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Deep learning can be impressive

Spectacular success of deep learning, in many fields/applications... E.g. in generation

Ex: picture generated with stable diffusion (https://stablediffusionweb.com)

“towards resilient, responsible decisions”


https://stablediffusionweb.com

Don’t forget how fragile deep learning can be !

Example 1: Flying pigs (notebooks of NeurlPS 2018, tutorial on robustness)
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Don’t forget how fragile deep learning can be !

Example 1: Flying pigs (notebooks of NeurlPS 2018, tutorial on robustness)

“ML is a wonderful tech-
nology: it makes pigs fly”
[Kolter, Madry 18]
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Example 2: Attacks against self-driving cars [@ ICLR '19]




ML may also perform poorly for some people

Example: Global model is trained on average distribution
across clients (ERM)
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ML may also perform poorly for some people

Example: Global model is deployed on individual clients
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ML may also perform poorly for some people

Example: Global model is deployed on individual clients

From Washington Post (2019) “the accent gap”
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Math. setting

@ Training data: E1,-- &N (in theory: sampled from Py,in unknown)

e.g. in supervised learning: labeled data & = (a;, y;) feature, label

@ Train model: f(x,-) the loss function with x the parameter/decision (w, 3,9, ...)

e.g. least-square regression: f(x,(a,y)) = (x"a—y)?

@ Compute x via empirical risk minimization (a.k.a SAA)

(minimize the average loss on training data)

1N
mxin N Z f(x,&)
i=1



Math. setting

@ Training data:  &p,...,¢&n (in theory: sampled from Py,in unknown)

e.g. in supervised learning: labeled data & = (a;, y;) feature, label

@ Train model: f(x,-) the loss function with x the parameter/decision (w, 3,9, ...)

e.g. least-square regression: f(x,(a,y)) = (x"a—y)?

@ Compute x via empirical risk minimization (a.k.a SAA)
(minimize the average loss on training data)

N

mxin %Z f(x,&)

i=1
@ Prediction with x for different data &
— Adversarial attacks (e.g. flying pigs, driving cakes...)
— Presence of bias, e.g. heterogeneous data
— Distributional shifts: Pirain 7 Prest

— Generalization: computations with Py and guarantees on Piyain

@ Solution: take possible variations into account during training
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@ Training data:  &p,...,¢&n (in theory: sampled from Py,in unknown)

e.g. in supervised learning: labeled data & = (a;, y;) feature, label

@ Train model: f(x,-) the loss function with x the parameter/decision (w, 3,9, ...

e.g. least-square regression: f(x,(a,y)) = (x"a—y)?

@ Compute x via empirical risk minimization (a.k.a SAA)
(minimize the average loss on training data)
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@ Prediction with x for different data &
— Adversarial attacks (e.g. flying pigs, driving cakes...)
— Presence of bias, e.g. heterogeneous data
— Distributional shifts: Pirain 7 Prest

— Generalization: computations with Py and guarantees on Piyain

@ Solution: take possible variations into account during training



(Distributionally) robust optimization

Optimize expected loss for the worst probability in a set of perturbations
rather than mXin Eg, [f(x,9)] solve instead mXin max Eg[f(x,¢)]

with I/ a neighborhood of Py (called ambiguity set)



(Distributionally) robust optimization
Optimize expected loss for the worst probability in a set of perturbations
rather than min Eg, [f(x,9)] solve instead min max Eg[f(x,¢)]
with I/ a neighborhood of Py (called ambiguity set)
_ 1
o U= {IP’N} : min ; f(x,&) standard ERM
@ U defined by moments e.g. [Delage, Ye, '10] [Jegelka et al. '19]

o U = {Q : d(@,\,,@) < p} for various distances or divergences
E.g. KL-div., xo-div., max-mean-discrepancy... e.g. [Namkoong, Duchi '17]

o U= {Q : W(@N,Q) < p} Wasserstein distance [Kuhn et al. '18] (popular in OT)

modeling vs. computational tractability




lllustration 1: the gain in robustness

Toy example: basic classification (linear, 2D, 2 classes...)

