems (“Weber”),
• a shallow neural network.

Feel welcome to fill issues in the github pro-
ject:

https://github.com/iutzeler/skwdro

[1] G. Peyré and M. Cuturi, Computational Optimal Transport: With Applications to
Data Science, Foundations and Trends in Machine Learning 11, 355 (2019)

[2] J. Wang, R. Gao, and Y. Xie, Sinkhorn Distributionally Robust Optimization,
(2023)

[3] W. Azizian, F. Iutzeler, and J. Malick, Regularization for Wasserstein Distribu-
tionally Robust Optimization, ESAIM: COCV (2023)

[4] W. Azizian, F. Iutzeler, and J. Malick, Exact Generalization Guarantees for (Reg-
ularized) Wasserstein Distributionally Robust Models, in NeurIPS 2023 (2023)

Perspectives

• Try heavier problems
(image datasets, etc).

• Investigate numerical
behaviour of regularization.

The library allows you to
robustify any decision model
provided one can translate it
in PyTorch.

Try it out!

florian.vincent(at)univ-grenoble-alpes.fr

F. Vincent Robustify with SkWDRO 07/03/2024 23 / 22

Try it out !

More (to come) in [Vincent, Azizian, Iutzeler, M. ’24]
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Robustify your models with skWDRO !

Easy to use, with few lines of code

Scikitlearn

Pytorch

NN with pytorch
63 def main():

64     device = "cuda" if pt.cuda.is_available() else "cpu"

65     model = MyShallowNet([1, 50, 30, 10, 1]).to(device)

66

67     rho = pt.tensor(1e-1).to(device)

68

69     x = pt.sort(pt.flatten(

70         pt.linspace(0., 1., 10, device=device).unsqueeze(0)\

71         + pt.randn(10000, 10, device=device) * 1e-1

72     ))[0]

73     y = f(x) + pt.randn(100000, device=device) * 2e-2

74     dataset = DataLoader(TensorDataset(x.unsqueeze(-1), y.unsqueeze(-1)), batch_size=5000, shuffle=True)

75

76     # New line: "dualize" the loss
77     dual_loss = dualize_primal_loss(

78             nn.MSELoss(reduction='none'),

79             model,

80             rho,

81             x.unsqueeze(-1),

82             y.unsqueeze(-1)

83         )

84

85     model = train(dual_loss, dataset, 1000) # type: ignore
86     model.eval()

87

88     # Plot stuff
89

90 if __name__ == '__main__':

91     pt.set_float32_matmul_precision('high')

92     main()

F. Vincent Robustify with SkWDRO 07/03/2024 14 / 22
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Robustify your models with skWDRO !

To sum up, in one last slide...

Main take-aways

ML works well, unless it does not. Work needed. Optimization is in the game

Distributionally robust optimization is rich, active topic

Spotlight #1: WDRO has nice generalization properties

Spotlight #2: WDRO in action with skWDRO (via scitkitlearn + Pytorch wrappers)

What’s next ?

Beyond Wasserstein neighborhoods... new models, new applications !

How to deal with difficult constraints ? (0-1 variables, mixed-integer sets...)

thank you all ,
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