e Training data: & = (a;,y;) € R? x {—1,+1}
sampled from two Gaussian distributions with variances 0 =1 and 0 =5

@ Testing data: reverse variance c =5 and 0 =1

e Compute standard separator by min logistic loss f(x, &) = log(1 + exp(—y a' x))
N

1 T
min = leog(l + exp(—y; 3,7 X))
i=
@ Compute a robust separator (Wassertein DRO w. c((a,y),(a’,y")) = |la— || + x1,_,/)

Training <_:|ata Testing data




lllustration 1: the gain in robustness

Toy example: basic classification (linear, 2D, 2 classes...)

e Training data: & = (a;,y;) € R? x {1, +1}
sampled from two Gaussian distributions with variances 0 =1 and 0 =5

@ Testing data: reverse variance c =5 and 0 =1

e Compute standard separator by min logistic loss f(x, &) = log(1 4 exp(—y a' x))

N
.1 T
min Z log(1 + exp(—y; a;' x))
i=1
@ Compute a robust separator (Wassertein DRO w. c((a,y),(a’,y")) = |la—a'[| + x1,_,/)
WDRO Logistic Regression

Training data Testing data Logistic Regression




lllustration 2: gain in fairness

Federated learning framework with heterogeneous users (...) [Pillutla, Laguel, M., Harchaoui '22]
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lllustration 2: gain in fairness

Federated learning framework with heterogeneous users (...) [Pillutla, Laguel, M., Harchaoui '22]
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lllustration 2: gain in fairness

Federated learning framework with heterogeneous users (...) [Pillutla, Laguel, M., Harchaoui '22]
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(W)DRO reshapes test histograms — towards more fairness




(W)DRO, at the intersection of Optim & ML

(Wasserstein) distributionnally robust optimization is very attractive

@ Natural in many applications (e.g. fairness [Pillutla, Laguel, M., Harchaoui '22])
back to [Scarf 1958] | 4 (...) + recent trend in learning, e.g. [Kuhn et al. '20]

@ Statistical /theoretical properties
e.g. [Blanchet et al. '18] and [Blanchet and Shapiro '23]

@ Computable in usual cases
e.g. [Kuhn et al. "18], [Zhao Guan '18]...

@ Interprets up to first-order as a penalization by ||V¢f(x,£)|| e.g. [Gao et al. '18]



(W)DRO, at the intersection of Optim & ML

(Wasserstein) distributionnally robust optimization is very attractive

@ Natural in many applications (e.g. fairness [Pillutla, Laguel, M., Harchaoui '22])
back to [Scarf 1958] | 4 (...) + recent trend in learning, e.g. [Kuhn et al. '20]

@ Statistical /theoretical properties — warning: dimensionality ! (spotlight #1)
e.g. [Blanchet et al. '18] and [Blanchet and Shapiro '23]

@ Computable in usual cases — in fact in many cases ! (spotlight #2)
e.g. [Kuhn et al. "18], [Zhao Guan '18]...

@ Interprets up to first-order as a penalization by ||V¢f(x,£)|| e.g. [Gao et al. '18]



Gentle introduction to WDRO: Outline

o Just a bit of maths: optimal transport, duality, and formulations

© Dimension-free statistical guarantees of WDRO

e Robustify your models with skWDRO !
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Optimal transport comes into play

Wasserstein distance (given a cost function c)

W(P,Q) = mﬂin{ Ex[c(&,&)] : m with marginals [x]; =P, [7], =Q }
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Just a bit of maths: optimal transport, duality, and formulations

Optimal transport comes into play

Wasserstein distance (given a cost function c)

W(P,Q) = mﬂin{ Ex[c(&,&)] : m with marginals [x]; =P, [7], =Q }

[ ] o @
o o —@
Discrete case Semi-discrete case

U={Q: W(PnQ) <p}



Just a bit of maths: optimal transport, duality, and formulations

WDRO objective function

for given x, I@N, P

maxg.x Eq[f (x,£)]
[7]1 = Pu,[r]2 = Q

{ maxg Eg[f(x,§)] N
ming Ex[c(&,&)] < p

W(]P)Na Q) < P

10



Just a bit of maths: optimal transport, duality, and formulations

WDRO objective function

for given x, }@N, P

max X maxg.x Eg[f(x,¢)] maxe B, [F(x, )]
{ ;V%@f,%g)(é,i)] < { [t =Py, [m,=Q < { [7]: =Py

ming Ex[c(£,£)] < p Er[c(&,€)] <p
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Just a bit of maths: optimal transport, duality, and formulations

WDRO objective function

for given x, P, p

maxg.x Eg[f(x,)] maxy Egq, [f(x, §)] <
NS P ming Er[c(&,€)] < p Exl[c(& €] < p

= g]}llg Ap+Eg [maxe {f(x,€") = Ac(§,€)}]

to be compared with  E; [f(x,¢)]
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Just a bit of maths: optimal transport, duality, and formulations

WDRO objective function

for given x, P, p

maxg.x Eg[f(x,)] maxz Bz, [f(x, §)] 3
(e (T GO, gy
NS P ming Er[c(&,€)] < p Er[c(&,€)] <p

& T;ra Ap+Eg [maxe {f(x, &) — Xe(&,¢)}]
to be compared with  Eg [f(x,¢)]

...does not involve explicitly the transport plan

...computable in some (specific) cases [Kuhn et al. '18]
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Just a bit of maths: optimal transport, duality, and formulations

WDRO objective function

for given x, P, p

maxg.x Eg[f(x,)] maxz Bz, [f(x, §)] 3
(e (T GO, gy
NS P ming Er[c(&,€)] < p Er[c(&,€)] <p

& T;ra Ap+Eg [maxe {f(x, &) — Xe(&,¢)}]
to be compared with  Eg [f(x,¢)]

...does not involve explicitly the transport plan
...computable in some (specific) cases [Kuhn et al. '18]
...actually many more; see spotlight #2

...does it worth it ? see spotlight #1
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Gentle introduction to WDRO: Outline

© Dimension-free statistical guarantees of WDRO



Di ion-free statistical

Existing statistical guarantees of WDRO

@ Suppose &1,...,En ~ Puain (where € € RY)
N
. L 1 .
@ Computations with Py = NZ(&, and guarantees with Pyain 7
i=1

@ We manipulate the WDRO risk : Ry(x) = max  Eg[f(x,¢)]
W(Py,Q)<p

~

@ Obviously, if p,N large enough such that W (Pyain, Pn) < p, then

R/)(X) > ]E]Ptrain [f(x’ 5)]
—— —_——
can compute & optimize cannot access

o To be compared with  E; [f(x,)] = Ep,,, [f(x, )] + O(ﬁ)

of WDRO
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Di ion-free statistical

Existing statistical guarantees of WDRO

@ Suppose &1,...,En ~ Puain (where € € RY)
N
. L 1 .
@ Computations with Py = NZ 0¢; and guarantees with Pypin ?
i=1

@ We manipulate the WDRO risk : Ry(x) = max  Eg[f(x,¢)]
W(Pn,Q)<p
@ Obviously, if p,N large enough such that W(Ptrain,@,\,) < p, then
R/)(X) > ]EPtrain [f(x’ 5)]
—— —_————
can compute & optimize cannot access

o To be compared with  E; [f(x,&)] > Ep,,, [f(x,§)] + O(5)

It requires p oc 1/+v/N [Fournier and Guillin '15]  (issue)

Not optimal: p o< 1/v/N suffices

— asymptotically [Blanchet et al '22]
— in particular cases [Shafieez-Adehabadeh et a/ '19]
— or with error terms [Gao '22]

of WDRO
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Di ion-free statistical of WDRO

Extended exact generalization guarantees of WDRO

Our approach: a direct “optim.” approach (work to get a concentration on the dual function)

Theorem ([Azizian, lutzeler, M. '23], [Le, M. '24])

Assumptions: parametric family f(6,-) + compactness on 6 + compactness on £ + non-degeneracy

For 6 € (0,1), ifp> O(\/ %) then w.p.1—79,

Generalization guarantee: R,(x) = Ep,,, [f(x,&)]
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Di ion-free statistical of WDRO

Extended exact generalization guarantees of WDRO

Our approach: a direct “optim.” approach (work to get a concentration on the dual function)

Theorem ([Azizian, lutzeler, M. '23], [Le, M. '24])

Assumptions: parametric family f(0,-) + compactness on 0 + compactness on ¢ + non-degeneracy
For 6 € (0,1), ifp> O(w%) =p, then w.p.1-9,
Generalization guarantee: R,(x) = Ep,,, [f(x,&)]
Distribution shifts:

W(E.QP < p(p—pa) itholds R,(x) > Eq [f(x.&)]
Asymptotic tightness:

W(P,Q)? < p(p+pn) it holds R,(x) < maxgEq[f(x,¢)]
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Di ion-free statistical of WDRO

Extended exact generalization guarantees of WDRO

Our approach: a direct “optim.” approach (work to get a concentration on the dual function)

Theorem ([Azizian, lutzeler, M. '23], [Le, M. '24])

Assumptions: parametric family f(0,-) + compactness on 0 + compactness on ¢ + non-degeneracy
For 6 € (0,1), ifp> O(w#) =p, then w.p.1-9,
Generalization guarantee: R,(x) = Ep,,, [f(x,&)]
Distribution shifts:

W(E.QP < p(p—pa) itholds R,(x) > Eq [f(x.&)]
Asymptotic tightness:

W(P,Q)? < p(p+pn) it holds R,(x) < maxgEq[f(x,¢)]

@ Universal result: deep learning, kernels, family of invertible mappings (e.g. normalizing flows)

@ Retrieve existing results in linear/logistic regressions [Shafieez-Adehabadeh et al '19]
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Di ion-free statistical of WDRO

Theorem illustrated
On logistic regression:
o for each p, sample 200 training datasets
@ solve the WDRO problem on each of them [Blanchet et al '22]
@ plot the proba of R,(x) — Ep,,,[f(x)] > 0 (average, standard deviation)

@ the training robust loss is indeed an upper-bound on the true loss

Logistic Regression

10{ — Standard WDRO

0.8 1

0.6 4

0.4

0.2

0.0 4

1072 1072 1071
Radius p
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Robustness illustrated

Logistic regression again:

(train/test histograms)

Vanilla (ERM) model

— over-promises

— under-performs

Robust (WDRO) model

— (too?) conservative

— (way!) better testing loss

free statistical

Vanilla X

train || =——p test

Robust /

loss value

\4

of WDRO

14



Robustness illustrated

Logistic regression again:

(train/test histograms)

Vanilla (ERM) model

— over-promises

— under-performs

Robust (WDRO) model

— (too?) conservative

— (way!) better testing loss

How can we compute such models !?

We want the same at home !

free statistical

Vanilla X

train || =——p test

Robust /

loss value

\4

of WDRO
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Gentle introduction to WDRO: Outline

e Robustify your models with skWDRO !



Robustify your models with skWDRO !

Original approach
Dual WDRO is nonsmooth (which complicates resolution [Kuhn et al. '18])
Ru(F) = min Ao+ Ex{maxes {£(¢) ~ A€ — ¢/}

What about smoothing 7! Smoothed counterpart

(€) = AllE - §’||2>)

: f
RO (f) = min Ap+ Ep clog (E5'~N(g,02) exp ( -
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Robustify your models with skWDRO !

Original approach
Dual WDRO is nonsmooth (which complicates resolution [Kuhn et al. '18])
Ru(F) = min Ao+ E-[maxe {F(¢) — Al¢ — ¢/}

What about smoothing 7! Smoothed counterpart

F(E) = AllE - f’llz))

RO (f) = r}gr(} Ap+ Ep clog (ngN(g,aZ) exp ( .

Nice interpretation as entropy-regularized WDRO

Nice approximation results, e.g. :

Theorem (approximation bounds for WDRO [Azizian, lutzeler, M. '21])

Under mild assumptions (non-degeneracy, lipschitz), if the support of P is contained in a compact
convex set = C RY, then

1
0 < R,(f)—R(f) < (Cslogg)d

15



Hard work on computational aspects

Importance sampling for the inner integral

Careful logsumexp

@ Heuristics to set € and o

Numerically stable backward pass

Efficient heuristic to set starting A

All-in-one API, easy to define the problem

User-friendly interfaces

Try it out !

Robustify your models with skWDRO !

WDRO
i EcoL
b Qilig:ﬂ,. c~oLs(0) Specific/Entropic
w(EN,Q)<p solver
- @ o
A Scikit-learn

tractable formulation needed

Robustifies

ERM
minE, . Ly(€)

Approximates Includes

Robustifies

Entropic WDRO
min \p Interface (Wrapping interface|
e PyTorch J

‘HE{,‘},\ F.(\, Lo(")

Wrap

More (to come) in [Vincent, Azizian, lutzeler, M. '24]

16



Easy to use, with few lines of code

Scikitlearn

Robustify your models with skWDRO !

Pytorch

def main():
device "cuda" if pt.cuda.is available() else "cpu"
model = MyShallowNet([1, 50, , 10, 1]).to(device)

rho = pt.tensor(le-1).to(device)

x = pt.sort(pt.flatten(
pt.linspace(0., 1., 10, device=device).unsqueeze(0)\
+ pt.randn(10 , 10, device=device) * le-1

))[0]

y = f(x) + pt.randn(100000, device=device) *

2e-
dataset = Dataloader(TensorDataset(x.unsqueeze(-

2
1

dual_loss = dualize primal_loss(
nn.MSELoss (reduction="'none"),
model,
rho,
X.unsqueeze(-1),
y.unsqueeze(-1)

train(dual_loss, dataset, 1000)

), y.unsqueeze(-1)), batch_size

shuffle=True)

17



Robustify your models with skWDRO !

To sum up, in one last slide...

Main take-aways
@ ML works well, unless it does not. Work needed. Optimization is in the game
@ Distributionally robust optimization is rich, active topic
@ Spotlight #1: WDRO has nice generalization properties

@ Spotlight #2: WDRO in action with skWDRO (via scitkitlearn 4 Pytorch wrappers)

18
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@ Spotlight #1: WDRO has nice generalization properties

@ Spotlight #2: WDRO in action with skWDRO (via scitkitlearn 4 Pytorch wrappers)

What'’s next ?
@ Beyond Wasserstein neighborhoods... new models, new applications !

@ How to deal with difficult constraints ? (0-1 variables, mixed-integer sets...)
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Robustify your models with skWDRO !

To sum up, in one last slide...

Main take-aways
@ ML works well, unless it does not. Work needed. Optimization is in the game
@ Distributionally robust optimization is rich, active topic
@ Spotlight #1: WDRO has nice generalization properties

@ Spotlight #2: WDRO in action with skWDRO (via scitkitlearn 4 Pytorch wrappers)

What'’s next ?
@ Beyond Wasserstein neighborhoods... new models, new applications !

@ How to deal with difficult constraints ? (0-1 variables, mixed-integer sets...)

thank you all )
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